from Part I - The Biology of Cementum
Published online by Cambridge University Press: 20 January 2022
Acellular cementum (AC) is critical for dental attachment and periodontal function. This chapter emphasizes how insights into cementum's nature have increased through human disease and experimental animal models. X-linked hypophosphatemia (XLH) is the most common form of hereditary rickets, in which low circulating phosphate and altered vitamin D metabolism are associated with skeletal and dental mineralization defects. AC thickness is reduced in XLH, and periodontal function may be affected. Inorganic pyrophosphate is a circulating inhibitor of mineralization. The inherited disorder, hypophosphatasia (HPP), is characterized by increased pyrophosphate levels, leading to skeletal and dental hypomineralization. AC is mainly affected by HPP, and premature loss of deciduous and permanent teeth is a common result. Conversely, a decrease in pyrophosphate results in increased cementum thickness. Extracellular matrix proteins also regulate cementum formation. Bone sialoprotein (BSP) is a component of cementum. Deletion of BSP in genetically edited mice results in reduced or absent AC, leading to periodontal destruction.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.