Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T15:08:17.319Z Has data issue: false hasContentIssue false

14 - Geochemical Exploration

The Moon and Mars as Case Studies

Published online by Cambridge University Press:  10 February 2022

Harry McSween, Jr
Affiliation:
University of Tennessee, Knoxville
Gary Huss
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Geochemical measurements and constraints on the origin of the two best-studied bodies: the Moon and Mars

Type
Chapter
Information
Cosmochemistry , pp. 346 - 369
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggestions for Further Reading

These publications provide excellent summaries of the geologic evolution of the Moon:

Wilhelms, D. E. (1987) The Geologic History of the Moon, U.S. Geological Survey Professional Paper 1348.CrossRefGoogle Scholar
Jolliff, B. L., Wieczorek, M. A., Shearer, C. K., and Neal, C. R., editors (2006) New Views of the Moon, Reviews in Mineralogy & Geochemistry, 60, Mineralogical Society of America and Geochemical Society, Washington.Google Scholar
The following publications provide excellent summaries of the geologic and geochemical evolution of Mars:Google Scholar
Bell, J. (2008) The Martian Surface: Composition, Mineralogy, and Physical Properties, Cambridge University Press, Cambridge, 636 pp.Google Scholar
McSween, H. Y., and McLennan, S. M. (2014) Mars. In Treatise on Geochemistry, 2nd edition, Vol. 2: Planets, Asteroids, Comets and the Solar System, Davis, A. M., editor, pp. 251300, Elsevier, Oxford.CrossRefGoogle Scholar
Udry, A., Howarth, G. H., Herd, C. D. K., et al. (2020) What martian meteorites reveal about the interior and surface of Mars. Journal of Geophysical Research: Planets, 125, e2020JE006523.Google Scholar
Taylor, S. R., and McLennan, S. M. (2009) Planetary Crusts: Their Composition, Origin and Evolution, Cambridge University Press, Cambridge, 378 pp. This book provides a thoughtful assessment of the origins and compositions of crusts on planets and the Moon.Google Scholar
Arvidson, R. E. (2016) Aqueous history of Mars as inferred from landed measurements of rocks, soils, and water ice. Journal of Geophysical Research, Planets, 121, 16021626.Google Scholar
Baratoux, D., Toplis, M. J., Monnereau, M., and Gasnault, O. (2011) Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature, 475, 338341.Google Scholar
Barr, A. C. (2016) On the origin of Earth’s Moon. Journal of Geophysical Research, Planets, 121, 15631601.CrossRefGoogle Scholar
Berger, J. A., Schmidt, M. E., Campbell, J. L., et al. (2020) Particle induced X-ray emission spectrometry (PIXE) of Hawaiian volcanics: An analogue study to evaluate the APXS field analysis of geologic materials on Mars. Icarus, doi.org/10.1016/j.icarus.2020.113708.CrossRefGoogle Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., et al. (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science, 307, 15761581.Google Scholar
Blewett, D. T., Lucey, P. G., and Hawke, B. R. (1997) Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2 mapping techniques. Journal of Geophysical Research, 102 , 1631916325.Google Scholar
Borg, L. E., Gaffney, A. M., and Shearer, C. K. (2014) A review of lunar chronology revealing a preponderance of 4.34-4.37 Ga ages. Meteoritics & Planetary Science, 50, 715732.CrossRefGoogle Scholar
Bouvier, L. C., Costa, M. M., Connelly, J. N., et al. (2018) Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature, 558, 586589.Google Scholar
Boynton, W. V., Taylor, G. J., Evans, L. G., et al. (2007) Concentration of S, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. Journal of Geophysical Research, 112, E12S99.Google Scholar
Boynton, W. V., Taylor, G. J., Karunatillake, S., et al. (2008) Elemental abundances determined via the Mars Odyssey GRS. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 105124, Cambridge University Press, Cambridge.Google Scholar
Bridges, J. C., and Warren, P. H. (2006) The SNC meteorites: Basaltic igneous processes on Mars. Journal of the Geological Society of London, 163, 229251.Google Scholar
Bruckner, J., Dreibus, G., Gellert, R., et al. (2008) Mars Exploration Rovers: Chemical composition by the APXS. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 58101, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Cano, E. J., Sharp, Z. D., and Shearer, C. K. (2020) Distinct oxygen isotope compositions of the Earth and Moon. Nature Geoscience, 13, 270274.CrossRefGoogle Scholar
Carr, M. (2006) The Surface of Mars, Cambridge University Press, Cambridge, 307 pp.Google Scholar
Castle, N., and Herd, C. D. K. (2018) Experimental investigation into the effects of oxidation during petrogenesis of the Tissint meteorite. Meteoritics & Planetary Science, 23, 123.Google Scholar
Clark, B. C., Baird, A. K., Weldon, R. J., et al. (1982) Chemical composition of Martian fines. Journal of Geophysical Research, 87, 1005010067.Google Scholar
Eigenbrode, J. L., Summons, R. E., Steele, A., et al. (2018) Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science, 360, 10961101.Google Scholar
Elkins-Tanton, L. T., Parmentier, E. M., and Hess, P. C. (2003) Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars. Meteoritics and Planetary Science, 38, 17531771.Google Scholar
Elphic, R. C., Lawrence, D. J., Feldman, W. C., et al. (2002) Lunar Prospector neutron spectrometer constraints on TiO2. Journal of Geophysical Research, 107 (E4), doi:10.1029/2000JE001460.CrossRefGoogle Scholar
Farley, K. A., Malespin, C., Mahaffy, P., et al. (2014) In situ radiometric and exposure age dating of the Martian surface. Science, 343, doi:10.1126/science.1247166.Google Scholar
Fedo, C. M., McGlynn, I. O., and McSween, H. Y. (2015) Grain size and hydrodynamic sorting controls on the composition of basaltic sediments: Implications for the interpretation of martian soils. Earth & Planetary Science Letters, 423, 6777.CrossRefGoogle Scholar
Feldman, W. C., Boynton, W. V., Tokar, R. L., et al. (2002) Global distribution of neutrons from Mars: Results from Mars Odyssey. Science, 297, 7578.Google Scholar
Feldman, W. C., Mellon, M. T., Gasnault, O., et al. (2008) Volatiles on Mars: Scientific results from the Mars Odyssey Neutron Spectrometer. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 125148, Cambridge University Press, Cambridge.Google Scholar
Filiberto, J. (2017) Geochemistry of martian basalts with constraints on magma genesis. Chemical Geology, 466, 114.CrossRefGoogle Scholar
Filiberto, J., and Treiman, A. H. (2009) Martian magmas contained abundant chlorite, but little water. Geology, 37, 10871090.Google Scholar
Filiberto, J., Baratoux, D., Beaty, D., et al. (2016) A review of volatiles in the martian interior. Meteoritics & Planetary Science, 51, 19351958.Google Scholar
Filiberto, J., McCubbin, F. M., and Taylor, G. J. (2019) Volatiles in martian magmas and the interior: Inputs of volatiles into the crust and atmosphere. In Volatiles in the Martian Crust, Filibert, J., and Schwenzer, S., editors., pp. 1333, Elsevier, New York.Google Scholar
Foley, C. N., Economou, T. E., Clayton, R. N., et al. (2008) Martian surface chemistry: APXS results from the Pathfinder landing site. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 3557, Cambridge University Press, Cambridge.Google Scholar
Gellert, R., Rieder, R., Brückner, J., et al. (2006), The Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev crater and calibration report. Journal of Geophysical Research, 111, E02S05.Google Scholar
Giguere, T. A., Taylor, G. J., Hawke, B. R., and Lucey, P. G. (2000) The titanium contents of lunar mare basalts. Meteoritics & Planetary Science, 35, 193200.Google Scholar
