Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T02:02:13.713Z Has data issue: false hasContentIssue false

11 - Driven diffusive systems and growing interfaces

from Part II - Scale invariance in non-equilibrium systems

Published online by Cambridge University Press:  05 June 2014

Uwe C. Täuber
Affiliation:
Virginia Polytechnic Institute and State University
Get access

Summary

The emergence of generic scale invariance, i.e., algebraic behavior without tuning to special critical points, appears to be remarkably common in systems that are settled in a non-equilibrium steady state. Prototypical examples are simple non-linear Langevin equations that describe driven diffusive systems and driven interfaces or growth models far from thermal equilibrium, whose distinct phases are characterized by non-trivial RG fixed points and hence universal scaling exponents. We start with driven lattice gases with particle exclusion that are described by generalizations of the one-dimensional noisy Burgers equation for fluid hydrodynamics. Symmetries and conservation laws completely determine the ensuing stationary power laws, as well as the intermediate aging scaling regime and even the large-deviation function for the particle current fluctuations. Next we address the non-equilibrium critical point for driven Ising lattice gases, whose critical exponents can again be computed exactly. We then turn our attention to the prominent Kardar–Parisi–Zhang equation, originally formulated to describe growing crystalline surfaces and the dynamics of driven interfaces, but also closely related to the noisy Burgers equation and even to the equilibrium statistical mechanics of directed lines in disordered environments. After introducing the scaling theory for interface fluctuations, we proceed to a renormalization group analysis at fixed dimension d. For d > 2, a non-trivial unstable RG fixed point separates a phase with Gaussian or Edwards–Wilkinson scaling exponents from a strong-coupling rough phase that is inaccessible by perturbative methods.

Type
Chapter
Information
Critical Dynamics
A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior
, pp. 443 - 498
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barabási,, A.-L. and H. E., Stanley, 1995, Fractal Concepts in Surface Growth, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bertini, L., A., De Sole, D., Gabrielli, G., Jona-Lasinio, and C., Landim, 2005, Current fluctuations in stochastic lattice gases, Phys. Rev. Lett. 94, 030601-1–1.CrossRefGoogle ScholarPubMed
Canet, L., H., Chaté, B., Delamotte, and N., Wschebor, 2010, Nonperturbative renormalization group for the Kardar–Parisi–Zhang equation, Phys. Rev. Lett. 104, 150601-1–4.CrossRefGoogle Scholar
Canet, L., H., Chaté, B., Delamotte, and N., Wschebor, 2011, Nonperturbative renormalization group for the Kardar–Parisi–Zhang equation: general framework and first applications, Phys. Rev. E 84, 061128-1–18.CrossRefGoogle Scholar
Caracciolo, S., A., Gambassi, M., Gubinelli, and A., Pelissetto, 2004a, Finite-size scaling in the driven lattice gas, J. Stat. Phys. 115, 281–322.CrossRefGoogle Scholar
Caracciolo, S., A., Gambassi, M., Gubinelli, and A., Pelissetto, 2004b, Comment on “Dynamic behavior of anisotropic nonequilibrium driving lattice gases”, Phys. Rev. Lett. 92, 029601–1.CrossRefGoogle Scholar
