Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-08T02:48:54.611Z Has data issue: false hasContentIssue false

37 - Past obstacles and future promise

Published online by Cambridge University Press:  08 August 2009

D. J. P. Barker
Affiliation:
University of Southampton
Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access

Summary

Introduction

The idea that common chronic diseases are initiated through developmental processes that begin before birth arose from geographical studies published 20 years ago (Barker and Osmond 1986). The evidence was circumstantial and the mechanisms unknown. Today even a perfunctory reading of this book would lead to the conclusion that the ‘developmental origins of health and disease’ now has a sound scientific basis in both human and animal studies. This being so, the need to expand research is urgent. Almost a million people in the USA died of coronary heart disease last year. One hundred and fifty million people in the world have type 2 diabetes and the epidemic is rising. Ten million Americans over the age of 50 have osteoporosis and one out of every two women over the age of 50 will have an osteoporotic fracture in their lifetime.

Differences in adult lifestyle provide only a partial explanation of why one person develops these disorders while another does not; nor does lifestyle account for the higher rates of these disorders among poorer people and ethnic minorities in Western countries. The effects of modifying adult lifestyle, when formally tested in randomised trials, have been disappointingly small (Ebrahim and Davey Smith 1997). One explanation could be that there are differences in people's vulnerability to adverse lifestyles and hence differences in the benefits of lifestyle modification.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adair, L. S. (2001). Size at birth predicts age at menarche. Pediatrics, 107, E59.CrossRefGoogle ScholarPubMed
Adair, L. S., Kuzawa, C. W. and Borja, J. (2001). Maternal energy stores and diet composition during pregnancy program adolescent blood pressure. Circulation, 104, 1034–9.CrossRefGoogle ScholarPubMed
Bagby, S. P. (2004). Obesity-initiated metabolic syndrome and the kidney: a recipe for chronic kidney disease?J. Am. Soc. Nephrol., 15, 2775–91.CrossRefGoogle ScholarPubMed
Barker, D. J. P. (1998). Mothers, Babies and Health in Later Life. Edinburgh: Churchill Livingstone.Google Scholar
Barker, D. J. P. and Osmond, C. (1986). Infant mortality, childhood nutrition and ischaemic heart disease in England and Wales. Lancet, 1, 1077–81.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Osmond, C., Winter, P. D., Margetts, B. and Simmonds, S. J. (1989). Weight in infancy and death from ischaemic heart disease. Lancet, 2, 577–80.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Bull, A. R., Osmond, C. and Simmonds, S. J. (1990). Fetal and placental size and risk of hypertension in adult life. BMJ, 301, 259–62.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Osmond, C., Rodin, I., Fall, C. H. D. and Winter, P. D. (1995). Low weight gain in infancy and suicide in adult life. BMJ, 311, 1203.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Shiell, A. W., Barker, M. E. and Law, C. M. (2000). Growth in utero and blood pressure levels in the next generation. J. Hypertens., 18, 843–6.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Forsén, T., Uutela, A., Osmond, C. and Eriksson, J. G. (2001). Size at birth and resilience to the effects of poor living conditions in adult life: longitudinal study. BMJ, 323, 1273–6.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Eriksson, J. G., Forsén, T. and Osmond, C. (2002a). Fetal origins of adult disease: strength of effects and biological basis. Int. J. Epidemiol., 31, 1235–9.CrossRefGoogle Scholar
Barker, D. J. P., Forsén, T., Eriksson, J. G. and Osmond, C. (2002b). Growth and living conditions in childhood and hypertension in adult life: longitudinal study. J. Hypertens., 20, 1951–6.CrossRefGoogle Scholar