Halliday, A. N. (2014) The origin and earliest history of the Earth. In Treatise on Geochemistry, 2nd edition, Vol. 2: Planets, Asteroids, Comets and the Solar System, Davis, A. M., editor, pp. 149211, Elsevier, New York.Google Scholar
Hamilton, V. E., Wyatt, M. B., McSween, H. Y., and Christensen, P. R. (2001) Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 2. Application to Martian surface spectra from the Mars Global Surveyor thermal emission spectrometer. Journal of Geophysical Research, 106, 1473314746.Google Scholar
Hecht, M. H., Kounaves, S. P., Quinn, R. C., et al. (2009) Detection of perchlorate and soluble chemistry of the martian soil: Findings from the Phoenix Mars lander. Science, 235, 6467.Google Scholar
Hart, S. R., and Zindler, A. (1986) In search of a bulk-Earth composition. Chemical Geology, 57, 247267.Google Scholar
Heisinger, H., and Head, J. W. (2006) New views of lunar geoscience: An introduction and overview. In New Views of the Moon, Neal, C. R., Jolliff, B. L., Shearer, C. K., and Wieczorek, M. A., editors, Reviews in Mineralogy and Geochemistry, 60, pp. 118, Mineralogical Society of America and Geochemical Society, Washington.Google Scholar
Hurowitz, J. A., McLennan, S. M., Tosca, N. J., et al. (2006) In situ and experimental evidence for acidic weathering of rocks and soils on Mars. Journal of Geophysical Research, 111, E02S19.Google Scholar
Jolliff, B. L., Gillis, J. J., Haskin, L. A., et al. (2000) Major lunar crustal terranes: Surface expressions and crust-mantle origins. Journal of Geophysical Research, 105, E2, 41974216.CrossRefGoogle Scholar
Korotev, R. L., Jolliff, B. L., Zeigler, R. A., et al. (2003) Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochimica et Cosmochimica Acta, 67, 48954923.Google Scholar
Kruijer, T. S., Kleine, T., Borg, L. E., et al. (2017) The early differentiation of Mars inferred from Hf-W chronometry. Earth & Planetary Science Letters, 474, 33453354.Google Scholar
Lawrence, D. J., Feldman, W. C., Barraclough, B. L., et al. (1998) Global elemental maps of the Moon: The Lunar Prospector gamma-ray spectrometer. Science, 281, 14841489.Google Scholar
Leshin, L. A. (2000) Insights into Martian water reservoirs from analysis of martian meteorite QUE94201. Geophysical Research Letters, 27, 20172020.Google Scholar
Leshin, L. A., Epstein, S., and Stolper, E. M. (1996) Hydrogen isotope geochemistry of SNC meteorites. Geochimica et Cosmochimica Acta, 60, 26352650.Google Scholar
Lin, Y., Tronche, E. J., Steenstra, E. S., and von Westrenen, W. (2017) Experimental constraints on the solidification of a nominally dry lunar magma ocean. Earth & Planetary Science Letters, 471, 104116.Google Scholar
Lin, Y., Hui, H., Xia, X., et al. (2020) Experimental constraints on the solidification of a hydrous lunar magma ocean. Meteoritics & Planetary Science, 55, 207230.Google Scholar
Lodders, K. (1998) A survey of shergottite, nakhlite and chassigny meteorites whole-rock compositions. Meteoritics & Planetary Science, 33, A183A190.Google Scholar
Lodders, K., and Fegley, B. (1997) An oxygen isotope model for the composition of Mars. Icarus, 126, 373394.Google Scholar
Loper, D. E., and Werner, C.L. (2002) On lunar asymmetries 1. Tilted convection and crustal asymmetry. Journal of Geophysical Research Planets, 107, E6, 5046.Google Scholar
Lucey, P. G., Blewett, D. T., and Hawke, B. R. (1998) Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. Journal of Geophysical Research, 103, 36793699.CrossRefGoogle Scholar
Lucey, P. G., Korotev, R. L., Gillis, J. J., et al. (2006) Understanding the lunar surface and space-Moon interactions. In New Views of the Moon, Neal, C. R., Jolliff, B. L., Shearer, C. K., and Wieczorek, M. A., editors, Reviews in Mineralogy and Geochemistry, 60, Mineralogical Society of America and Geochemical Society, Washington, pp. 83219.Google Scholar
McCubbin, F. M., Steele, A., Hauri, E. H., et al. (2010) Nominally hydrous magmatism on the Moon. Proceedings of the National Academy of Sciences, USA, 107, 1122311228.CrossRefGoogle ScholarPubMed
McCubbin, F. M., Hauri, E. H., Elardo, S. M., et al. (2012) Hydrous melting of the martian mantle produced both depleted and enriched shergottites. Geology, 40, 683686.Google Scholar
McCubbin, F. M., Boyce, J. W., Srinivasan, P., et al. (2016) Heterogeneous distribution of H2O in the martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources. Meteoritics & Planetary Science, 51, 20362060.Google Scholar
McLennan, S. M., Bell, J. F., Calvin, W. M., et al. (2005) Evidence for groundwater involvement in the provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth & Planetary Science Letters, 240, 95121.CrossRefGoogle Scholar
McLennan, S. M., Anderson, R. B., Bell, J. F., et al. (2014) Elemental chemistry of sedimentary rocks at Yellowknife By, Gale crater, Mars. Science, 343, doi: 10.1126/science.1243480.Google Scholar
McSween, H. Y. (2015) Petrology on Mars. American Mineralogist, 100, 23802395.Google Scholar
McSween, H. Y., and McLennan, S. M. (2014) Mars. In Treatise on Geochemistry, 2nd Edition, Vol. 2: Planets, Asteroids, Comets and the Solar System, Davis, A. M., editor, pp. 251300, Elsevier, Oxford.CrossRefGoogle Scholar
McSween, H. Y., Murchie, S. L., Crisp, J. A., et al. (1999) Chemical, multispectral and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. Journal of Geophysical Research, 104, E4, 86798715.Google Scholar
McSween, H. Y., Grove, T. L., and Wyatt, M. B. (2003) Constraints on the composition and petrogenesis of the martian crust. Journal of Geophysical Research, 108, E12, 5135.Google Scholar
McSween, H. Y., Taylor, G. J., and Wyatt, M. B. (2009) Elemental composition of the martian crust. Science, 324, 736739.Google Scholar
Ming, D. W., Mittlefehldt, D. W., Morris, R. V, et al. (2006) Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. Journal of Geophysical Research, 111, E02S12.Google Scholar
Ming, D. W., Morris, R. V., and Clark, B. C. (2008) Aqueous alteration on Mars. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 519540, Cambridge University Press, Cambridge.Google Scholar
Ni, P., Zhang, Y., and Guan, Y. (2017) Volatile loss during homogenization of lunar melt inclusions. Earth & Planetary Science Letters, 478, 214224.Google Scholar
Ouri, Y., Shirari, N., and Ebihara, M. (2003) Chemical composition of Yamato (Y)980459 and Y000749: Neutron-induced prompt gamma-ray analysis study. Antarctic Meteorite Research, 16, 8093.Google Scholar
Pahlevan, K., and Stevenson, D. J. (2007) Equilibration in the aftermath of the lunar-forming giant impact. Earth & Planetary Science Letters, 262, 438449.Google Scholar
Papike, J. J., Ryder, G., and Shearer, C. K. (1998) Lunar samples. In Planetary Materials, Papike, J. J., editor, Reviews in Mineralogy, 36, pp. 5-1 to 5-234, Mineralogical Society of America, Washington.Google Scholar
Peslier, A. H., Hervig, R., Yang, S., et al. (2019) Determination of the water content and D/H ratio of the martian mantle by unraveling degassing and crystallization effects in nakhlites. Geochimica et Cosmochimica Acta, 266, 382415.CrossRefGoogle Scholar
Poulet, F., Mangold, N., Platevoet, B., et al. (2009) Quantitative compositional analysis of martian mafic regions using the Mex/OMEGA reflectance data. 2. Petrologic implications. Icarus, 201, 84101.Google Scholar
Prettyman, T. H., Hagerty, J. J., Elphic, R. C., et al. (2006) Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. Journal of Geophysical Research, 111, E12007.Google Scholar
