Book contents
- Frontmatter
- Contents
- Part I Introduction
- Part II Supernovae: Observations Today
- Part III Theory of Thermonuclear Supernovae
- 10 Semi-Steady burning evolutionary sequences for CAL 83 and CAL 87: Super Soft X-ray binaries are supernova Ia progenitors
- 11 Type Ia progenitors: effects of spin-up of white dwarfs
- 12 Terrestrial combustion: feedback to the stars
- 13 Non-spherical delayed detonations
- 14 Numerical simulations of Type Ia supernovae: deflagrations and detonations
- 15 Type Ia supernovae: spectroscopic surprises
- 16 Aspherity effects in supernovae
- 17 Broad lightcurve SNe Ia: asymmetry or something else?
- 18 Synthetic spectrum methods for three-dimensional supernova models
- 19 A hole in Ia? Spectroscopic and polarimetric signatures of SN Ia asymmetry due to a companion star
- 20 Hunting for the signatures of 3-D explosions with 1-D synthetic spectra
- 21 On variations in the peak luminosities of Type Ia supernovae
- Part IV Theory of Core Collapse Supernovae
- Part V Magnetars, N-Stars, Pulsars
- Part VI Gamma-ray Bursts
- Part VII Conference Summary
- References
17 - Broad lightcurve SNe Ia: asymmetry or something else?
Published online by Cambridge University Press: 11 August 2009
- Frontmatter
- Contents
- Part I Introduction
- Part II Supernovae: Observations Today
- Part III Theory of Thermonuclear Supernovae
- 10 Semi-Steady burning evolutionary sequences for CAL 83 and CAL 87: Super Soft X-ray binaries are supernova Ia progenitors
- 11 Type Ia progenitors: effects of spin-up of white dwarfs
- 12 Terrestrial combustion: feedback to the stars
- 13 Non-spherical delayed detonations
- 14 Numerical simulations of Type Ia supernovae: deflagrations and detonations
- 15 Type Ia supernovae: spectroscopic surprises
- 16 Aspherity effects in supernovae
- 17 Broad lightcurve SNe Ia: asymmetry or something else?
- 18 Synthetic spectrum methods for three-dimensional supernova models
- 19 A hole in Ia? Spectroscopic and polarimetric signatures of SN Ia asymmetry due to a companion star
- 20 Hunting for the signatures of 3-D explosions with 1-D synthetic spectra
- 21 On variations in the peak luminosities of Type Ia supernovae
- Part IV Theory of Core Collapse Supernovae
- Part V Magnetars, N-Stars, Pulsars
- Part VI Gamma-ray Bursts
- Part VII Conference Summary
- References
Summary
Abstract
It is the conventional wisdom that overluminous Type Ia supernovae have an overproduction of their elemental powerhouse, 56Ni, leading to broader light curves, higher temperatures, higher ionization states, and peculiar spectra similar to that of SN1991T. However, this simple picture is incomplete: we show that a broad lightcurve width does not necessarily predict spectroscopic peculiarity, nor does a spectrum resembling SN1991T guarantee a broad lightcurve. There is circumstantial evidence that asymmetry may play a role in the explanation of the diverse properties of broad lightcurve and SN1991T-like SNe Ia.
As an illustrative example, we present optical and NIR light curves, and Lick 3m and HST STIS spectra of the SN Ia with the broadest light curve observed to date, SN 2001ay. SN 2001ay has Δm15(B) = 0.6 and stretch s = 1.6, yet at maximum light is fairly spectroscopically normal. The exception is an extremely high Si velocity, v = 15,000 km s–1. The secondary peak in the I-band lightcurve is higher than the primary peak, and the Js and H lightcurves remain flat over the entire 55 days of observation. SN 2001ay also does not appear to obey lightcurve shape-luminosity relationships, at least as they are currently formulated. Despite its broad lightcurve, the SN has normal absolute magnitudes after correction for Milky Way and host galaxy extinction. Thus, if a stretch or Δm15(B) correction is applied, the resulting magnitude would be overcorrected by ∼1 mag.
- Type
- Chapter
- Information
- Cosmic Explosions in Three DimensionsAsymmetries in Supernovae and Gamma-Ray Bursts, pp. 151 - 158Publisher: Cambridge University PressPrint publication year: 2004
References
- 9
- Cited by