Chayes, J. T., L., Chayes, D. S., Fisher, and T., Spencer, 1986, Finite-size scaling and correlation lengths for disordered systems, Phys. Rev. Lett. 57, 2999–3002.CrossRefGoogle ScholarPubMed
Daquila, G. L., 2011, Monte Carlo Analysis of Non-equilibrium Steady States and Relaxation Kinetics in Driven Lattice Gases, Ph.D. dissertation, VirginiaPolytechnic Institute and State University.Google Scholar
Daquila, G. L. and U. C., Täuber, 2011, Slow relaxation and aging kinetics for the driven lattice gas, Phys. Rev. E 83, 051107-1–11.CrossRefGoogle ScholarPubMed
Daquila, G. L. and U. C., Täuber, 2012, Nonequilibrium relaxation and critical aging for driven Ising lattice gases, Phys. Rev. Lett. 108, 110602-1–5.CrossRefGoogle ScholarPubMed
Derrida, B., 1998, An exactly soluble non-equilibrium system: the asymmetric simple exclusion process, Phys. Rep. 301, 65–83.CrossRefGoogle Scholar
Derrida, B. and C., Appert, 1999, Universal large deviation function of the Kardar–Parisi–Zhang equation in one dimension, J. Stat. Phys. 94, 1–30.CrossRefGoogle Scholar
Derrida, B. and J. L., Lebowitz, 1998, Exact large deviation function in the asymmetric exclusion process, Phys. Rev. Lett. 80, 209–213.CrossRefGoogle Scholar
Doty, C. A. and J. M., Kosterlitz, 1992, Exact dynamical exponent at the Kardar–Parisi–Zhang roughening transition, Phys. Rev. Lett. 69, 1979–1981.CrossRefGoogle ScholarPubMed
Edwards, S. F. and D. R., Wilkinson, 1982, The surface statistics of a granular aggregate, Proc. R. Soc. London A 381, 17–31.CrossRefGoogle Scholar
Fisher, D. S. and D. A., Huse, 1991, Directed paths in a random potential, Phys. Rev. B 43, 10 728-10 742.CrossRefGoogle Scholar
Fogedby, H. C., A. B., Eriksson, and L. V., Mikheev, 1995, Continuum limit, Galilean invariance, and solitons in the quantum equivalent of the noisy Burgers equation, Phys. Rev. Lett. 75, 1883–1886.CrossRefGoogle ScholarPubMed
Forster, D., D. R., Nelson, and M. J., Stephen, 1977, Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev. A 16, 732–749.CrossRefGoogle Scholar
Frey, E. and U. C., Täuber, 1994, Two-loop renormalization-group analysis of the Burgers–Kardar–Parisi–Zhang equation, Phys. Rev. E 50, 1024–1045.CrossRefGoogle ScholarPubMed
Frey, E., U. C., Täuber, and T., Hwa, 1996, Mode-coupling and renormalization group results for the noisy Burgers equation, Phys. Rev. E 53, 4424–4438.CrossRefGoogle ScholarPubMed
Halpin-Healy, T. and Y.-C., Zhang, 1995, Kinetic roughening phenomena, stochastic growth, directed polymers and all that, Phys. Rep. 254, 215–414.CrossRefGoogle Scholar
Henkel, M. and M., Pleimling, 2010, Nonequilibrium Phase Transitions,Vol.2: Ageing and Dynamical Scaling Far from Equilibrium, Dordrecht: Springer.CrossRefGoogle Scholar
Hwa, T. and D. S., Fisher, 1994, Anomalous fluctuations of directed polymers in random media, Phys. Rev. B 49, 3136–3154.CrossRefGoogle ScholarPubMed
Janssen, H. K., 1997, On critical exponents and the renormalization of the coupling constant in growth models with surface diffusion, Phys. Rev. Lett. 78, 1082–1085.
Janssen, H. K. and B., Schmittmann, 1986a, Field theory of long time behaviour in driven diffusive systems, Z. Phys. B Cond. Matt. 63, 517–520.CrossRefGoogle Scholar
Janssen, H. K. and B., Schmittmann, 1986b, Field theory of critical behaviour in driven diffusive systems, Z. Phys. B Cond. Matt. 64, 503–514.