Righter, K., and Drake, M. J. (1996) Core formation in the Earth’s Moon, Mars and Vesta. Icarus, 124, 513529.CrossRefGoogle Scholar
Roberts, S. E., McCanta, M. C., Jean, M. M., et al. (2019) New lunar meteorite NWA 10986: A mingled impact melt breccia from the highlands – A complete cross section of the lunar crust. Meteoritics & Planetary Science, 54, 30163035.Google Scholar
Rogers, A. D., and Christensen, P. R. (2007) Surface mineralogy of martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration. Journal of Geophysical Research, 112, E01003.Google Scholar
Rogers, A. D., and Hamilton, V. E. (2014) Compositional provinces of Mars from statistical analyses of TES, GRS, OMEGA, and CRISM data. Journal of Geophysical. Research, Planets, 120, 6291.Google Scholar
Ryder, G. (1991) Lunar ferroan anorthosites and mare basalt sources: The mixed connection. Journal of Geophysical Research, 118, 20652068.Google Scholar
Saal, A. E., Hauri, E. H., Van Orman, J. A., and Rutherford, M. J. (2013) Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science, 340, 13171320.Google Scholar
Sanloup, C., Jambon, A., and Gillet, P. (1999) A simple chondritic model of Mars. Earth & Planetary Science Letters, 112, 4354.Google Scholar
Schmidt, M. E., Campbell, J. L., Gellert, R., et al. (2014) Geochemical diversity in first rocks examined by the Curiosity rover in Gale crater; Evidence for and significance of an alkali and volatile-rich igneous source. Journal of Geophysical Research, Planets, 119, 6481.Google Scholar
Schmidt, M. E., Perrett, G. M., Bray, S. L., et al. (2018) Dusty rocks in Gale crater: Assessing aerial coverage and separating dust and rock contributions in APXS analyses. Journal of Geophysical Research, Planets, 123, 16491673.Google Scholar
Shearer, C. K., Hess, P. C., Wieczorek, M. A., et al. (2006) Thermal and magmatic evolution of the Moon. In New Views of the Moon, Neal, C. R., Jolliff, B. L., Shearer, C. K., and Wieczorek, M. A., editors, Reviews in Mineralogy and Geochemistry, 60, pp. 365518, Mineralogical Society of America and Geochemical Society, Washington.Google Scholar
Solomon, S. C., Aharonson, O., Aurnoou, J. M., et al. (2005) New perspectives on ancient Mars. Science, 307, 12141220.Google Scholar
Symes, S. J., Borg, L. E. Shearer, C. K., and Irving, A. (2008) The age of the martian meteorite Northwest Africa 1195 and the differentiation history of the shergottites. Geochimica et Cosmochimica Acta, 72, 16961710.Google Scholar
Taylor, G. J. (2013) The bulk composition of Mars. Chemie der Erde, 73, 401420.Google Scholar
Taylor, G. J., Warren, P., Ryder, G., et al. (1991) Lunar rocks. In Lunar Sourcebook: A User’s Guide to the Moon, Heiken, G. H., Vaniman, D. T., and French, B. M., editors, pp. 183284, Cambridge University Press, Cambridge.Google Scholar
Taylor, G. J., Stopar, J. D., Boynton, W. V., et al. (2006) Variations in K/Th on Mars. Journal of Geophysical Research, 111, E03S06.Google Scholar
Taylor, S. R. (1982) Planetary Science: A Lunar Perspective. Lunar & Planetary Institute, Houston, 481 pp.Google Scholar
Taylor, S. R., Pieters, C. M., and MacPherson, G. J. (2006a) Earth-Moon system, planetary science, and lessons learned. In New Views of the Moon, Neal, C. R., Jolliff, B. L., Shearer, C. K., and Wieczorek, M. A., editors, Reviews in Mineralogy and Geochemistry, 60, pp. 657704, Mineralogical Society of America and Geochemical Society, Washington.Google Scholar
Taylor, S. R., Taylor, G. J., and Taylor, L. A. (2006b) The Moon: A Taylor perspective. Earth & Planetary Science Letters, 70, 59045918.Google Scholar
Thorpe, M. T., Hurowitz, J. A., and Siebach, K. L. (2021) Source-to-sink terrestrial analogs for the paleoenvironment of Gale crater, Mars. Journal of Geophysical Research, Planets, 126, e2020JE006530.Google Scholar
Treiman, A. H., Jones, J. H., and Drake, M. J. (1987) Core formation in the shergottite parent body and comparison with the Earth. Journal of Geophysical Research, 92, E627E632.Google Scholar
Wanke, H., and Dreibus, G. (1988) Chemical composition and accretion history of terrestrial planets. Philosophical Transactions of the Royal Society of London, A325, 545557.Google Scholar
Wanke, H., Bruckner, J., Dreibus, G., et al. (2001) Chemical composition of rocks and soils at the Pathfinder site. Space Science Reviews, 96, 317330.Google Scholar
Warren, P. H. (1993) A concise compilation of petrologic information on possibly pristine nonmare Moon rocks. American Mineralogist, 78, 360376.Google Scholar
Warren, P. H., and Wasson, J. T. (1977) Pristine nonmare rocks and the nature of the lunar crust. Proceedings of the Lunar Science Conference, 8, 22152235.Google Scholar
Warren, P. H., and Kallemeyn, G. W. (1997) Yamato-793605, EET 79001, and other presumed martian meteorites: Compositional clues to their origins. Proceedings of NPR Symposium on Antarctic Meteorites, 10, 6181.Google Scholar
Weber, R. C., Lin, P.-Y., Garnero, E. J., et al. (2011) Seismic detection of the lunar core. Science, 331, 309312.Google Scholar
Wiechert, U., Halliday, A. N., Lee, D.-C., et al. (2001) Oxygen isotopes and the Moon-forming giant impact. Science, 294, 345348.Google Scholar
Wieczorek, M. A., Jolliff, B. L., Khan, A., et al. (2006) The constitution and structure of the lunar interior. In New Views of the Moon, Neal, C. R., Jolliff, B. L., Shearer, C. K., and Wieczorek, M. A., editors, Reviews in Mineralogy and Geochemistry, 60, pp. 221364, Mineralogical Society of America and Geochemical Society, Washington.CrossRefGoogle Scholar
Wieczorek, M. A., Neumann, G. A., Nimmo, F., et al. (2013) The crust of the Moon as seen by GRAIL. Science, 339, 671675.Google Scholar
Wood, J. A., Dickey, J. S., Marvin, U. B., and Powell, B. N. (1970) Lunar anorthosites. Science, 167, 602604.Google Scholar
Wyatt, M. B., Hamilton, V. E., McSween, H. Y., et al. (2001) Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: 1. Determination of mineralogy, chemistry, and classification strategies. Journal of Geophysical Research, 106, 1471114732.Google Scholar
Yoshizaki, T., and McDonough, W. F. (2020) The composition of Mars. Geochimica et Cosmochimica Acta, 273, 137162.Google Scholar
Zipfel, J., Schroder, C., Jolliff, B. L., et al. (2011) Bounce Rock – a shergottite-like basalt encountered at Meridiani Planum, Mars. Meteoritics & Planetary Science, 46, 120.Google Scholar
Arvidson, R. E. (2016) Aqueous history of Mars as inferred from landed measurements of rocks, soils, and water ice. Journal of Geophysical Research, Planets, 121, 16021626.Google Scholar
Baratoux, D., Toplis, M. J., Monnereau, M., and Gasnault, O. (2011) Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature, 475, 338341.Google Scholar
Barr, A. C. (2016) On the origin of Earth’s Moon. Journal of Geophysical Research, Planets, 121, 15631601.CrossRefGoogle Scholar
Berger, J. A., Schmidt, M. E., Campbell, J. L., et al. (2020) Particle induced X-ray emission spectrometry (PIXE) of Hawaiian volcanics: An analogue study to evaluate the APXS field analysis of geologic materials on Mars. Icarus, doi.org/10.1016/j.icarus.2020.113708.CrossRefGoogle Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., et al. (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science, 307, 15761581.Google Scholar
Blewett, D. T., Lucey, P. G., and Hawke, B. R. (1997) Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2 mapping techniques. Journal of Geophysical Research, 102 , 1631916325.Google Scholar
Borg, L. E., Gaffney, A. M., and Shearer, C. K. (2014) A review of lunar chronology revealing a preponderance of 4.34-4.37 Ga ages. Meteoritics & Planetary Science, 50, 715732.CrossRefGoogle Scholar
