Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T05:47:41.914Z Has data issue: false hasContentIssue false

11 - Cryptic Diversity in European Terrestrial Flatworms of the Genus Microplana (Platyhelminthes, Tricladida, Geoplanidae)

Published online by Cambridge University Press:  01 September 2022

Alexandre K. Monro
Affiliation:
Royal Botanic Gardens, Kew
Simon J. Mayo
Affiliation:
Royal Botanic Gardens, Kew
Get access

Summary

In Europe, native terrestrial flatworms are a paradigm of the cryptic edaphic fauna in humid forests because they are small, difficult to collect, and externally very similar. Their Neotropical counterparts are good biodiversity indicators in the assessment of the conservation status of their habitat. While the diversity of terrestrial planarians in the Neotropics is high, the diversity of European microplanid land flatworms is comparatively scarce. Nonetheless, recent molecular barcoding studies have uncovered an increasing diversity. Furthermore, for Microplana terrestris (Müller, 1774) it was shown that its recent evolutionary history was mainly driven by Pleistocene climatic events. Intensive sampling throughout Europe revealed that nominal M. terrestris consists of a complex of cryptic species, sharing similar external appearance but differing at molecular and anatomical levels, thus constituting a prime example of zoological crypsis. Since these species can be differentiated on the basis of anatomical features, they do actually form pseudo-cryptic species. Temperate European forests show a comparatively high diversity of terrestrial flatworms, although never reaching the biodiversity level of the Neotropics. A better understanding of their ecological role and adequate measures to protect these land planarians depend on an increased effort to properly detect these organisms in their environment.