Janssen, H. K., U. C., Täuber, and E., Frey, 1999, Exact results for the Kardar–Parisi–Zhang equation with spatially correlated noise, Eur. Phys. J. B 9, 491–511.CrossRefGoogle Scholar
Kardar, M., G., Parisi, and Y.-C., Zhang, 1986, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56, 889–892.CrossRefGoogle ScholarPubMed
Kardar, M. and Y.-C., Zhang, 1987, Scaling of directed polymers in random media, Phys. Rev. Lett. 58, 2087–2090.CrossRefGoogle ScholarPubMed
Katz, S., J. L., Lebowitz, and H., Spohn, 1983, Phase transitions in stationary nonequilibrium states of model lattice systems, Phys. Rev. B 28, 1655–1658.CrossRefGoogle Scholar
Katz, S., J. L., Lebowitz, and H., Spohn, 1984, Nonequilibrium steady states of stochastic lattice gas models of fast ionic conductors, J. Stat. Phys. 34, 497–537.CrossRefGoogle Scholar
Kloss, T., L., Canet, and N., Wschebor, 2012, Nonperturbative renormalization group for the Kardar–Parisi–Zhang equation: scaling functions and amplitude ratios in 1 + 1, 2 + 1, and 3 + 1 dimensions, Phys. Rev. E 86, 051124-1–19.CrossRefGoogle Scholar
Krech, M., 1997, Short-time scaling behavior of growing interfaces, Phys. Rev. E 55, 668–679; err. Phys. Rev. E 56, 1285.CrossRefGoogle Scholar
Krug, J., 1997, Origins of scale invariance in growth processes, Adv. Phys. 46, 139–282.CrossRefGoogle Scholar
Krug, J. and H., Spohn, 1992, Kinetic roughening of growing surfaces, in: Solids Far from Equilibrium, ed. C., Godrèche, Cambridge: Cambridge University Press, 479–582.Google Scholar
Lässig,, M., 1995, On the renormalization of the Kardar–Parisi–Zhang equation, Nucl. Phys. B 448, 559–574.CrossRefGoogle Scholar
Lässig, M., 1998, On growth, disorder, and field theory, J. Phys. Cond. Matt. 10, 9905–9950.CrossRefGoogle Scholar
Lecomte, V., U. C., Täuber, and F., van Wijland, 2007, Current distribution in systems with anomalous diffusion: renormalization group approach, J. Phys. A: Math. Theor. 40, 1447–1465.CrossRefGoogle Scholar
Leung, K.-t., 1991, Finite-size scaling of driven diffusive systems: theory and Monte Carlo studies, Phys. Rev. Lett. 66, 453–456.CrossRefGoogle ScholarPubMed
Leung,, K.-t. and J. L., Cardy, 1986, Field theory of critical behavior in a driven diffusive system, J. Stat. Phys. 44, 567–588.CrossRefGoogle Scholar
Marro, J. and R., Dickman, 1999, Nonequilibrium Phase Transitions in Lattice Models, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Myllys, M., J., Maunuksela, M., Alava, T., Ala-Nissila, J., Merikoski, and J., Timonen, 2001, Kinetic roughening in slow combustion of paper, Phys. Rev. E 64, 036101-1–12.CrossRefGoogle ScholarPubMed
Nattermann, T. and S., Scheidl, 2000, Vortex-glass phases in type-II superconductors, Adv. Phys. 49, 607–704.CrossRefGoogle Scholar
Schilardi, P. L., O., Azzaroni, R. C., Salvarezza, and A. J., Arvia, 1999, Validity of the Kardar–Parisi–Zhang equation in the asymptotic limit of metal electrodeposition, Phys. Rev. B 59, 4638–4641.CrossRefGoogle Scholar
Schmittmann, B. and R. K. P., Zia, 1995, Statistical mechanics of driven diffusive systems, in: Phase Transitions and Critical Phenomena, Vol. 17, eds. C., Domb and J. L., Lebowitz, London: Academic Press.Google Scholar
Schütz,, G. M., 2001, Exactly solvable models for many-body systems far from equilibrium, in: Phase Transitions and Critical Phenomena, Vol. 19, eds. C., Domb and J. L., Lebowitz, London: Academic Press.Google Scholar