Bouvier, L. C., Costa, M. M., Connelly, J. N., et al. (2018) Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature, 558, 586589.Google Scholar
Boynton, W. V., Taylor, G. J., Evans, L. G., et al. (2007) Concentration of S, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. Journal of Geophysical Research, 112, E12S99.Google Scholar
Boynton, W. V., Taylor, G. J., Karunatillake, S., et al. (2008) Elemental abundances determined via the Mars Odyssey GRS. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 105124, Cambridge University Press, Cambridge.Google Scholar
Bridges, J. C., and Warren, P. H. (2006) The SNC meteorites: Basaltic igneous processes on Mars. Journal of the Geological Society of London, 163, 229251.Google Scholar
Bruckner, J., Dreibus, G., Gellert, R., et al. (2008) Mars Exploration Rovers: Chemical composition by the APXS. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 58101, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Cano, E. J., Sharp, Z. D., and Shearer, C. K. (2020) Distinct oxygen isotope compositions of the Earth and Moon. Nature Geoscience, 13, 270274.CrossRefGoogle Scholar
Carr, M. (2006) The Surface of Mars, Cambridge University Press, Cambridge, 307 pp.Google Scholar
Castle, N., and Herd, C. D. K. (2018) Experimental investigation into the effects of oxidation during petrogenesis of the Tissint meteorite. Meteoritics & Planetary Science, 23, 123.Google Scholar
Clark, B. C., Baird, A. K., Weldon, R. J., et al. (1982) Chemical composition of Martian fines. Journal of Geophysical Research, 87, 1005010067.Google Scholar
Eigenbrode, J. L., Summons, R. E., Steele, A., et al. (2018) Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science, 360, 10961101.Google Scholar
Elkins-Tanton, L. T., Parmentier, E. M., and Hess, P. C. (2003) Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars. Meteoritics and Planetary Science, 38, 17531771.Google Scholar
Elphic, R. C., Lawrence, D. J., Feldman, W. C., et al. (2002) Lunar Prospector neutron spectrometer constraints on TiO2. Journal of Geophysical Research, 107 (E4), doi:10.1029/2000JE001460.CrossRefGoogle Scholar
Farley, K. A., Malespin, C., Mahaffy, P., et al. (2014) In situ radiometric and exposure age dating of the Martian surface. Science, 343, doi:10.1126/science.1247166.Google Scholar
Fedo, C. M., McGlynn, I. O., and McSween, H. Y. (2015) Grain size and hydrodynamic sorting controls on the composition of basaltic sediments: Implications for the interpretation of martian soils. Earth & Planetary Science Letters, 423, 6777.CrossRefGoogle Scholar
Feldman, W. C., Boynton, W. V., Tokar, R. L., et al. (2002) Global distribution of neutrons from Mars: Results from Mars Odyssey. Science, 297, 7578.Google Scholar
Feldman, W. C., Mellon, M. T., Gasnault, O., et al. (2008) Volatiles on Mars: Scientific results from the Mars Odyssey Neutron Spectrometer. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 125148, Cambridge University Press, Cambridge.Google Scholar
Filiberto, J. (2017) Geochemistry of martian basalts with constraints on magma genesis. Chemical Geology, 466, 114.CrossRefGoogle Scholar
Filiberto, J., and Treiman, A. H. (2009) Martian magmas contained abundant chlorite, but little water. Geology, 37, 10871090.Google Scholar
Filiberto, J., Baratoux, D., Beaty, D., et al. (2016) A review of volatiles in the martian interior. Meteoritics & Planetary Science, 51, 19351958.Google Scholar
Filiberto, J., McCubbin, F. M., and Taylor, G. J. (2019) Volatiles in martian magmas and the interior: Inputs of volatiles into the crust and atmosphere. In Volatiles in the Martian Crust, Filibert, J., and Schwenzer, S., editors., pp. 1333, Elsevier, New York.Google Scholar
Foley, C. N., Economou, T. E., Clayton, R. N., et al. (2008) Martian surface chemistry: APXS results from the Pathfinder landing site. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 3557, Cambridge University Press, Cambridge.Google Scholar
Gellert, R., Rieder, R., Brückner, J., et al. (2006), The Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev crater and calibration report. Journal of Geophysical Research, 111, E02S05.Google Scholar
Giguere, T. A., Taylor, G. J., Hawke, B. R., and Lucey, P. G. (2000) The titanium contents of lunar mare basalts. Meteoritics & Planetary Science, 35, 193200.Google Scholar
Halliday, A. N. (2014) The origin and earliest history of the Earth. In Treatise on Geochemistry, 2nd edition, Vol. 2: Planets, Asteroids, Comets and the Solar System, Davis, A. M., editor, pp. 149211, Elsevier, New York.Google Scholar
Hamilton, V. E., Wyatt, M. B., McSween, H. Y., and Christensen, P. R. (2001) Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 2. Application to Martian surface spectra from the Mars Global Surveyor thermal emission spectrometer. Journal of Geophysical Research, 106, 1473314746.Google Scholar
Hecht, M. H., Kounaves, S. P., Quinn, R. C., et al. (2009) Detection of perchlorate and soluble chemistry of the martian soil: Findings from the Phoenix Mars lander. Science, 235, 6467.Google Scholar
Hart, S. R., and Zindler, A. (1986) In search of a bulk-Earth composition. Chemical Geology, 57, 247267.Google Scholar
Heisinger, H., and Head, J. W. (2006) New views of lunar geoscience: An introduction and overview. In New Views of the Moon, Neal, C. R., Jolliff, B. L., Shearer, C. K., and Wieczorek, M. A., editors, Reviews in Mineralogy and Geochemistry, 60, pp. 118, Mineralogical Society of America and Geochemical Society, Washington.Google Scholar
Hurowitz, J. A., McLennan, S. M., Tosca, N. J., et al. (2006) In situ and experimental evidence for acidic weathering of rocks and soils on Mars. Journal of Geophysical Research, 111, E02S19.Google Scholar
Jolliff, B. L., Gillis, J. J., Haskin, L. A., et al. (2000) Major lunar crustal terranes: Surface expressions and crust-mantle origins. Journal of Geophysical Research, 105, E2, 41974216.CrossRefGoogle Scholar
Korotev, R. L., Jolliff, B. L., Zeigler, R. A., et al. (2003) Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochimica et Cosmochimica Acta, 67, 48954923.Google Scholar
Kruijer, T. S., Kleine, T., Borg, L. E., et al. (2017) The early differentiation of Mars inferred from Hf-W chronometry. Earth & Planetary Science Letters, 474, 33453354.Google Scholar
Lawrence, D. J., Feldman, W. C., Barraclough, B. L., et al. (1998) Global elemental maps of the Moon: The Lunar Prospector gamma-ray spectrometer. Science, 281, 14841489.Google Scholar
Leshin, L. A. (2000) Insights into Martian water reservoirs from analysis of martian meteorite QUE94201. Geophysical Research Letters, 27, 20172020.Google Scholar
Leshin, L. A., Epstein, S., and Stolper, E. M. (1996) Hydrogen isotope geochemistry of SNC meteorites. Geochimica et Cosmochimica Acta, 60, 26352650.Google Scholar
Lin, Y., Tronche, E. J., Steenstra, E. S., and von Westrenen, W. (2017) Experimental constraints on the solidification of a nominally dry lunar magma ocean. Earth & Planetary Science Letters, 471, 104116.Google Scholar
Lin, Y., Hui, H., Xia, X., et al. (2020) Experimental constraints on the solidification of a hydrous lunar magma ocean. Meteoritics & Planetary Science, 55, 207230.Google Scholar
Lodders, K. (1998) A survey of shergottite, nakhlite and chassigny meteorites whole-rock compositions. Meteoritics & Planetary Science, 33, A183A190.Google Scholar
Lodders, K., and Fegley, B. (1997) An oxygen isotope model for the composition of Mars. Icarus, 126, 373394.Google Scholar
