Published online by Cambridge University Press: 20 August 2009
The subject of this book is the approximation of curves in two dimensions and surfaces in three dimensions from a set of sample points. This problem, called reconstruction, appears in various engineering applications and scientific studies. What is special about the problem is that it offers an application where mathematical disciplines such as differential geometry and topology interact with computational disciplines such as discrete and computational geometry. One of my goals in writing this book has been to collect and disseminate the results obtained by this confluence. The research on geometry and topology of shapes in the discrete setting has gained a momentum through the study of the reconstruction problem. This book, I hope, will serve as a prelude to this exciting new line of research.
To maintain the focus and brevity I chose a few algorithms that have provable guarantees. It happens to be, though quite naturally, they all use the well-known data structures of the Voronoi diagram and the Delaunay triangulation. Actually, these discrete geometric data structures offer discrete counterparts to many of the geometric and topological properties of shapes. Naturally, the Voronoi and Delaunay diagrams have been a common thread for the materials in the book.
This book originated from the class notes of a seminar course “Sample-Based Geometric Modeling” that I taught for four years at the graduate level in the computer science department of The Ohio State University.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.