Skip to main content Accessibility help
×

Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.

Hostname: page-component-669899f699-g7b4s Total loading time: 0 Render date: 2025-04-25T19:12:44.007Z Has data issue: false hasContentIssue false

10 - Indices

from Part III - Quantifying Connectivity in Geomorphology

Published online by Cambridge University Press:  10 April 2025

Ronald Pöppl
Affiliation:
BOKU University Vienna
Anthony Parsons
Affiliation:
University of Sheffield
Saskia Keesstra
Affiliation:
Wageningen Universiteit, The Netherlands
Get access

Summary

A number of indices has been proposed to assess hydrological or sediment connectivity. These indices operate at different spatial scales, address different types of connectivity (hillslope-channel vs. longitudinal connectivity), are based on different spatial units (raster cell, landform, channel reach, sub-/catchment) and approaches (geomorphological mapping, digital elevation models, network analysis). Temporal constraints for the application of indices exist as connectivity depends on the magnitude of hydrometeorological forcing, and is subject to changes in landscape properties. Connectivity indices are based on variables and assumptions with respect to space and time. We review existing indices of different characteristics (raster, effective catchment area, networks) together with examples, and distinguish two types of their application: descriptive applications in which indices are used to describe spatial patterns of water and sediment (coupled and decoupled) pathways for a point or period of time; and as predictors of connectivity and its consequences (e.g., sediment transfer, sensitivity to change). Opportunities and challenges for research in connectivity indices are discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Alder, S., Prasuhn, V., Liniger, H., Herweg, K., Hurni, H., Candinas, A. & Gujer, H.U. (2015). A high-resolution map of direct and indirect connectivity of erosion risk areas to surface waters in Switzerland – A risk assessment tool for planning and policy-making. Land Use Policy, 48, 236–49. doi:10.1016/j.landusepol.2015.06.001.CrossRefGoogle Scholar
Altmann, M., Haas, F., Heckmann, T., Liébault, F., & Becht, M. (2021). Modelling of sediment supply from torrent catchments in the Western Alps using the sediment contributing area (SCA) approach. Earth Surface Processes and Landforms, 46(5), 889906.CrossRefGoogle Scholar
Antoine, M., Javaux, M., & Bielders, C. (2009). What indicators can capture runoff-relevant connectivity properties of the micro-topography at the plot scale? Advances in Water Resources, 32(8), 12971310. https://doi.org/10.1016/j.advwatres.2009.05.006CrossRefGoogle Scholar
Arabkhedri, M., Heidary, K., & Parsamehr, M. R. (2021). Relationship of sediment yield to connectivity index in small watersheds with similar erosion potentials. Journal of Soils and Sediments, 21(7), 26992708.CrossRefGoogle Scholar
Aurousseau, P., Gascuel-Odoux, C., Squividant, H., Trepos, R., Tortrat, F., & Cordier, M. O. (2009). A plot drainage network as a conceptual tool for the spatial representation of surface flow pathways in agricultural catchments. Computers & Geosciences, 35(2), 276288. https://doi.org/10.1016/j.cageo.2008.09.003CrossRefGoogle Scholar
Babbie, E. R. (2010). The Practice of Social Research (12th ed.). Belmont, CA: Wadsworth Cengage Learning.Google Scholar
Bernhardt, A., Schwanghart, W., Hebbeln, D., Stuut, J-B. W. & Strecker, M. R. (2017). Immediate propagation of deglacial environmental change to deep-marine turbidite systems along the Chile convergent margin. Earth and Planetary Science Letters, 473, 190204. doi:10.1016/j.epsl.2017.05.017CrossRefGoogle Scholar
Borselli, L., Cassi, P., & Torri, D. (2008). Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena, 75(3), 268277. https://doi.org/10.1016/j.catena.2008.07.006CrossRefGoogle Scholar