Loper, D. E., and Werner, C.L. (2002) On lunar asymmetries 1. Tilted convection and crustal asymmetry. Journal of Geophysical Research Planets, 107, E6, 5046.Google Scholar
Lucey, P. G., Blewett, D. T., and Hawke, B. R. (1998) Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. Journal of Geophysical Research, 103, 36793699.CrossRefGoogle Scholar
Lucey, P. G., Korotev, R. L., Gillis, J. J., et al. (2006) Understanding the lunar surface and space-Moon interactions. In New Views of the Moon, Neal, C. R., Jolliff, B. L., Shearer, C. K., and Wieczorek, M. A., editors, Reviews in Mineralogy and Geochemistry, 60, Mineralogical Society of America and Geochemical Society, Washington, pp. 83219.Google Scholar
McCubbin, F. M., Steele, A., Hauri, E. H., et al. (2010) Nominally hydrous magmatism on the Moon. Proceedings of the National Academy of Sciences, USA, 107, 1122311228.CrossRefGoogle ScholarPubMed
McCubbin, F. M., Hauri, E. H., Elardo, S. M., et al. (2012) Hydrous melting of the martian mantle produced both depleted and enriched shergottites. Geology, 40, 683686.Google Scholar
McCubbin, F. M., Boyce, J. W., Srinivasan, P., et al. (2016) Heterogeneous distribution of H2O in the martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources. Meteoritics & Planetary Science, 51, 20362060.Google Scholar
McLennan, S. M., Bell, J. F., Calvin, W. M., et al. (2005) Evidence for groundwater involvement in the provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth & Planetary Science Letters, 240, 95121.CrossRefGoogle Scholar
McLennan, S. M., Anderson, R. B., Bell, J. F., et al. (2014) Elemental chemistry of sedimentary rocks at Yellowknife By, Gale crater, Mars. Science, 343, doi: 10.1126/science.1243480.Google Scholar
McSween, H. Y. (2015) Petrology on Mars. American Mineralogist, 100, 23802395.Google Scholar
McSween, H. Y., and McLennan, S. M. (2014) Mars. In Treatise on Geochemistry, 2nd Edition, Vol. 2: Planets, Asteroids, Comets and the Solar System, Davis, A. M., editor, pp. 251300, Elsevier, Oxford.CrossRefGoogle Scholar
McSween, H. Y., Murchie, S. L., Crisp, J. A., et al. (1999) Chemical, multispectral and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. Journal of Geophysical Research, 104, E4, 86798715.Google Scholar
McSween, H. Y., Grove, T. L., and Wyatt, M. B. (2003) Constraints on the composition and petrogenesis of the martian crust. Journal of Geophysical Research, 108, E12, 5135.Google Scholar
McSween, H. Y., Taylor, G. J., and Wyatt, M. B. (2009) Elemental composition of the martian crust. Science, 324, 736739.Google Scholar
Ming, D. W., Mittlefehldt, D. W., Morris, R. V, et al. (2006) Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. Journal of Geophysical Research, 111, E02S12.Google Scholar
Ming, D. W., Morris, R. V., and Clark, B. C. (2008) Aqueous alteration on Mars. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 519540, Cambridge University Press, Cambridge.Google Scholar
Ni, P., Zhang, Y., and Guan, Y. (2017) Volatile loss during homogenization of lunar melt inclusions. Earth & Planetary Science Letters, 478, 214224.Google Scholar
Ouri, Y., Shirari, N., and Ebihara, M. (2003) Chemical composition of Yamato (Y)980459 and Y000749: Neutron-induced prompt gamma-ray analysis study. Antarctic Meteorite Research, 16, 8093.Google Scholar
Pahlevan, K., and Stevenson, D. J. (2007) Equilibration in the aftermath of the lunar-forming giant impact. Earth & Planetary Science Letters, 262, 438449.Google Scholar
Papike, J. J., Ryder, G., and Shearer, C. K. (1998) Lunar samples. In Planetary Materials, Papike, J. J., editor, Reviews in Mineralogy, 36, pp. 5-1 to 5-234, Mineralogical Society of America, Washington.Google Scholar
Peslier, A. H., Hervig, R., Yang, S., et al. (2019) Determination of the water content and D/H ratio of the martian mantle by unraveling degassing and crystallization effects in nakhlites. Geochimica et Cosmochimica Acta, 266, 382415.CrossRefGoogle Scholar
Poulet, F., Mangold, N., Platevoet, B., et al. (2009) Quantitative compositional analysis of martian mafic regions using the Mex/OMEGA reflectance data. 2. Petrologic implications. Icarus, 201, 84101.Google Scholar
Prettyman, T. H., Hagerty, J. J., Elphic, R. C., et al. (2006) Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. Journal of Geophysical Research, 111, E12007.Google Scholar
Righter, K., and Drake, M. J. (1996) Core formation in the Earth’s Moon, Mars and Vesta. Icarus, 124, 513529.CrossRefGoogle Scholar
Roberts, S. E., McCanta, M. C., Jean, M. M., et al. (2019) New lunar meteorite NWA 10986: A mingled impact melt breccia from the highlands – A complete cross section of the lunar crust. Meteoritics & Planetary Science, 54, 30163035.Google Scholar
Rogers, A. D., and Christensen, P. R. (2007) Surface mineralogy of martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration. Journal of Geophysical Research, 112, E01003.Google Scholar
Rogers, A. D., and Hamilton, V. E. (2014) Compositional provinces of Mars from statistical analyses of TES, GRS, OMEGA, and CRISM data. Journal of Geophysical. Research, Planets, 120, 6291.Google Scholar
Ryder, G. (1991) Lunar ferroan anorthosites and mare basalt sources: The mixed connection. Journal of Geophysical Research, 118, 20652068.Google Scholar
Saal, A. E., Hauri, E. H., Van Orman, J. A., and Rutherford, M. J. (2013) Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science, 340, 13171320.Google Scholar
Sanloup, C., Jambon, A., and Gillet, P. (1999) A simple chondritic model of Mars. Earth & Planetary Science Letters, 112, 4354.Google Scholar
Schmidt, M. E., Campbell, J. L., Gellert, R., et al. (2014) Geochemical diversity in first rocks examined by the Curiosity rover in Gale crater; Evidence for and significance of an alkali and volatile-rich igneous source. Journal of Geophysical Research, Planets, 119, 6481.Google Scholar
Schmidt, M. E., Perrett, G. M., Bray, S. L., et al. (2018) Dusty rocks in Gale crater: Assessing aerial coverage and separating dust and rock contributions in APXS analyses. Journal of Geophysical Research, Planets, 123, 16491673.Google Scholar
Shearer, C. K., Hess, P. C., Wieczorek, M. A., et al. (2006) Thermal and magmatic evolution of the Moon. In New Views of the Moon, Neal, C. R., Jolliff, B. L., Shearer, C. K., and Wieczorek, M. A., editors, Reviews in Mineralogy and Geochemistry, 60, pp. 365518, Mineralogical Society of America and Geochemical Society, Washington.Google Scholar
Solomon, S. C., Aharonson, O., Aurnoou, J. M., et al. (2005) New perspectives on ancient Mars. Science, 307, 12141220.Google Scholar
Symes, S. J., Borg, L. E. Shearer, C. K., and Irving, A. (2008) The age of the martian meteorite Northwest Africa 1195 and the differentiation history of the shergottites. Geochimica et Cosmochimica Acta, 72, 16961710.Google Scholar
Taylor, G. J. (2013) The bulk composition of Mars. Chemie der Erde, 73, 401420.Google Scholar
Taylor, G. J., Warren, P., Ryder, G., et al. (1991) Lunar rocks. In Lunar Sourcebook: A User’s Guide to the Moon, Heiken, G. H., Vaniman, D. T., and French, B. M., editors, pp. 183284, Cambridge University Press, Cambridge.Google Scholar
Taylor, G. J., Stopar, J. D., Boynton, W. V., et al. (2006) Variations in K/Th on Mars. Journal of Geophysical Research, 111, E03S06.Google Scholar
Taylor, S. R. (1982) Planetary Science: A Lunar Perspective. Lunar & Planetary Institute, Houston, 481 pp.Google Scholar
