Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 The developmental origins of health and disease: an overview
- 2 The ‘developmental origins’ hypothesis: epidemiology
- 3 The conceptual basis for the developmental origins of health and disease
- 4 The periconceptional and embryonic period
- 5 Epigenetic mechanisms
- 6 A mitochondrial component of developmental programming
- 7 Role of exposure to environmental chemicals in developmental origins of health and disease
- 8 Maternal nutrition and fetal growth and development
- 9 Placental mechanisms and developmental origins of health and disease
- 10 Control of fetal metabolism: relevance to developmental origins of health and disease
- 11 Lipid metabolism: relevance to developmental origins of health and disease
- 12 Prenatal hypoxia: relevance to developmental origins of health and disease
- 13 The fetal hypothalamic–pituitary–adrenal axis: relevance to developmental origins of health and disease
- 14 Perinatal influences on the endocrine and metabolic axes during childhood
- 15 Patterns of growth: relevance to developmental origins of health and disease
- 16 The developmental environment and the endocrine pancreas
- 17 The developmental environment and insulin resistance
- 18 The developmental environment and the development of obesity
- 19 The developmental environment and its role in the metabolic syndrome
- 20 Programming the cardiovascular system
- 21 The role of vascular dysfunction in developmental origins of health and disease: evidence from human and animal studies
- 22 The developmental environment and atherogenesis
- 23 The developmental environment, renal function and disease
- 24 The developmental environment: effect on fluid and electrolyte homeostasis
- 25 The developmental environment: effects on lung structure and function
- 26 Developmental origins of asthma and related allergic disorders
- 27 The developmental environment: influences on subsequent cognitive function and behaviour
- 28 The developmental environment and the origins of neurological disorders
- 29 The developmental environment: clinical perspectives on effects on the musculoskeletal system
- 30 The developmental environment: experimental perspectives on skeletal development
- 31 The developmental environment and the early origins of cancer
- 32 The developmental environment: implications for ageing and life span
- 33 Developmental origins of health and disease: implications for primary intervention for cardiovascular and metabolic disease
- 34 Developmental origins of health and disease: public-health perspectives
- 35 Developmental origins of health and disease: implications for developing countries
- 36 Developmental origins of health and disease: ethical and social considerations
- 37 Past obstacles and future promise
- Index
- References
11 - Lipid metabolism: relevance to developmental origins of health and disease
Published online by Cambridge University Press: 08 August 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 The developmental origins of health and disease: an overview
- 2 The ‘developmental origins’ hypothesis: epidemiology
- 3 The conceptual basis for the developmental origins of health and disease
- 4 The periconceptional and embryonic period
- 5 Epigenetic mechanisms
- 6 A mitochondrial component of developmental programming
- 7 Role of exposure to environmental chemicals in developmental origins of health and disease
- 8 Maternal nutrition and fetal growth and development
- 9 Placental mechanisms and developmental origins of health and disease
- 10 Control of fetal metabolism: relevance to developmental origins of health and disease
- 11 Lipid metabolism: relevance to developmental origins of health and disease
- 12 Prenatal hypoxia: relevance to developmental origins of health and disease
- 13 The fetal hypothalamic–pituitary–adrenal axis: relevance to developmental origins of health and disease
- 14 Perinatal influences on the endocrine and metabolic axes during childhood
- 15 Patterns of growth: relevance to developmental origins of health and disease
- 16 The developmental environment and the endocrine pancreas
- 17 The developmental environment and insulin resistance
- 18 The developmental environment and the development of obesity
- 19 The developmental environment and its role in the metabolic syndrome
- 20 Programming the cardiovascular system
- 21 The role of vascular dysfunction in developmental origins of health and disease: evidence from human and animal studies
- 22 The developmental environment and atherogenesis
- 23 The developmental environment, renal function and disease
- 24 The developmental environment: effect on fluid and electrolyte homeostasis
- 25 The developmental environment: effects on lung structure and function
- 26 Developmental origins of asthma and related allergic disorders
- 27 The developmental environment: influences on subsequent cognitive function and behaviour
- 28 The developmental environment and the origins of neurological disorders
- 29 The developmental environment: clinical perspectives on effects on the musculoskeletal system
- 30 The developmental environment: experimental perspectives on skeletal development
- 31 The developmental environment and the early origins of cancer
- 32 The developmental environment: implications for ageing and life span
- 33 Developmental origins of health and disease: implications for primary intervention for cardiovascular and metabolic disease
- 34 Developmental origins of health and disease: public-health perspectives
- 35 Developmental origins of health and disease: implications for developing countries
- 36 Developmental origins of health and disease: ethical and social considerations
- 37 Past obstacles and future promise
- Index
- References
Summary
Introduction
Lipids play numerous and diverse roles in the development of the fetus. Fatty acids are required for the synthesis of cell membranes, which are a prerequisite for tissue growth, for the synthesis of second messengers and for generation of energy reserves in adipose tissue. Cholesterol is also required for tissue growth, and for the synthesis of steroid hormones. This chapter discusses how the physiology of the mother adapts to meet the demands of the fetus for fatty acids and cholesterol, the functions of these lipids in the development of specific tissues and the consequences of deficits in lipid accretion for tissue function, with a specific focus on long-chain polyunsaturated fatty acids (PUFAs).
Lipids and fetal development
Fat accumulation and birthweight
In humans, fetal fat accretion into adipose tissues begins between 15 and 20 weeks gestation, but increases exponentially from about 30 g at 30 weeks gestation to 430 g at term (Southgate and Hay 1976). The early phase of adipogenesis is associated with deposition of subcutaneous fat, while visceral fat accumulation occurs during the mid second and third trimesters (Poissonnet et al. 1984). Such deposition may serve to provide insulation during early life, which is important in the absence of body hair (Pawlowski 1998), and it is notable that in nonhuman primates fat deposition begins after birth (Adolph and Heggeness 1971, Lewis et al. 1983). Prenatal accumulation of adipose tissue may also serve to generate a nutrient reserve to survive infancy (Kuzawa 1998, Correia et al. 2004).
- Type
- Chapter
- Information
- Developmental Origins of Health and Disease , pp. 159 - 177Publisher: Cambridge University PressPrint publication year: 2006