Barker, D. J. P., Osmond, C., Forsen, T. J., Kajantie, E. and Eriksson, J. G. (2005a). Trajectories of growth among children who have coronary events as adults. N. Engl. J. Med., 353, 1802–9.CrossRefGoogle Scholar
Barker, D. J. P., Eriksson, J. G., Forsen, T. and Osmond, C. (2005b). Infant growth and income 50 years later. Arch. Dis. Child., 90, 272–3.CrossRefGoogle Scholar
Barraclough, C. A. (1961). Production of anovulatory, sterile rats by single injections of testosterone propionate. Endocrinology, 68, 62–7.CrossRefGoogle ScholarPubMed
Bassan, H., Trejo, L. L., Kariv, N.et al. (2000). Experimental intrauterine growth retardation alters renal development. Pediatr. Nephrol., 15, 192–5.CrossRefGoogle ScholarPubMed
Bateson, P. and Martin, P. (1999). Design for a Life: How Behaviour Develops. London: Jonathan Cape.Google Scholar
Bhargava, S. K., Sachdev, H. S., Fall, C. H. D.et al. (2004). Relation of serial changes in childhood body mass index to impaired glucose tolerance in young adulthood. N. Engl. J. Med., 350, 865–75.CrossRefGoogle ScholarPubMed
Brenner, B. M. and Chertow, G. M. (1993). Congenital oligonephropathy: an inborn cause of adult hypertension and progressive renal injury?Curr. Opin. Nephrol. Hypertens., 2, 691–5.Google ScholarPubMed
Brooks, A. A., Johnson, M. R., Steer, P. J., Pawson, M. E. and Abdalla, H. I. (1995). Birth weight: nature or nurture?Early Hum. Dev., 42, 29–35.CrossRefGoogle ScholarPubMed
Campbell, D. M., Hall, M. H., Barker, D. J. P., Cross, J., Shiell, A. W. and Godfrey, K. M. (1996). Diet in pregnancy and the offspring's blood pressure 40 years later. Br. J. Obstet. Gynaecol., 103, 273–80.CrossRefGoogle ScholarPubMed
Catalano, P. M., Thomas, A. J., Huston, L. P. and Fung, C. M. (1998). Effect of maternal metabolism on fetal growth and body composition. Diabetes Care, 21, B85–90.Google ScholarPubMed
Checkley S. (1992). Neuroendocrinology. In Handbook of Affective Disorders (ed. Paykel, E. S., Edinburgh: Churchill Livingstone. pp. 255–66.Google Scholar
Clark, P. M., Atton, C., Law, C. M., Shiell, A., Godfrey, K. and Barker, D. J. P. (1998). Weight gain in pregnancy, triceps skinfold thickness and blood pressure in the offspring. Obstet. Gynecol., 91, 103–7.CrossRefGoogle ScholarPubMed
Cooper, C., Kuh, D., Egger, P., Wadsworth, M. and Barker, D. (1996). Childhood growth and age at menarche. Br. J. Obstet. Gynaecol., 103, 814–17.CrossRefGoogle ScholarPubMed
Cooper, C., Eriksson, J. G., Forsen, T., Osmond, C., Tuomilehto, J. and Barker, D. J. P. (2001). Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos. Int., 12, 623–9.CrossRefGoogle ScholarPubMed
Cooper, C., Javaid, M. K., Taylor, P., Walker-Bone, K., Dennison, E. and Arden, N. K. (2002). The fetal origins of osteoporotic fracture. Calcif. Tissue Int., 70, 391–4.CrossRefGoogle ScholarPubMed
Cresswell, J. L., Barker, D. J. P., Osmond, C., Egger, P., Phillips, D. I. W. and Fraser, R. B. (1997). Fetal growth, length of gestation and polycystic ovaries in adult life. Lancet, 350, 1131–5.CrossRefGoogle ScholarPubMed
Dennison, E., Arden, N. K., Keen, R. W.et al. (2001). Birthweight, vitamin D receptor genotype and the programming of osteoporosis. Paediatr. Perinat. Epidemiol., 15, 211–19.CrossRefGoogle Scholar
Drake, A. J. and Walker, B. R. (2004). The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J. Endocrinol., 180, 1–16.CrossRefGoogle ScholarPubMed
Dubos, R. (1960). Mirage of Health. London: Allen and Unwin.Google Scholar
Duggleby, S. L. and Jackson, A. A. (2001). Relationship of maternal protein turnover and lean body mass during pregnancy and birth length. Clin. Sci., 101, 65–72.CrossRefGoogle ScholarPubMed
Ebrahim, S. and Davey, Smith, G. (1997). Systematic review of randomized controlled trials of multiple risk factor interventions for preventing coronary heart disease. BMJ, 314, 1666–74.CrossRefGoogle ScholarPubMed