Sun, T., H., Guo, and M., Grant, 1989, Dynamics of driven interfaces with a conservation law, Phys. Rev. A 40, 6763–6766.CrossRefGoogle ScholarPubMed
Takeuchi, K. A. and M., Sano, 2010, Universal fluctuations of growing interfaces: evidence in turbulent liquid crystals, Phys. Rev. Lett. 104, 230601-1–4.CrossRefGoogle ScholarPubMed
Takeuchi, K. A. and M., Sano, 2012, Evidence for geometry-dependent universal fluctuations of the Kardar–Parisi–Zhang interfaces in liquid-crystal turbulence, J. Stat. Phys. 147, 853–890.CrossRefGoogle Scholar
Wang, J.-S., 1996, Anisotropic finite-size scaling analysis of a two-dimensional driven diffusive system, J. Stat. Phys. 82, 1409–1427.CrossRefGoogle Scholar
Wiese, K. J., 1998, On the perturbation expansion of the KPZ equation, J. Stat. Phys. 93, 143–154.CrossRefGoogle Scholar
Wolf, D. E. and J., Villain, 1990, Growth with surface diffusion, Europhys. Lett. 13, 389–394.CrossRefGoogle Scholar
Bouchaud, J. P. and M. E., Cates, 1993, Self-consistent approach to the Kardar-Parisi-Zhang equation, Phys.Rev. E 47, R1455–R1458.CrossRefGoogle ScholarPubMed
Chou, T., K., Mallick, and R. K. P., Zia, 2011, Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport, Rep. Prog. Phys. 74, 116601-1-41.CrossRefGoogle Scholar
Colaiori, F. and M. A., Moore, 2001a, Upper critical dimension, dynamic exponent, and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation, Phys. Rev. Lett. 86, 3946–3949.CrossRefGoogle ScholarPubMed
Colaiori, F. and M. A., Moore, 2001b, Stretched exponential relaxation in the mode-coupling theory for the Kardar-Parisi-Zhang equation, Phys. Rev. E 63, 057103-1-1.CrossRefGoogle ScholarPubMed
Colaiori, F. and M. A., Moore, 2001c, Numerical solution of the mode-coupling equations for the Kardar-Parisi-Zhang equation in one dimension, Phys. Rev. E 65, 017105-1-3.CrossRefGoogle ScholarPubMed
Derrida, B. and H., Spohn, 1988, Polymers on disordered trees, spin glasses, and traveling waves, J. Stat. Phys. 51, 817–840.CrossRefGoogle Scholar
Fogedby, H. C., 2001, Scaling function for the noisy Burgers equation in the soliton approximation, Europhys. Lett. 56, 492–498.CrossRefGoogle Scholar
Fogedby, H. C., 2005, Localized growth modes, dynamic textures, and upper critical dimension for the Kardar-Parisi-Zhang equation in the weak-noise limit, Phys. Rev. Lett. 94, 195702-1-4.CrossRefGoogle ScholarPubMed
Fogedby, H. C., 2006, Kardar-Parisi-Zhang equation in the weak noise limit: pattern formation and upper critical dimension, Phys.Rev.E 73, 031104-1-26.CrossRefGoogle ScholarPubMed
Frey, E., U. C., Tauber, and H. K., Janssen, 1999, Scaling regimes and critical dimensions in the Kardar-Parisi-Zhang problem, Europhys. Lett. 47, 14–20.CrossRefGoogle Scholar
Golubovic, L. and Z.-G., Wang, 1994, Kardar-Parisi-Zhang model and anomalous elasticity of two- and three-dimensional smectic-A liquid crystals, Phys. Rev. E 49, 2567–2578.CrossRefGoogle ScholarPubMed
Gueudre, T., P., Le Doussal, A., Rosso, A., Henry, and P., Calabrese, 2012, Short-time growth of a Kardar-Parisi-Zhang interface with flat initial conditions, Phys. Rev. E 86, 041151-1-8.CrossRefGoogle ScholarPubMed
Halpin-Healy, T., 2012, (2 + 1)-dimensional directed polymer in a random medium: scaling phenomena and universal distributions, Phys. Rev. Lett. 109, 170602-1-5.CrossRefGoogle Scholar