Type
Chapter
Information
Cryptic Species
Morphological Stasis, Circumscription, and Hidden Diversity
, pp. 281 - 293
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agapow, P. M., Bininda-Emonds, O. R. P., Crandall, K. A. et al. (2004) The impact of species concept on biodiversity studies. Quarterly Review of Biology 79(2): 161179. https://doi.org/10.1086/383542.Google Scholar
Álvarez-Presas, M., Mateos, E., and Riutort, M. (2018) Hidden diversity in forest soils: Characterization and comparison of terrestrial flatworm’s communities in two national parks in Spain. Ecology and Evolution 8: 73867400. https://doi.org/10.1002/ece3.4178.CrossRefGoogle ScholarPubMed
Álvarez-Presas, M., Amaral, S. V., Carbayo, F. et al. (2015) Focus on the details: Morphological evidence supports new cryptic land flatworm (Platyhelminthes) species revealed with molecules. Organisms Diversity and Evolution 15: 379403. https://doi.org/10.1007/s13127–014-0197-z.Google Scholar
Álvarez-Presas, M., Carbayo, F., Rozas, J., and Riutort, M. (2011) Land planarians (Platyhelminthes) as a model organism for fine-scale phylogeographic studies: Understanding patterns of biodiversity in the Brazilian Atlantic Forest hotspot. Journal of Evolutionary Biology 24: 887896. https://doi.org/10.1111/j.1420-9101.2010.02220.xGoogle Scholar
Álvarez-Presas, M., Mateos, E., Vila-Farré, M., Sluys, R., and Riutort, M. (2012) Evidence for the persistence of the land planarian species Microplana terrestris (Müller, 1774) (Platyhelminthes, Tricladida) in microrefugia during the Last Glacial Maximum in the northern section of the Iberian Peninsula. Molecular Phylogenetics and Evolution 64: 491499. https://doi.org/10.1016/j.ympev.2012.05.001.Google Scholar
Alvarez-Presas, M., Sánchez-Gracia, A., Carbayo, F., Rozas, J., and Riutort, M. (2014) Insights into the origin and distribution of biodiversity in the Brazilian Atlantic forest hot spot: A statistical phylogeographic study using a low-dispersal organism. Heredity (Edinb) 112: 656665. https://doi.org/10.1038/hdy.2014.3Google Scholar
Amaral, S. V., Ribeiro, G. G., Valiati, V. H., and Leal-Zanchet, A. M. (2018) Body doubles: An integrative taxonomic approach reveals new sibling species of land planarians. Invertebrate Systematics 32: 533550. https://doi.org/10.1071/IS17046.Google Scholar
Araújo, M. B., Lobo, J. M., and Moreno, J. C. (2007) The effectiveness of Iberian protected areas in conserving terrestrial biodiversity. Conservation Biology 21: 14231432. https://doi.org/10.1111/j.1523-1739.2007.00827.x.Google Scholar
Bickford, D., Lohman, D. J., Sodhi, N. S. et al. (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22(3): 148155. https://doi.org/10.1016/j.tree.2006.11.004.Google Scholar
Bock, W. J. (2004) Species: The concept, category and taxon. Journal of Zoological Systematics and Evolutionary Research 42(3): 178190. https://doi.org/10.1111/j.1439-0469.2004.00276.x.Google Scholar
Carbayo, F., Leal-Zanchet, A. M., and Vieira, E. M. (2002) Terrestrial flatworm (Platyhelminthes: Tricladida: Terricola) diversity versus man-induced disturbance in an ombrophilous forest in southern Brazil. Biodiversity and Conservation 11: 10911104. https://doi.org/10.1023/A:1015865005604.CrossRefGoogle Scholar
Carbayo, F., Silva, M. S., Riutort, M., and Álvarez-Presas, M. (2018) Rolling into the deep of the land planarian genus Choeradoplana (Tricladida, Continenticola, Geoplanidae) taxonomy. Organisms Diversity and Evolution 18: 187210. https://doi.org/10.1007/s13127–017-0352-4.Google Scholar
Cardoso, A., Serrano, A., and Vogler, A. P. (2009) Morphological and molecular variation in tiger beetles of the Cicindela hybrida complex: Is an “integrative taxonomy” possible? Molecular Ecology 18: 648664. https://doi.org/10.1111/j.1365-294X.2008.04048.x.Google Scholar
Casetta, E., da Silva, J. M., and Vecchi, D. (eds.) (2019) From Assessing to Conserving Biodiversity. Springer Open, https://doi.org/10.1007/978-3-030-10991-2.Google Scholar
Dellicour, S. and Flot, J. F. (2015) Delimiting species-poor data sets using single molecular markers: A study of barcode gaps, haplowebs and GMYC. Systematic Biology 64(6): 900908. https://doi.org/10.1093/sysbio/syu130.Google Scholar
De Queiroz, K. (1998) The general lineage concept of species, species criteria, and the process of speciation and terminological recommendations. In: Howard, D. J. and Berlocher, S. H. (eds.) Endless Forms: Species and Speciation. Oxford University Press, Oxford, pp. 5775.Google Scholar
Eme, D., Zagmajster, M., Delic, T. et al. (2018) Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 41: 424436. https://doi.org/10.1111/ecog.02683.CrossRefGoogle Scholar
Fick, I. A., Leal-Zanchet, A. M., and Vieira, E. M. (2006) Community structure of land flatworms (Platyhelminthes, Terricola): Comparisons between Araucaria and Atlantic forest in Southern Brazil. Invertebrate Biology 125: 306313. https://doi.org/10.1111/j.1744-7410.2006.00062.x.CrossRefGoogle Scholar
Fišer, C., Robinson, C. T., and Malard, F. (2018) Cryptic species as a window into the paradigm shift of the species concept. Molecular Ecology 27(3): 613635. https://doi.org/10.1111/mec.14486.Google Scholar
Fontaneto, D., Flot, J.-F., and Tang, C. Q. (2015) Guidelines for DNA taxonomy, with a focus on the meiofauna. Marine Biodiversity 45(3): 433451. https://doi.org/10.1007/s12526–015-0319-7.Google Scholar
Gómez, S., Fleeger, J. W., Rocha-Olivares, A., and Foltz, D. (2004) Four new species of Cletocamptus Schmankewitsch, 1875, closely related to Cletocamptus deitersi (Richard, 1897) (Copepoda: Harpacticoida). Journal of Natural History 38: 26692732. https://doi.org/10.1080/0022293031000156240.Google Scholar
Hey, J. (2006) On the failure of modern species concepts. Trends in Ecology and Evolution 21(8): 447450. https://doi.org/10.1016/j.tree.2006.05.011.Google Scholar
Janzen, D. H., Burns, J. M., Cong, Q. et al. (2017) Nuclear genomes distinguish cryptic species suggested by their DNA barcodes and ecology. Proceedings of the National Academy of Sciences of the United States of America 114: 83138318. https://doi.org/10.1073/pnas.1621504114.Google Scholar