Emanuel, I., Filakti, H., Alberman, E. and Evans, S. J. W. (1992). Intergenerational studies of human birthweight from the 1958 birth cohort. I. Evidence for a multigenerational effect. Br. J. Obstet. Gynaecol., 99, 67–74.CrossRefGoogle ScholarPubMed
Eriksson, J. G., Forsen, T., Tuomilehto, J., Osmond, C. and Barker, D. J. P. (2000). Fetal and childhood growth and hypertension in adult life. Hypertension, 36, 790–4.CrossRefGoogle ScholarPubMed
Eriksson, J. G., Forsen, T., Tuomilehto, J., Osmond, C. and Barker, D. J. P. (2001). Early growth and coronary heart disease in later life: longitudinal study. BMJ, 322, 949–53.CrossRefGoogle ScholarPubMed
Eriksson, J. G., Lindi, V., Uusitupa, M.et al. (2002). The effects of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-γ2 gene on insulin sensitivity and insulin metabolism interact with size at birth. Diabetes, 51, 2321–4.CrossRefGoogle ScholarPubMed
Eriksson, J. G., Forsen, T., Tuomilehto, J., Osmond, C. and Barker, D. J. P. (2003a). Early adiposity rebound in childhood and risk of type 2 diabetes in adult life. Diabetologia, 46, 190–4.CrossRefGoogle Scholar
Eriksson, J. G., Forsén, T. J., Osmond, C. and Barker, D. J. P. (2003b). Pathways of infant and childhood growth that lead to type 2 diabetes. Diabetes Care, 26, 3006–10.CrossRefGoogle Scholar
Fall, C. H. D., Stein, C. E., Kumaran, K.et al. (1998). Size at birth, maternal weight, and type 2 diabetes in South India. Diabet. Med., 15, 220–7.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Forsen, T., Eriksson, J. G., Tuomilehto, J., Teramo, K., Osmond, C. and Barker, D. J. P. (1997). Mother's weight in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study. BMJ, 315, 837–40.CrossRefGoogle Scholar
Forsen, T., Eriksson, J., Tuomilehto, J., Reunanen, A., Osmond, C. and Barker, D. (2000). The fetal and childhood growth of persons who develop type 2 diabetes. Ann. Intern. Med., 133, 176–182.CrossRefGoogle ScholarPubMed
Forsen, T., Osmond, C., Eriksson, J. G. and Barker, D. J. P. (2004). Growth of girls who later develop coronary heart disease. Heart, 90, 20–4.CrossRefGoogle ScholarPubMed
Frankel, S., Elwood, P., Sweetnam, P., Yarnell, J. and Davey Smith, G. (1996). Birthweight, body mass index in middle age, and incident coronary heart disease. Lancet, 348, 1478–80.CrossRefGoogle ScholarPubMed
Godfrey, K., Robinson, S., Barker, D. J. P., Osmond, C. and Cox, V. (1996). Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ, 312, 410–14.CrossRefGoogle ScholarPubMed
Godfrey, K. M., Forrester, T., Barker, D. J. P.et al. (1994). Maternal nutritional status in pregnancy and blood pressure in childhood. Br. J. Obstet. Gynaecol., 101, 398–403.CrossRefGoogle ScholarPubMed
Godfrey, K. M., Barker, D. J. P., Robinson, S. and Osmond, C. (1997). Maternal birthweight and diet in pregnancy in relation to the infant's thinness at birth. Br. J. Obstet. Gynaecol., 104, 663–7.CrossRefGoogle ScholarPubMed
Hales, C. N., Barker, D. J. P., Clark, P. M. S.et al. (1991). Fetal and infant growth and impaired glucose tolerance at age 64. BMJ, 303, 1019–22.CrossRefGoogle ScholarPubMed
Harding, J. (2001). The nutritional basis of the fetal origins of adult disease. Int. J. Epidemiol., 30, 15–23.CrossRefGoogle ScholarPubMed
Harding, J., Liu, L., Evans, P., Oliver, M. and Gluckman, P. (1992). Intrauterine feeding of the growth retarded fetus: can we help?Early Hum. Dev., 29, 193–7.CrossRefGoogle ScholarPubMed
Hinchliffe, S. A., Lynch, M. R., Sargent, P. H., Howard, C. V. and Velzen, D. (1992). The effect of intrauterine growth retardation on the development of renal nephrons. Br. J. Obstet. Gynaecol., 99, 296–301.CrossRefGoogle ScholarPubMed
Huxley, R. R., Shiell, A. W. and Law, C. M. (2000). The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J. Hypertens., 18, 815–31.CrossRefGoogle ScholarPubMed
James, W. P. T. (1997). Long-term fetal programming of body composition and longevity. Nutr. Rev., 55, S41–3.Google ScholarPubMed
