Book contents
- Frontmatter
- Contents
- Part I Introduction
- 1 3-D explosions: a meditation on rotation (and magnetic fields)
- Part II Supernovae: Observations Today
- Part III Theory of Thermonuclear Supernovae
- Part IV Theory of Core Collapse Supernovae
- Part V Magnetars, N-Stars, Pulsars
- Part VI Gamma-ray Bursts
- Part VII Conference Summary
- References
1 - 3-D explosions: a meditation on rotation (and magnetic fields)
Published online by Cambridge University Press: 11 August 2009
- Frontmatter
- Contents
- Part I Introduction
- 1 3-D explosions: a meditation on rotation (and magnetic fields)
- Part II Supernovae: Observations Today
- Part III Theory of Thermonuclear Supernovae
- Part IV Theory of Core Collapse Supernovae
- Part V Magnetars, N-Stars, Pulsars
- Part VI Gamma-ray Bursts
- Part VII Conference Summary
- References
Summary
Introduction: a brief time for history
There has been a great deal of progress in the thirty-five years or so that I have been working on supernovae and related topics. Two of the classical problems have been with us the whole time: what makes core collapse explode, and what are the progenitors of Type Ia supernovae? This workshop, indeed, the perspectives of three-dimensional astrophysics applied to these problems, gave encouraging evidence that breakthroughs may be made in both of these venerable areas.
On the other hand, what a marvelous array of progress has rolled forth with ever increasing speed. We have an expanded botany of supernovae classification: Type Ia, Ib, Ic, Type IIP, IIL IIb, IIn; but, of course, more than mere classification, a growing understanding of the physical implications of these categories. Neutron stars were discovered as rotating, magnetized pulsars when I was a graduate student, and the extreme form, magnetars, has now been revealed (Duncan & Thompson 1992). The evidence that we are seeing black holes in binary systems and the centers of galaxies has grown from suspicion to virtual certainty, awaiting only the final nail of detecting the black spot in a swirl of high-gravity effects. Supernova 1987A erupted upon us over 16 years ago and is still teaching us important lessons as it reveals its distorted ejecta and converts to a young supernova remnant before our eyes.
There have also been immense theoretical developments.
- Type
- Chapter
- Information
- Cosmic Explosions in Three DimensionsAsymmetries in Supernovae and Gamma-Ray Bursts, pp. 3 - 14Publisher: Cambridge University PressPrint publication year: 2004