Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 The developmental origins of health and disease: an overview
- 2 The ‘developmental origins’ hypothesis: epidemiology
- 3 The conceptual basis for the developmental origins of health and disease
- 4 The periconceptional and embryonic period
- 5 Epigenetic mechanisms
- 6 A mitochondrial component of developmental programming
- 7 Role of exposure to environmental chemicals in developmental origins of health and disease
- 8 Maternal nutrition and fetal growth and development
- 9 Placental mechanisms and developmental origins of health and disease
- 10 Control of fetal metabolism: relevance to developmental origins of health and disease
- 11 Lipid metabolism: relevance to developmental origins of health and disease
- 12 Prenatal hypoxia: relevance to developmental origins of health and disease
- 13 The fetal hypothalamic–pituitary–adrenal axis: relevance to developmental origins of health and disease
- 14 Perinatal influences on the endocrine and metabolic axes during childhood
- 15 Patterns of growth: relevance to developmental origins of health and disease
- 16 The developmental environment and the endocrine pancreas
- 17 The developmental environment and insulin resistance
- 18 The developmental environment and the development of obesity
- 19 The developmental environment and its role in the metabolic syndrome
- 20 Programming the cardiovascular system
- 21 The role of vascular dysfunction in developmental origins of health and disease: evidence from human and animal studies
- 22 The developmental environment and atherogenesis
- 23 The developmental environment, renal function and disease
- 24 The developmental environment: effect on fluid and electrolyte homeostasis
- 25 The developmental environment: effects on lung structure and function
- 26 Developmental origins of asthma and related allergic disorders
- 27 The developmental environment: influences on subsequent cognitive function and behaviour
- 28 The developmental environment and the origins of neurological disorders
- 29 The developmental environment: clinical perspectives on effects on the musculoskeletal system
- 30 The developmental environment: experimental perspectives on skeletal development
- 31 The developmental environment and the early origins of cancer
- 32 The developmental environment: implications for ageing and life span
- 33 Developmental origins of health and disease: implications for primary intervention for cardiovascular and metabolic disease
- 34 Developmental origins of health and disease: public-health perspectives
- 35 Developmental origins of health and disease: implications for developing countries
- 36 Developmental origins of health and disease: ethical and social considerations
- 37 Past obstacles and future promise
- Index
- References
29 - The developmental environment: clinical perspectives on effects on the musculoskeletal system
Published online by Cambridge University Press: 08 August 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 The developmental origins of health and disease: an overview
- 2 The ‘developmental origins’ hypothesis: epidemiology
- 3 The conceptual basis for the developmental origins of health and disease
- 4 The periconceptional and embryonic period
- 5 Epigenetic mechanisms
- 6 A mitochondrial component of developmental programming
- 7 Role of exposure to environmental chemicals in developmental origins of health and disease
- 8 Maternal nutrition and fetal growth and development
- 9 Placental mechanisms and developmental origins of health and disease
- 10 Control of fetal metabolism: relevance to developmental origins of health and disease
- 11 Lipid metabolism: relevance to developmental origins of health and disease
- 12 Prenatal hypoxia: relevance to developmental origins of health and disease
- 13 The fetal hypothalamic–pituitary–adrenal axis: relevance to developmental origins of health and disease
- 14 Perinatal influences on the endocrine and metabolic axes during childhood
- 15 Patterns of growth: relevance to developmental origins of health and disease
- 16 The developmental environment and the endocrine pancreas
- 17 The developmental environment and insulin resistance
- 18 The developmental environment and the development of obesity
- 19 The developmental environment and its role in the metabolic syndrome
- 20 Programming the cardiovascular system
- 21 The role of vascular dysfunction in developmental origins of health and disease: evidence from human and animal studies
- 22 The developmental environment and atherogenesis
- 23 The developmental environment, renal function and disease
- 24 The developmental environment: effect on fluid and electrolyte homeostasis
- 25 The developmental environment: effects on lung structure and function
- 26 Developmental origins of asthma and related allergic disorders
- 27 The developmental environment: influences on subsequent cognitive function and behaviour
- 28 The developmental environment and the origins of neurological disorders
- 29 The developmental environment: clinical perspectives on effects on the musculoskeletal system
- 30 The developmental environment: experimental perspectives on skeletal development
- 31 The developmental environment and the early origins of cancer
- 32 The developmental environment: implications for ageing and life span
- 33 Developmental origins of health and disease: implications for primary intervention for cardiovascular and metabolic disease
- 34 Developmental origins of health and disease: public-health perspectives
- 35 Developmental origins of health and disease: implications for developing countries
- 36 Developmental origins of health and disease: ethical and social considerations
- 37 Past obstacles and future promise
- Index
- References
Summary
Introduction
The ability to move, the protection of vital organs and stable support for the body are the principal roles of the musculoskeletal system (muscle, bone and cartilage) (Simkin 1994). This system accounts for a large proportion of the body mass; for example, the muscle mass of a healthy adult 70-kg individual is about 20 kg (Kreisberg et al. 1970). The musculoskeletal system develops embryonically from the mesodermal layer, differentiating into dermatomes containing skeletal and muscle cell precursors in the first trimester. At this stage the embryo is only a few millimetres long. The growing fetus usually obtains nourishment at the expense of the mother, who tends to suffer in periods of adversity, but placental size and unrestricted blood flow through placental vessels to and from the fetus are important for optimal growth, especially during the last trimester. Fetal nutrition and the uterine environment are likely to play a part in the transcription of the genomic blueprint acquired at conception into the phenotypic newborn. Some of these developmental adaptations are now known to have long-term effects on the later risk of osteoporosis, sarcopenia and osteoarthritis. During early childhood, growth is rapid and there are windows of opportunity for environmental or lifestyle factors to have long-term effects, especially on the skeleton.
Puberty, which occurs much earlier in girls, brings growth to an end and its timing will have long-term consequences for adult stature.
- Type
- Chapter
- Information
- Developmental Origins of Health and Disease , pp. 392 - 405Publisher: Cambridge University PressPrint publication year: 2006
References
- 1
- Cited by