Brierley, G., Fryirs, K., & Jain, V. (2006). Landscape connectivity. The geographic basis of geomorphic applications. Area, 38(2), 165174.CrossRefGoogle Scholar
Brunsden, D., & Thornes, J. B. (1979). Landscape sensitivity and change. Transactions of the Institute of British Geographers, 4(4), 463484. Retrieved from www.jstor.org/stable/622210CrossRefGoogle Scholar
Burt, T. P., & Allison, R. J. (eds.) (2010). Sediment Cascades. Chichester, UK: John Wiley & Sons.CrossRefGoogle Scholar
Buter, A., Heckmann, T., Fillisetti, L., Savi, S., Mao, L., Gems, B., & Comiti, F. (2022). Effects of catchment characteristics and hydro-meteorological scenarios on sediment connectivity in glacierised catchments. Geomorphology, 108128. https://doi.org/10.1016/j.geomorph.2022.108128CrossRefGoogle Scholar
Buter, A., Spitzer, A., Comiti, F., & Heckmann, T. (2020). Geomorphology of the Sulden River basin (Italian Alps) with a focus on sediment connectivity. Journal of Maps, 16(2), 890901. https://doi.org/10.1080/17445647.2020.1841036CrossRefGoogle Scholar
Calsamiglia, A., Fortesa, J., García‐Comendador, J., Lucas‐Borja, M. E., Calvo‐Cases, A., & Estrany, J. (2018a). Spatial patterns of sediment connectivity in terraced lands: Anthropogenic controls of catchment sensitivity. Land Degradation & Development, 29(4), 11981210.CrossRefGoogle Scholar
Calsamiglia, A., García-Comendador, J., Fortesa, J., López-Tarazón, J. A., Crema, S., Cavalli, M., … & Estrany, J. (2018b). Effects of agricultural drainage systems on sediment connectivity in a small Mediterranean lowland catchment. Geomorphology, 318, 162171.CrossRefGoogle Scholar
Calsamiglia, A., Gago, J., Garcia‐Comendador, J., Bernat, J. F., Calvo‐Cases, A., & Estrany, J. (2020). Evaluating functional connectivity in a small agricultural catchment under contrasting flood events by using UAV. Earth Surface Processes and Landforms, 56, 1427. https://doi.org/10.1002/esp.4769Google Scholar
Cantreul, V., Bielders, C., Calsamiglia, A., & Degré, A. (2018). How pixel size affects a sediment connectivity index in central Belgium. Earth Surface Processes and Landforms, 43(4), 884893.CrossRefGoogle Scholar
Cavalli, M., Trevisani, S., Comiti, F., & Marchi, L. (2013). Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology, 188, 3141. https://doi.org/10.1016/j.geomorph.2012.05.007CrossRefGoogle Scholar
Chartin, C., Evrard, O., Laceby, J. P., Onda, Y., Ottlé, C., Lefèvre, I., & Cerdan, O. (2017). The impact of typhoons on sediment connectivity: Lessons learnt from contaminated coastal catchments of the Fukushima Prefecture (Japan). Earth Surface Processes and Landforms, 42(2), 306317. https://doi.org/10.1002/esp.4056CrossRefGoogle Scholar
Chorley, R., & Kennedy, B. (1971). Physical Geography: A Systems Approach. London: Prentice-Hall.Google Scholar
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., … Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8(7), 19912007. https://doi.org/10.5194/gmd-8-1991-2015CrossRefGoogle Scholar
Cossart, É., & Fressard, M. (2017). Assessment of structural sediment connectivity within catchments: insights from graph theory. Earth Surface Dynamics, 5(2), 253268.CrossRefGoogle Scholar
Coulthard, T. J., & van de Wiel, M. J. (2017). Modelling long term basin scale sediment connectivity, driven by spatial land use changes. Geomorphology, 277, 265281. https://doi.org/10.1016/j.geomorph.2016.05.027CrossRefGoogle Scholar
Crema, S., & Cavalli, M. (2018). SedInConnect: A stand-alone, free and open source tool for the assessment of sediment connectivity. Computers and Geosciences, 111, 3945. https://doi.org/10.1016/j.cageo.2017.10.009CrossRefGoogle Scholar
Dalla Fontana, G. D., & Marchi, L. (2003). Slope-area relationships and sediment dynamics in two alpine streams. Hydrological Processes, 17(1), 7387. https://doi.org/10.1002/hyp.1115CrossRefGoogle Scholar
De Vente, J., Poesen, J., Arabkhedri, M., & Verstraeten, G. (2007). The sediment delivery problem revisited. Progress in Physical Geography, 31(2), 155178. https://doi.org/10.1177/0309133307076485CrossRefGoogle Scholar
