Book contents
- Frontmatter
- Dedication
- Contents
- Figures
- Tables
- Preface
- Acknowledgments
- 1 Introduction: Count Data Containing Dispersion
- 2 The Conway–Maxwell–Poisson (COM–Poisson) Distribution
- 3 Distributional Extensions and Generalities
- 4 Multivariate Forms of the COM–Poisson Distribution
- 5 COM–Poisson Regression
- 6 COM–Poisson Control Charts
- 7 COM–Poisson Models for Serially Dependent Count Data
- 8 COM–Poisson Cure Rate Models
- References
- Index
1 - Introduction: Count Data Containing Dispersion
Published online by Cambridge University Press: 02 March 2023
- Frontmatter
- Dedication
- Contents
- Figures
- Tables
- Preface
- Acknowledgments
- 1 Introduction: Count Data Containing Dispersion
- 2 The Conway–Maxwell–Poisson (COM–Poisson) Distribution
- 3 Distributional Extensions and Generalities
- 4 Multivariate Forms of the COM–Poisson Distribution
- 5 COM–Poisson Regression
- 6 COM–Poisson Control Charts
- 7 COM–Poisson Models for Serially Dependent Count Data
- 8 COM–Poisson Cure Rate Models
- References
- Index
Summary
This chapter is an overview summarizing relevant established and well-studied distributions for count data that motivate consideration of the Conway–Maxwell–Poisson distribution. Each of the discussed models provides an improved flexibility and computational ability for analyzing count data, yet associated restrictions help readers to appreciate the need for and usefulness of the Conway–Maxwell–Poisson distribution, thus resulting in an explosion of research relating to this model. For completeness of discussion, each of these sections includes discussion of the relevant R packages and their contained functionality to serve as a starting point for forthcoming discussions throughout subsequent chapters. Along with the R discussion, illustrative examples aid readers in understanding distribution qualities and related statistical computational output. This background provides insights regarding the real implications of apparent data dispersion in count data models, and the need to properly address it.
Keywords
- Type
- Chapter
- Information
- The Conway–Maxwell–Poisson Distribution , pp. 1 - 21Publisher: Cambridge University PressPrint publication year: 2023