Kajantie, E., Rautanen, A., Kere, J.et al. (2004). The effects of the ACE gene insertion/deletion polymorphism on glucose tolerance and insulin secretion in elderly people are modified by birth weight. J. Clin. Endocrinol. Metab., 89, 5738–41.CrossRefGoogle ScholarPubMed
Kramer, M. S. (1993). Effects of energy and protein intakes on pregnancy outcome: an overview of the research evidence from controlled clinical trials. Am. J. Clin. Nutr., 58, 627–35.CrossRefGoogle ScholarPubMed
Kubaszek, A., Markkanen, A., Eriksson, J. G.et al. (2004). The association of the K121Q polymorphism of the plasma cell glycoprotein-1 gene with type 2 diabetes and hypertension depends on size at birth. J. Clin. Endocrinol. Metab., 89, 2044–7.CrossRefGoogle ScholarPubMed
Kwong, W. Y., Wild, A., Roberts, P., Willis, A. C. and Fleming, T. P. (2000). Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development, 127, 4195–202.Google ScholarPubMed
Lackland, D. T., Egan, B. M., Syddall, H. E. and Barker, D. J. P. (2002). Associations between birthweight and antihypertensive medication in black and white Americans. Hypertension, 39, 179–83.CrossRefGoogle Scholar
Langley-Evans, S. C., Welham, S. J. and Jackson, A. A. (1999). Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci., 64, 965–74.CrossRefGoogle ScholarPubMed
Leon, D. A., Lithell, H. O., Vagero, D.et al. (1998). Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15,000 Swedish men and women born 1915–29. BMJ, 317, 241–5.CrossRefGoogle ScholarPubMed
Lithell, H. O., McKeigue, P. M., Berglund, L., Mohsen, R., Lithell, U. B. and Leon, D. A. (1996). Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50–60 years. BMJ, 312, 406–10.CrossRefGoogle ScholarPubMed
Manalich, R., Reyes, L., Herrera, M., Melendi, C. and Fundora, I. (2000). Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int., 58, 770–3.CrossRefGoogle ScholarPubMed
Margetts, B. M., Rowland, M. G. M., Foord, F. A., Cruddas, A. M., Cole, T. J. and Barker, D. J. P. (1991). The relation of maternal weight to the blood pressures of Gambian children. Int. J. Epidemiol., 20, 938–43.CrossRefGoogle ScholarPubMed
Marmot, M. and Wilkinson, R. G. (2001). Psychosocial and material pathways in the relation between income and health: a response to Lynch et al. BMJ, 322, 1233–6.CrossRefGoogle ScholarPubMed
Martyn, C. N., Barker, D. J. P. and Osmond, C. (1996). Mothers' pelvic size, fetal growth, and death from stroke and coronary heart disease in men in the UK. Lancet, 348, 1264–8.CrossRefGoogle ScholarPubMed
McCance, R. A. (1962). Food, growth and time. Lancet, 2, 621–6.CrossRefGoogle Scholar
McCance, D. R., Pettitt, D. J., Hanson, R. L., Jacobsson, L. T. H., Knowler, W. C. and Bennett, P. H. (1994). Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype?BMJ, 308, 942–5.CrossRefGoogle ScholarPubMed
Merlet-Benichou, C., Gilbert, T., Muffat-Joly, M. and Lelievre-Pegorier, M. and Leroy, B. (1994). Intrauterine growth retardation leads to a permanent nephron deficit in the rat. Pediatr. Nephrol., 8, 175–80.CrossRefGoogle ScholarPubMed
Metcalfe, N. B. and Monaghan, P. (2001). Compensation for a bad start: grow now, pay later?Trends Ecol. Evol., 16, 254–60.CrossRefGoogle ScholarPubMed
Mi, J., Law, C. M., Zhang, K. L., Osmond, C., Stein, C. E. and Barker, D. J. P. (2000). Effects of infant birthweight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann. Intern. Med., 132, 253–60.CrossRefGoogle Scholar
Osmond, C., Barker, D. J. P., Winter, P. D., Fall, C. H. D. and Simmonds, S. J. (1993). Early growth and death from cardiovascular disease in women. BMJ, 307, 1519–24.CrossRefGoogle ScholarPubMed
Phillips, D. I. W. (1996). Insulin resistance as a programmed response to fetal undernutrition. Diabetologia, 39, 1119–22.CrossRefGoogle ScholarPubMed
Phillips, D. I. W., Walker, B. R., Reynolds, R. M.et al. (2000). Low birth weight predicts elevated plasma cortisol concentrations in adults from 3 populations. Hypertension, 35, 1301–6.CrossRefGoogle ScholarPubMed
Phillips, D. I. W., Handelsman, D. J., Eriksson, J. G., Forsen, T. and Osmond, C. (2001). Prenatal growth and subsequent marital status: longitudinal study. BMJ, 322, 771.CrossRefGoogle ScholarPubMed