Taylor, S. R., Pieters, C. M., and MacPherson, G. J. (2006a) Earth-Moon system, planetary science, and lessons learned. In New Views of the Moon, Neal, C. R., Jolliff, B. L., Shearer, C. K., and Wieczorek, M. A., editors, Reviews in Mineralogy and Geochemistry, 60, pp. 657704, Mineralogical Society of America and Geochemical Society, Washington.Google Scholar
Taylor, S. R., Taylor, G. J., and Taylor, L. A. (2006b) The Moon: A Taylor perspective. Earth & Planetary Science Letters, 70, 59045918.Google Scholar
Thorpe, M. T., Hurowitz, J. A., and Siebach, K. L. (2021) Source-to-sink terrestrial analogs for the paleoenvironment of Gale crater, Mars. Journal of Geophysical Research, Planets, 126, e2020JE006530.Google Scholar
Treiman, A. H., Jones, J. H., and Drake, M. J. (1987) Core formation in the shergottite parent body and comparison with the Earth. Journal of Geophysical Research, 92, E627E632.Google Scholar
Wanke, H., and Dreibus, G. (1988) Chemical composition and accretion history of terrestrial planets. Philosophical Transactions of the Royal Society of London, A325, 545557.Google Scholar
Wanke, H., Bruckner, J., Dreibus, G., et al. (2001) Chemical composition of rocks and soils at the Pathfinder site. Space Science Reviews, 96, 317330.Google Scholar
Warren, P. H. (1993) A concise compilation of petrologic information on possibly pristine nonmare Moon rocks. American Mineralogist, 78, 360376.Google Scholar
Warren, P. H., and Wasson, J. T. (1977) Pristine nonmare rocks and the nature of the lunar crust. Proceedings of the Lunar Science Conference, 8, 22152235.Google Scholar
Warren, P. H., and Kallemeyn, G. W. (1997) Yamato-793605, EET 79001, and other presumed martian meteorites: Compositional clues to their origins. Proceedings of NPR Symposium on Antarctic Meteorites, 10, 6181.Google Scholar
Weber, R. C., Lin, P.-Y., Garnero, E. J., et al. (2011) Seismic detection of the lunar core. Science, 331, 309312.Google Scholar
Wiechert, U., Halliday, A. N., Lee, D.-C., et al. (2001) Oxygen isotopes and the Moon-forming giant impact. Science, 294, 345348.Google Scholar
Wieczorek, M. A., Jolliff, B. L., Khan, A., et al. (2006) The constitution and structure of the lunar interior. In New Views of the Moon, Neal, C. R., Jolliff, B. L., Shearer, C. K., and Wieczorek, M. A., editors, Reviews in Mineralogy and Geochemistry, 60, pp. 221364, Mineralogical Society of America and Geochemical Society, Washington.CrossRefGoogle Scholar
Wieczorek, M. A., Neumann, G. A., Nimmo, F., et al. (2013) The crust of the Moon as seen by GRAIL. Science, 339, 671675.Google Scholar
Wood, J. A., Dickey, J. S., Marvin, U. B., and Powell, B. N. (1970) Lunar anorthosites. Science, 167, 602604.Google Scholar
Wyatt, M. B., Hamilton, V. E., McSween, H. Y., et al. (2001) Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: 1. Determination of mineralogy, chemistry, and classification strategies. Journal of Geophysical Research, 106, 1471114732.Google Scholar
Yoshizaki, T., and McDonough, W. F. (2020) The composition of Mars. Geochimica et Cosmochimica Acta, 273, 137162.Google Scholar
Zipfel, J., Schroder, C., Jolliff, B. L., et al. (2011) Bounce Rock – a shergottite-like basalt encountered at Meridiani Planum, Mars. Meteoritics & Planetary Science, 46, 120.Google Scholar

Other References

Arvidson, R. E. (2016) Aqueous history of Mars as inferred from landed measurements of rocks, soils, and water ice. Journal of Geophysical Research, Planets, 121, 16021626.Google Scholar
Baratoux, D., Toplis, M. J., Monnereau, M., and Gasnault, O. (2011) Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature, 475, 338341.Google Scholar
Barr, A. C. (2016) On the origin of Earth’s Moon. Journal of Geophysical Research, Planets, 121, 15631601.CrossRefGoogle Scholar
Berger, J. A., Schmidt, M. E., Campbell, J. L., et al. (2020) Particle induced X-ray emission spectrometry (PIXE) of Hawaiian volcanics: An analogue study to evaluate the APXS field analysis of geologic materials on Mars. Icarus, doi.org/10.1016/j.icarus.2020.113708.CrossRefGoogle Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., et al. (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science, 307, 15761581.Google Scholar
Blewett, D. T., Lucey, P. G., and Hawke, B. R. (1997) Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2 mapping techniques. Journal of Geophysical Research, 102 , 1631916325.Google Scholar
Borg, L. E., Gaffney, A. M., and Shearer, C. K. (2014) A review of lunar chronology revealing a preponderance of 4.34-4.37 Ga ages. Meteoritics & Planetary Science, 50, 715732.CrossRefGoogle Scholar
Bouvier, L. C., Costa, M. M., Connelly, J. N., et al. (2018) Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature, 558, 586589.Google Scholar
Boynton, W. V., Taylor, G. J., Evans, L. G., et al. (2007) Concentration of S, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. Journal of Geophysical Research, 112, E12S99.Google Scholar
Boynton, W. V., Taylor, G. J., Karunatillake, S., et al. (2008) Elemental abundances determined via the Mars Odyssey GRS. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 105124, Cambridge University Press, Cambridge.Google Scholar
Bridges, J. C., and Warren, P. H. (2006) The SNC meteorites: Basaltic igneous processes on Mars. Journal of the Geological Society of London, 163, 229251.Google Scholar
Bruckner, J., Dreibus, G., Gellert, R., et al. (2008) Mars Exploration Rovers: Chemical composition by the APXS. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 58101, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Cano, E. J., Sharp, Z. D., and Shearer, C. K. (2020) Distinct oxygen isotope compositions of the Earth and Moon. Nature Geoscience, 13, 270274.CrossRefGoogle Scholar
Carr, M. (2006) The Surface of Mars, Cambridge University Press, Cambridge, 307 pp.Google Scholar
Castle, N., and Herd, C. D. K. (2018) Experimental investigation into the effects of oxidation during petrogenesis of the Tissint meteorite. Meteoritics & Planetary Science, 23, 123.Google Scholar
Clark, B. C., Baird, A. K., Weldon, R. J., et al. (1982) Chemical composition of Martian fines. Journal of Geophysical Research, 87, 1005010067.Google Scholar
Eigenbrode, J. L., Summons, R. E., Steele, A., et al. (2018) Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science, 360, 10961101.Google Scholar
Elkins-Tanton, L. T., Parmentier, E. M., and Hess, P. C. (2003) Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars. Meteoritics and Planetary Science, 38, 17531771.Google Scholar
Elphic, R. C., Lawrence, D. J., Feldman, W. C., et al. (2002) Lunar Prospector neutron spectrometer constraints on TiO2. Journal of Geophysical Research, 107 (E4), doi:10.1029/2000JE001460.CrossRefGoogle Scholar
Farley, K. A., Malespin, C., Mahaffy, P., et al. (2014) In situ radiometric and exposure age dating of the Martian surface. Science, 343, doi:10.1126/science.1247166.Google Scholar
Fedo, C. M., McGlynn, I. O., and McSween, H. Y. (2015) Grain size and hydrodynamic sorting controls on the composition of basaltic sediments: Implications for the interpretation of martian soils. Earth & Planetary Science Letters, 423, 6777.CrossRefGoogle Scholar
Feldman, W. C., Boynton, W. V., Tokar, R. L., et al. (2002) Global distribution of neutrons from Mars: Results from Mars Odyssey. Science, 297, 7578.Google Scholar
Feldman, W. C., Mellon, M. T., Gasnault, O., et al. (2008) Volatiles on Mars: Scientific results from the Mars Odyssey Neutron Spectrometer. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 125148, Cambridge University Press, Cambridge.Google Scholar
Filiberto, J. (2017) Geochemistry of martian basalts with constraints on magma genesis. Chemical Geology, 466, 114.CrossRefGoogle Scholar