Knowlton, N. (1993). Sibling species in the sea. Annual Review on Ecology and Systematics 24: 189216. https://doi.org/10.1146/annurev.es.24.110193.001201.Google Scholar
Lajus, D., Sukhikh, N., and Alekseev, V. (2015) Cryptic or pseudocryptic: Can morphological methods inform copepod taxonomy? An analysis of publications and a case study of the Eurytemora affinis species complex. Ecology and Evolution 5: 23742385. https://doi.org/10.1002/ece3.1521.Google Scholar
Lemos, V. S. and Leal-Zanchet, A. M. (2008) Two new species of Notogynaphallia Ogren & Kawakatsu (Platyhelminthes: Tricladida: Terricola) from Southern Brazil. Zootaxa 1907(1): 2846. https://doi.org/10.11646/zootaxa.1907.1.2.Google Scholar
Lemos, V. S. A., Cauduro, G. P. B., Valiati, V. H. B., and Leal-Zanchet, A. M. (2014) Phylogenetic relationships within the flatworm genus Choeradoplana Graff (Platyhelminthes: Tricladida ) inferred from molecular data with the description of two new sympatric species from Araucaria moist forests. Invertebrate Systematics 28: 605627. https://doi.org/http://dx.doi.org/10.1071/IS14003.Google Scholar
Luo, A., Ling, C., Ho, S. Y. W., and Zhu, C.-D. (2018) Comparison of methods for molecular species delimitation across a range of speciation scenarios. Systematic Biology 67(5): 830846. https://doi.org/10.1093/sysbio/syy011.Google Scholar
Magri, D. (2008) Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). Journal of Biogeography 35: 450463. https://doi.org/10.1111/j.1365-2699.2007.01803.x.Google Scholar
Magri, D., Vendramin, G. G., Comps, B. et al. (2006) A new scenario for the Quaternary history of European beech populations: Palaeobotanical evidence and genetic consequences. New Phytologist 171: 199221. https://doi.org/10.1111/j.1469-8137.2006.01740.x.Google Scholar
Mateos, E., Cabrera, C., Carranza, S., and Riutort, M. (2009) Molecular analysis of the diversity of terrestrial planarians (Platyhelminthes, Tricladida, Continenticola) in the Iberian Peninsula. Zoologica Scripta 38: 637649. https://doi.org/10.1111/j.1463-6409.2009.00398.x.Google Scholar
Mateos, E., Sluys, R., Riutort, M., and Álvarez-Presas, M. (2017) Species richness in the genus Microplana (Platyhelminthes, Tricladida, Microplaninae) in Europe: As yet no asymptote in sight. Invertebrate Systematics 31: 269301. http://dx.doi.org/10.1071/IS16038.Google Scholar
Mayden, R. L. (1997) A hierarchy of species concepts: The denouement in the saga of the species problem. In: Claridge, M. F., Dawah, H. A., and Wilson, M. R. (ed.) Species: The Units of Biodiversity. Chapman and Hall, London, pp. 381423.Google Scholar
Morard, R., Escarguel, G., Weiner, A. K. M. et al. (2016) Nomenclature for the nameless: A proposal for an integrative molecular taxonomy of cryptic diversity exemplified by planktonic foraminifera. Systematic Biology 65: 925940. https://doi.org/10.1093/sysbio/syw031.Google Scholar
Negrete, L., Gira, R. D., and Brusa, F. (2019) Two new species of land planarians (Platyhelminthes, Tricladida, Geoplanidae) from protected areas in the southern extreme of the Paranaense Rainforest, Argentina. Zoologischer Anzeiger 279: 3851. https://doi.org/10.1016/j.jcz.2019.01.002.Google Scholar
Pante, E., Puillandre, N., Viricel, A. et al. (2015) Species are hypotheses: Avoid connectivity assessments based on pillars of sand. Molecular Ecology 24, 525544. https://doi.org/10.1111/mec.13048.CrossRefGoogle ScholarPubMed
Petit, R. J., Aguinagalde, I., de Beaulieu, J.-L. et al.(2003) Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 300: 15631565. https://doi.org/10.1126/science.1083264Google Scholar
Petit, R. J., Brewer, S., Bordacs, S. et al. (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management 156: 4974. https://doi.org/10.1016/S0378–1127(01)00634-X.Google Scholar
Ramil-Rego, P., Guitian, M. A. R., Sobrino, C. M., and Gomez-Orellana, L. (2000) Some considerations about the postglacial history and recent distribution of Fagus sylvatica in the NW Iberian Peninsula. Folia Geobotanica 35: 241271. https://doi.org/10.1007/BF02803118.Google Scholar
Raxworthy, C. J., Ingram, C. M., Rabibisoa, N., and Pearson, R. G (2007) Applications of ecological niche modeling for species delimitation: A review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Systematic Biology 56(6): 907923. https://doi.org/10.1080/10635150701775111.Google Scholar
Sluys, R. (1999) Global diversity of land planarians (Platyhelminthes, Tricladida, Terricola): A new indicator-taxon in biodiversity and conservation studies. Biodiversity & Conservation 8: 16631681. https://doi.org/10.1023/A:1008994925673.Google Scholar
Sluys, R. (2013) The unappreciated, fundamentally analytical nature of taxonomy and the implications for the inventory of biodiversity. Biodiversity & Conservation 22: 10951105.Google Scholar
Sluys, R. (2016) Invasion of the flatworms. American Scientist 104: 288295.Google Scholar
Sluys, R. (2019) The evolutionary terrestrialization of planarian flatworms (Platyhelminthes, Tricladida, Geoplanidae): A review and research programme. Zoosystematics and Evolution 95: 543556.Google Scholar
Sluys, R., Mateos, E., Riutort, M., and Álvarez-Presas, M. (2016) Towards a comprehensive, integrative analysis of the diversity of European microplaninid land flatworms (Platyhelminthes, Tricladida, Microplaninae), with the description of two peculiar new species. Systematics and Biodiversity 14: 931. https://doi.org/10.1080/14772000.2015.1103323.Google Scholar
Stokes, A. N., Ducey, P. K., Neuman-Lee, L. et al. (2014) Confirmation and distribution of tetrodotoxin for the first time in terrestrial invertebrates: Two terrestrial flatworm species (Bipalium adventitium and Bipalium kewense). PLoS One 9: e100718. https://doi.org/10.1371/journal.pone.0100718Google Scholar
Will, K. W., Mishler, B. D., and Wheeler, Q. D. (2005) The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology 54: 844851. https://doi.org/10.1080/10635150500354878.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×