Ravelli, A. C. J., Meulen, J. H. P., Michels, R. P. J.et al. (1998). Glucose tolerance in adults after exposure to the Dutch famine. Lancet, 351, 173–7.CrossRefGoogle Scholar
Rich-Edwards, J. W., Stampfer, M. J., Manson, J. E.et al. (1997). Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ, 315, 396–400.CrossRefGoogle Scholar
Rich-Edwards, J. W., Colditz, G. A., Stampfer, M. J.et al. (1999). Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann. Intern. Med., 130, 278–84.CrossRefGoogle ScholarPubMed
Robinson, J. S., Owens, J. A., de Barro, T., Lok, F. and Chidzanja, S. (1994). Maternal nutrition and fetal growth. In Early Fetal Growth and Development (ed. Ward, R. H. T., Smith, S. K., and Donnai, D.,). London: Royal College of Obstetricians and Gynaecologists, pp. 317–34.Google Scholar
Roseboom, T. J., Meulen, J. H. P. and Montfrans, G. A.et al. (2001a). Maternal nutrition during gestation and blood pressure in later life. J. Hypertens., 19, 29–34.CrossRefGoogle Scholar
Roseboom, T. J., Meulen, J. H. P., Ravelli, A. C., Osmond, C., Barker, D. J. P. and Bleker, O. P. (2001b). Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol. Cell. Endocrinol., 185, 93–8.CrossRefGoogle Scholar
Shiell, A. W., Campbell, D. M., Hall, M. H. and Barker, D. J. P. (2000). Diet in late pregnancy and glucose-insulin metabolism of the offspring 40 years later. Br. J. Obstet. Gynaecol., 107, 890–5.CrossRefGoogle ScholarPubMed
Shiell, A. W., Campbell-Brown, M., Haselden, S., Robinson, S., Godfrey, K. M. and Barker, D. J. P. (2001). High-meat, low-carbohydrate diet in pregnancy: relation to adult blood pressure in the offspring. Hypertension, 38, 1282–8.CrossRefGoogle ScholarPubMed
Singhal, A. and Lucas, A. (2004). Early origins of cardiovascular disease: is there a unifying hypothesis?Lancet, 363, 1642–5.CrossRefGoogle Scholar
Spencer, J., Wang, Z. and Hoy, W. (2001). Low birth weight and reduced renal volume in aboriginal children. Am. J. Kidney Dis., 37, 915–20.CrossRefGoogle ScholarPubMed
Stein, C. E., Fall, C. H. D., Kumaran, K., Osmond, C., Cox, V. and Barker, D. J. P. (1996). Fetal growth and coronary heart disease in South India. Lancet, 348, 1269–73.CrossRefGoogle ScholarPubMed
Stewart, R. J. C., Sheppard, H., Preece, R. and Waterlow, J. C. (1980). The effect of rehabilitation at different stages of development of rats marginally malnourished for ten to twelve generations. Br. J. Nutr., 43, 403–12.CrossRefGoogle ScholarPubMed
Thompson, D. W. (1942). On Growth and Form. Cambridge: Cambridge University Press.Google Scholar
Vehaskari, V. M., Aviles, D. H. and Manning, J. (2001). Prenatal programming of adult hypertension in the rat. Kidney Int., 59, 238–45.CrossRefGoogle ScholarPubMed
Walker, S. K., Hartwick, K. M. and Robinson, J. S. (2000). Long-term effects on offspring of exposure to oocytes and embryos to chemical and physical agents. Hum Reprod Update, 6, 564–7.CrossRefGoogle ScholarPubMed
West-Eberhard, M. J. (1989). Phenotypic plasticity and the origins of diversity. Ann. Rev. Ecol. Syst., 20, 249–78.CrossRefGoogle Scholar
Widdowson, E. M., Crabb, D. E. and Milner, R. D. G. (1972). Cellular development of some human organs before birth. Arch. Dis. Child., 47, 652–5.CrossRefGoogle ScholarPubMed
Winston, R. M. L. and Hardy, K. (2002). Are we ignoring potential dangers of in vitro fertilization and related treatments?Nat. Cell Biol., 2, S14–18.Google Scholar
Woods, L. L., Ingelfinger, J. R., Nyengaard, J. R. and Rasch, R. (2001). Maternal protein restriction suppresses the newborn rennin–angiotensin system and programs adult hypertension in rats. Pediatr. Res., 49, 460–7.CrossRefGoogle Scholar
Ylihärsilä, H., Eriksson, J. G., Forsén, T., Kajantie, E., Osmond, C. and Barker, D. J. P. (2003). Self-perpetuating effects of birth size on blood pressure levels in elderly people. Hypertension, 41, 446–50.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×