Filiberto, J., and Treiman, A. H. (2009) Martian magmas contained abundant chlorite, but little water. Geology, 37, 10871090.Google Scholar
Filiberto, J., Baratoux, D., Beaty, D., et al. (2016) A review of volatiles in the martian interior. Meteoritics & Planetary Science, 51, 19351958.Google Scholar
Filiberto, J., McCubbin, F. M., and Taylor, G. J. (2019) Volatiles in martian magmas and the interior: Inputs of volatiles into the crust and atmosphere. In Volatiles in the Martian Crust, Filibert, J., and Schwenzer, S., editors., pp. 1333, Elsevier, New York.Google Scholar
Foley, C. N., Economou, T. E., Clayton, R. N., et al. (2008) Martian surface chemistry: APXS results from the Pathfinder landing site. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 3557, Cambridge University Press, Cambridge.Google Scholar
Gellert, R., Rieder, R., Brückner, J., et al. (2006), The Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev crater and calibration report. Journal of Geophysical Research, 111, E02S05.Google Scholar
Giguere, T. A., Taylor, G. J., Hawke, B. R., and Lucey, P. G. (2000) The titanium contents of lunar mare basalts. Meteoritics & Planetary Science, 35, 193200.Google Scholar
Halliday, A. N. (2014) The origin and earliest history of the Earth. In Treatise on Geochemistry, 2nd edition, Vol. 2: Planets, Asteroids, Comets and the Solar System, Davis, A. M., editor, pp. 149211, Elsevier, New York.Google Scholar
Hamilton, V. E., Wyatt, M. B., McSween, H. Y., and Christensen, P. R. (2001) Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 2. Application to Martian surface spectra from the Mars Global Surveyor thermal emission spectrometer. Journal of Geophysical Research, 106, 1473314746.Google Scholar
Hecht, M. H., Kounaves, S. P., Quinn, R. C., et al. (2009) Detection of perchlorate and soluble chemistry of the martian soil: Findings from the Phoenix Mars lander. Science, 235, 6467.Google Scholar
Hart, S. R., and Zindler, A. (1986) In search of a bulk-Earth composition. Chemical Geology, 57, 247267.Google Scholar
Heisinger, H., and Head, J. W. (2006) New views of lunar geoscience: An introduction and overview. In New Views of the Moon, Neal, C. R., Jolliff, B. L., Shearer, C. K., and Wieczorek, M. A., editors, Reviews in Mineralogy and Geochemistry, 60, pp. 118, Mineralogical Society of America and Geochemical Society, Washington.Google Scholar
Hurowitz, J. A., McLennan, S. M., Tosca, N. J., et al. (2006) In situ and experimental evidence for acidic weathering of rocks and soils on Mars. Journal of Geophysical Research, 111, E02S19.Google Scholar
Jolliff, B. L., Gillis, J. J., Haskin, L. A., et al. (2000) Major lunar crustal terranes: Surface expressions and crust-mantle origins. Journal of Geophysical Research, 105, E2, 41974216.CrossRefGoogle Scholar
Korotev, R. L., Jolliff, B. L., Zeigler, R. A., et al. (2003) Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochimica et Cosmochimica Acta, 67, 48954923.Google Scholar
Kruijer, T. S., Kleine, T., Borg, L. E., et al. (2017) The early differentiation of Mars inferred from Hf-W chronometry. Earth & Planetary Science Letters, 474, 33453354.Google Scholar
Lawrence, D. J., Feldman, W. C., Barraclough, B. L., et al. (1998) Global elemental maps of the Moon: The Lunar Prospector gamma-ray spectrometer. Science, 281, 14841489.Google Scholar
Leshin, L. A. (2000) Insights into Martian water reservoirs from analysis of martian meteorite QUE94201. Geophysical Research Letters, 27, 20172020.Google Scholar
Leshin, L. A., Epstein, S., and Stolper, E. M. (1996) Hydrogen isotope geochemistry of SNC meteorites. Geochimica et Cosmochimica Acta, 60, 26352650.Google Scholar
Lin, Y., Tronche, E. J., Steenstra, E. S., and von Westrenen, W. (2017) Experimental constraints on the solidification of a nominally dry lunar magma ocean. Earth & Planetary Science Letters, 471, 104116.Google Scholar
Lin, Y., Hui, H., Xia, X., et al. (2020) Experimental constraints on the solidification of a hydrous lunar magma ocean. Meteoritics & Planetary Science, 55, 207230.Google Scholar
Lodders, K. (1998) A survey of shergottite, nakhlite and chassigny meteorites whole-rock compositions. Meteoritics & Planetary Science, 33, A183A190.Google Scholar
Lodders, K., and Fegley, B. (1997) An oxygen isotope model for the composition of Mars. Icarus, 126, 373394.Google Scholar
Loper, D. E., and Werner, C.L. (2002) On lunar asymmetries 1. Tilted convection and crustal asymmetry. Journal of Geophysical Research Planets, 107, E6, 5046.Google Scholar
Lucey, P. G., Blewett, D. T., and Hawke, B. R. (1998) Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. Journal of Geophysical Research, 103, 36793699.CrossRefGoogle Scholar
Lucey, P. G., Korotev, R. L., Gillis, J. J., et al. (2006) Understanding the lunar surface and space-Moon interactions. In New Views of the Moon, Neal, C. R., Jolliff, B. L., Shearer, C. K., and Wieczorek, M. A., editors, Reviews in Mineralogy and Geochemistry, 60, Mineralogical Society of America and Geochemical Society, Washington, pp. 83219.Google Scholar
McCubbin, F. M., Steele, A., Hauri, E. H., et al. (2010) Nominally hydrous magmatism on the Moon. Proceedings of the National Academy of Sciences, USA, 107, 1122311228.CrossRefGoogle ScholarPubMed
McCubbin, F. M., Hauri, E. H., Elardo, S. M., et al. (2012) Hydrous melting of the martian mantle produced both depleted and enriched shergottites. Geology, 40, 683686.Google Scholar
McCubbin, F. M., Boyce, J. W., Srinivasan, P., et al. (2016) Heterogeneous distribution of H2O in the martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources. Meteoritics & Planetary Science, 51, 20362060.Google Scholar
McLennan, S. M., Bell, J. F., Calvin, W. M., et al. (2005) Evidence for groundwater involvement in the provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth & Planetary Science Letters, 240, 95121.CrossRefGoogle Scholar
McLennan, S. M., Anderson, R. B., Bell, J. F., et al. (2014) Elemental chemistry of sedimentary rocks at Yellowknife By, Gale crater, Mars. Science, 343, doi: 10.1126/science.1243480.Google Scholar
McSween, H. Y. (2015) Petrology on Mars. American Mineralogist, 100, 23802395.Google Scholar
McSween, H. Y., and McLennan, S. M. (2014) Mars. In Treatise on Geochemistry, 2nd Edition, Vol. 2: Planets, Asteroids, Comets and the Solar System, Davis, A. M., editor, pp. 251300, Elsevier, Oxford.CrossRefGoogle Scholar
McSween, H. Y., Murchie, S. L., Crisp, J. A., et al. (1999) Chemical, multispectral and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. Journal of Geophysical Research, 104, E4, 86798715.Google Scholar
McSween, H. Y., Grove, T. L., and Wyatt, M. B. (2003) Constraints on the composition and petrogenesis of the martian crust. Journal of Geophysical Research, 108, E12, 5135.Google Scholar
McSween, H. Y., Taylor, G. J., and Wyatt, M. B. (2009) Elemental composition of the martian crust. Science, 324, 736739.Google Scholar
Ming, D. W., Mittlefehldt, D. W., Morris, R. V, et al. (2006) Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. Journal of Geophysical Research, 111, E02S12.Google Scholar
Ming, D. W., Morris, R. V., and Clark, B. C. (2008) Aqueous alteration on Mars. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J. F., editor, pp. 519540, Cambridge University Press, Cambridge.Google Scholar
Ni, P., Zhang, Y., and Guan, Y. (2017) Volatile loss during homogenization of lunar melt inclusions. Earth & Planetary Science Letters, 478, 214224.Google Scholar
