Book contents
- Frontmatter
- Dedication
- Contents
- 0 Introduction
- 1 Basic Facts on Categories
- 2 Abelian Categories and Additive Functors
- 3 Differential Graded Algebra
- 4 Translations and Standard Triangles
- 5 Triangulated Categories and Functors
- 6 Localization of Categories
- 7 The Derived Category D(A,M)
- 8 Derived Functors
- 9 DG and Triangulated Bifunctors
- 10 Resolving Subcategories of K(A,M)
- 11 Existence of Resolutions
- 12 Adjunctions, Equivalences and Cohomological Dimension
- 13 Dualizing Complexes over Commutative Rings
- 14 Perfect and Tilting DG Modules over NC DG Rings
- 15 Algebraically Graded Noncommutative Rings
- 16 Derived Torsion over NC Graded Rings
- 17 Balanced Dualizing Complexes over NC Graded Rings
- 18 Rigid Noncommutative Dualizing Complexes
- References
- Index
7 - The Derived Category D(A,M)
Published online by Cambridge University Press: 15 November 2019
- Frontmatter
- Dedication
- Contents
- 0 Introduction
- 1 Basic Facts on Categories
- 2 Abelian Categories and Additive Functors
- 3 Differential Graded Algebra
- 4 Translations and Standard Triangles
- 5 Triangulated Categories and Functors
- 6 Localization of Categories
- 7 The Derived Category D(A,M)
- 8 Derived Functors
- 9 DG and Triangulated Bifunctors
- 10 Resolving Subcategories of K(A,M)
- 11 Existence of Resolutions
- 12 Adjunctions, Equivalences and Cohomological Dimension
- 13 Dualizing Complexes over Commutative Rings
- 14 Perfect and Tilting DG Modules over NC DG Rings
- 15 Algebraically Graded Noncommutative Rings
- 16 Derived Torsion over NC Graded Rings
- 17 Balanced Dualizing Complexes over NC Graded Rings
- 18 Rigid Noncommutative Dualizing Complexes
- References
- Index
Summary
We begin by proving that if K is a triangulated category and S ⊆ K is a denominator set of cohomological origin, then the localized category KS is triangulated and the localization functor Q : K → KS is triangulated. In the case of the triangulated category K(A,M) and the set of quasi-isomorphisms S(A,M) in it, we get the derived category D(A,M) := K(A,M)S(A, M) and the triangulated localization functor Q : K(A,M) → D(A,M). We look at the full subcategories of K(A, M) corresponding to boundedness conditions and the corresponding derived categories. We prove that the obvious functor M → D(M) is fully faithful. The section ends with a study of the triangulated structure of the opposite derived category D(A,M)op .
- Type
- Chapter
- Information
- Derived Categories , pp. 165 - 185Publisher: Cambridge University PressPrint publication year: 2019