Hwa, T. and E., Frey, 1991, Exact scaling function of interface growth dynamics, Phys. Rev. A 44, R7873–R7876.CrossRefGoogle ScholarPubMed
Katzav, E. and M., Schwartz, 2004, Numerical evidence for stretched exponential relaxations in the Kardar-Parisi-Zhang equation, Phys.Rev.E 69, 052603-1-4.CrossRefGoogle ScholarPubMed
Kelling, J. and G., Odor, 2011, Extremely large-scale simulation of a Kardar-Parisi-Zhang model using graphics cards, Phys. Rev. E 84, 061150-1-7.CrossRefGoogle ScholarPubMed
Kim, D., 1995, Bethe ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the Kardar-Parisi-Zhang-type growth model, Phys. Rev. E 52, 3512–3524.CrossRefGoogle ScholarPubMed
Krapivsky, P. L. and B., Meerson, 2012, Fluctuations of current in nonstationary diffusive lattice gases, Phys. Rev. E 86, 031106-1-11.CrossRefGoogle ScholarPubMed
Lässig, M. and H., Kinzelbach, 1997, Upper critical dimension of the Kardar-Parisi-Zhang equation, Phys. Rev. Lett. 78, 903–906.CrossRefGoogle Scholar
Marinari, E., A., Pagnani, G., Parisi, and Z., Racz, 2002, Width distributions and the upper critical dimension of Kardar-Parisi-Zhang interfaces, Phys.Rev.E 65, 026136-1-4.CrossRefGoogle ScholarPubMed
Medina, E., T., Hwa, M., Kardar, and Y.-C., Zhang, 1989, Burgers equation with correlated noise: renormalization-group analysis and applications to directed polymers and interface growth, Phys. Rev. A 39, 3053–3075.CrossRefGoogle ScholarPubMed
Moore, M. A., T., Blum, J. P., Doherty, M., Marsili, J.-P., Bouchaud, and P., Claudin, 1995, Glassy solutions of the Kardar-Parisi-Zhang equation, Phys. Rev. Lett. 74, 4257–4260.CrossRefGoogle ScholarPubMed
Nattermann, T. and L.-H., Tang, 1992, Kinetic surface roughening. I. The Kardar-Parisi-Zhang equation in the weak-coupling regime, Phys. Rev. A 45, 7156–7161.CrossRefGoogle ScholarPubMed
Nicoli, M., R., Cuerno, and M., Castro, 2013, Dimensional fragility of the Kardar-Parisi-Zhang universality class, J. Stat. Mech., P11001, 1–11.Google Scholar
Odor, G., B., Liedke, and K.-H., Heinig, 2009, Mapping of (2 + 1)-dimensional Kardar-Parisi-Zhang growth onto a driven lattice gas model of dimers, Phys. Rev. E 79, 021125-1-5.CrossRefGoogle Scholar
Prahofer, M. and H., Spohn, 2004, Exact scaling functions for one-dimensional stationary KPZ growth, J. Stat. Phys. 115, 255–279.CrossRefGoogle Scholar
Schehr, G., 2012, Extremes of N vicious walkers for large N : application to the directed polymer and KPZ interfaces, J. Stat. Phys. 149, 385–410.CrossRefGoogle Scholar
Schmittmann, B. and R. K. P., Zia, 1998, Driven diffusive systems: an introduction and recent developments, Phys. Rep. 301, 45–64.CrossRefGoogle Scholar
Schwartz, M. and S. F., Edwards, 1992, Nonlinear deposition: a new approach, Europhys. Lett. 20, 301–306.CrossRefGoogle Scholar
Schwartz, M. and E., Katzav, 2008, The ideas behind self-consistent expansion, J. Stat. Mech., P04023-1-12.CrossRefGoogle Scholar
Tauber, U. C., B., Schmittmann, and R. K. P., Zia, 2001, Critical behaviour of driven bilayer systems: a field-theoretic renormalisation group study, J. Phys. A: Math. Gen. 34, L583–L589.CrossRefGoogle Scholar
Tauber, U. C. and E., Frey, 2002, Universality classes in the anisotropic Kardar-Parisi-Zhang model, Europhys. Lett. 59, 655–661.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×