Ouri, Y., Shirari, N., and Ebihara, M. (2003) Chemical composition of Yamato (Y)980459 and Y000749: Neutron-induced prompt gamma-ray analysis study. Antarctic Meteorite Research, 16, 8093.Google Scholar
Pahlevan, K., and Stevenson, D. J. (2007) Equilibration in the aftermath of the lunar-forming giant impact. Earth & Planetary Science Letters, 262, 438449.Google Scholar
Papike, J. J., Ryder, G., and Shearer, C. K. (1998) Lunar samples. In Planetary Materials, Papike, J. J., editor, Reviews in Mineralogy, 36, pp. 5-1 to 5-234, Mineralogical Society of America, Washington.Google Scholar
Peslier, A. H., Hervig, R., Yang, S., et al. (2019) Determination of the water content and D/H ratio of the martian mantle by unraveling degassing and crystallization effects in nakhlites. Geochimica et Cosmochimica Acta, 266, 382415.CrossRefGoogle Scholar
Poulet, F., Mangold, N., Platevoet, B., et al. (2009) Quantitative compositional analysis of martian mafic regions using the Mex/OMEGA reflectance data. 2. Petrologic implications. Icarus, 201, 84101.Google Scholar
Prettyman, T. H., Hagerty, J. J., Elphic, R. C., et al. (2006) Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. Journal of Geophysical Research, 111, E12007.Google Scholar
Righter, K., and Drake, M. J. (1996) Core formation in the Earth’s Moon, Mars and Vesta. Icarus, 124, 513529.CrossRefGoogle Scholar
Roberts, S. E., McCanta, M. C., Jean, M. M., et al. (2019) New lunar meteorite NWA 10986: A mingled impact melt breccia from the highlands – A complete cross section of the lunar crust. Meteoritics & Planetary Science, 54, 30163035.Google Scholar
Rogers, A. D., and Christensen, P. R. (2007) Surface mineralogy of martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration. Journal of Geophysical Research, 112, E01003.Google Scholar
Rogers, A. D., and Hamilton, V. E. (2014) Compositional provinces of Mars from statistical analyses of TES, GRS, OMEGA, and CRISM data. Journal of Geophysical. Research, Planets, 120, 6291.Google Scholar
Ryder, G. (1991) Lunar ferroan anorthosites and mare basalt sources: The mixed connection. Journal of Geophysical Research, 118, 20652068.Google Scholar
Saal, A. E., Hauri, E. H., Van Orman, J. A., and Rutherford, M. J. (2013) Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science, 340, 13171320.Google Scholar
Sanloup, C., Jambon, A., and Gillet, P. (1999) A simple chondritic model of Mars. Earth & Planetary Science Letters, 112, 4354.Google Scholar
Schmidt, M. E., Campbell, J. L., Gellert, R., et al. (2014) Geochemical diversity in first rocks examined by the Curiosity rover in Gale crater; Evidence for and significance of an alkali and volatile-rich igneous source. Journal of Geophysical Research, Planets, 119, 6481.Google Scholar
Schmidt, M. E., Perrett, G. M., Bray, S. L., et al. (2018) Dusty rocks in Gale crater: Assessing aerial coverage and separating dust and rock contributions in APXS analyses. Journal of Geophysical Research, Planets, 123, 16491673.Google Scholar
Shearer, C. K., Hess, P. C., Wieczorek, M. A., et al. (2006) Thermal and magmatic evolution of the Moon. In New Views of the Moon, Neal, C. R., Jolliff, B. L., Shearer, C. K., and Wieczorek, M. A., editors, Reviews in Mineralogy and Geochemistry, 60, pp. 365518, Mineralogical Society of America and Geochemical Society, Washington.Google Scholar
Solomon, S. C., Aharonson, O., Aurnoou, J. M., et al. (2005) New perspectives on ancient Mars. Science, 307, 12141220.Google Scholar
Symes, S. J., Borg, L. E. Shearer, C. K., and Irving, A. (2008) The age of the martian meteorite Northwest Africa 1195 and the differentiation history of the shergottites. Geochimica et Cosmochimica Acta, 72, 16961710.Google Scholar
Taylor, G. J. (2013) The bulk composition of Mars. Chemie der Erde, 73, 401420.Google Scholar
Taylor, G. J., Warren, P., Ryder, G., et al. (1991) Lunar rocks. In Lunar Sourcebook: A User’s Guide to the Moon, Heiken, G. H., Vaniman, D. T., and French, B. M., editors, pp. 183284, Cambridge University Press, Cambridge.Google Scholar
Taylor, G. J., Stopar, J. D., Boynton, W. V., et al. (2006) Variations in K/Th on Mars. Journal of Geophysical Research, 111, E03S06.Google Scholar
Taylor, S. R. (1982) Planetary Science: A Lunar Perspective. Lunar & Planetary Institute, Houston, 481 pp.Google Scholar
Taylor, S. R., Pieters, C. M., and MacPherson, G. J. (2006a) Earth-Moon system, planetary science, and lessons learned. In New Views of the Moon, Neal, C. R., Jolliff, B. L., Shearer, C. K., and Wieczorek, M. A., editors, Reviews in Mineralogy and Geochemistry, 60, pp. 657704, Mineralogical Society of America and Geochemical Society, Washington.Google Scholar
Taylor, S. R., Taylor, G. J., and Taylor, L. A. (2006b) The Moon: A Taylor perspective. Earth & Planetary Science Letters, 70, 59045918.Google Scholar
Thorpe, M. T., Hurowitz, J. A., and Siebach, K. L. (2021) Source-to-sink terrestrial analogs for the paleoenvironment of Gale crater, Mars. Journal of Geophysical Research, Planets, 126, e2020JE006530.Google Scholar
Treiman, A. H., Jones, J. H., and Drake, M. J. (1987) Core formation in the shergottite parent body and comparison with the Earth. Journal of Geophysical Research, 92, E627E632.Google Scholar
Wanke, H., and Dreibus, G. (1988) Chemical composition and accretion history of terrestrial planets. Philosophical Transactions of the Royal Society of London, A325, 545557.Google Scholar
Wanke, H., Bruckner, J., Dreibus, G., et al. (2001) Chemical composition of rocks and soils at the Pathfinder site. Space Science Reviews, 96, 317330.Google Scholar
Warren, P. H. (1993) A concise compilation of petrologic information on possibly pristine nonmare Moon rocks. American Mineralogist, 78, 360376.Google Scholar
Warren, P. H., and Wasson, J. T. (1977) Pristine nonmare rocks and the nature of the lunar crust. Proceedings of the Lunar Science Conference, 8, 22152235.Google Scholar
Warren, P. H., and Kallemeyn, G. W. (1997) Yamato-793605, EET 79001, and other presumed martian meteorites: Compositional clues to their origins. Proceedings of NPR Symposium on Antarctic Meteorites, 10, 6181.Google Scholar
Weber, R. C., Lin, P.-Y., Garnero, E. J., et al. (2011) Seismic detection of the lunar core. Science, 331, 309312.Google Scholar
Wiechert, U., Halliday, A. N., Lee, D.-C., et al. (2001) Oxygen isotopes and the Moon-forming giant impact. Science, 294, 345348.Google Scholar
Wieczorek, M. A., Jolliff, B. L., Khan, A., et al. (2006) The constitution and structure of the lunar interior. In New Views of the Moon, Neal, C. R., Jolliff, B. L., Shearer, C. K., and Wieczorek, M. A., editors, Reviews in Mineralogy and Geochemistry, 60, pp. 221364, Mineralogical Society of America and Geochemical Society, Washington.CrossRefGoogle Scholar
Wieczorek, M. A., Neumann, G. A., Nimmo, F., et al. (2013) The crust of the Moon as seen by GRAIL. Science, 339, 671675.Google Scholar
Wood, J. A., Dickey, J. S., Marvin, U. B., and Powell, B. N. (1970) Lunar anorthosites. Science, 167, 602604.Google Scholar
Wyatt, M. B., Hamilton, V. E., McSween, H. Y., et al. (2001) Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: 1. Determination of mineralogy, chemistry, and classification strategies. Journal of Geophysical Research, 106, 1471114732.Google Scholar
Yoshizaki, T., and McDonough, W. F. (2020) The composition of Mars. Geochimica et Cosmochimica Acta, 273, 137162.Google Scholar
Zipfel, J., Schroder, C., Jolliff, B. L., et al. (2011) Bounce Rock – a shergottite-like basalt encountered at Meridiani Planum, Mars. Meteoritics & Planetary Science, 46, 120.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×