De Walque, B., Degré, A., Maugnard, A., & Bielders, C. L. (2017). Artificial surfaces characteristics and sediment connectivity explain muddy flood hazard in Wallonia. Catena, 158, 89101 https://doi.org/10.1016/j.catena.2017.06.016.CrossRefGoogle Scholar
Dupas, R., Delmas, M., Dorioz, J-M., Garnier, J., Moatar, F. & Gascuel-Odoux, C. (2015). Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecological Indicators, 48, 396407. doi:10.1016/j.ecolind.2014.08.007.CrossRefGoogle Scholar
Flügel, W.-A. (1995). Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany. Hydrological Processes, 9, 423436.CrossRefGoogle Scholar
Foerster, S., Wilczok, C., Brosinsky, A., & Segl, K. (2014). Assessment of sediment connectivity from vegetation cover and topography using remotely sensed data in a dryland catchment in the Spanish Pyrenees. Journal of Soils and Sediments, 14(12), 19822000.CrossRefGoogle Scholar
Fryirs, K. (2013). (Dis)Connectivity in catchment sediment cascades: A fresh look at the sediment delivery problem. Earth Surface Processes and Landforms, 38(1), 3046.CrossRefGoogle Scholar
Fryirs, K. A., Brierley, G. J., Preston, N. J., & Kasai, M. (2007a). Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena, 70(1), 4967. https://doi.org/10.1016/j.catena.2006.07.007CrossRefGoogle Scholar
Fryirs, K. A., Brierley, G. J., Preston, N. J., & Spencer, J. (2007b). Catchment-scale (dis)connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia. Geomorphology, 84(3–4), 297316. https://doi.org/10.1016/j.geomorph.2006.01.044CrossRefGoogle Scholar
Fryirs, K. A., Wheaton, J. M. & Brierley, G. J. (2016). An approach for measuring confinement and assessing the influence of valley setting on river forms and processes. Earth Surface Processes and Landforms, 41(5): 701–10. doi:10.1002/esp.3893.CrossRefGoogle Scholar
Fryirs, K. A. (2017). River sensitivity: a lost foundation concept in fluvial geomorphology: A lost foundation concept in fluvial geomorphology. Earth Surface Processes and Landforms, 42(1), 5570. https://doi.org/10.1002/esp.3940CrossRefGoogle Scholar
Gascuel-Odoux, C., Aurousseau, P., Doray, T., Squividant, H., Macary, F., Uny, D., & Grimaldi, C. (2011). Incorporating landscape features to obtain an object-oriented landscape drainage network representing the connectivity of surface flow pathways over rural catchments. Hydrological Processes, 25(23), 36253636. https://doi.org/10.1002/hyp.8089CrossRefGoogle Scholar
Gay, A., Cerdan, O., Mardhel, V., & Desmet, M. (2016). Application of an index of sediment connectivity in a lowland area. Journal of Soils and Sediments, 16(1), 280293. https://doi.org/10.1007/s11368-015-1235-yCrossRefGoogle Scholar
González-Romero, J., López-Vicente, M., Gómez-Sánchez, E., Peña-Molina, E., Galletero, P., Plaza-Álvarez, P., Fajardo-Cantos, A., Moya, D., de las Heras, J. & Lucas-Borja, M. E. (2022). Post-fire management effects on hillslope-stream sediment connectivity in a Mediterranean forest ecosystem. Journal of Environmental Management, 316, 115212. doi:10.1016/j.jenvman.2022.115212.CrossRefGoogle Scholar
Goodwin, B. (2003). Is landscape connectivity a dependent or independent variable? Landscape Ecology, 18, 687699.CrossRefGoogle Scholar
Haas, F., Heckmann, T., Wichmann, V., & Becht, M. (2011). Quantification and modeling of fluvial bedload discharge from hillslope channels in two alpine catchments (Bavarian Alps, Germany). Zeitschrift für Geomorphologie, Supplementary Issues, 147168.CrossRefGoogle Scholar
Harvey, A. M. (2002). Effective timescales of coupling within fluvial systems. Geomorphology, 44(3–4), 175201.CrossRefGoogle Scholar
Harvey, A. M. (2001). Coupling between hillslopes and channels in upland fluvial systems: Implications for landscape sensitivity, illustrated from the Howgill Fells, northwest England. Catena, 42(2–4), 225250. https://doi.org/10.1016/S0341-8162(00)00139-9CrossRefGoogle Scholar
Heckmann, T., & Vericat, D. (2018). Computing spatially distributed sediment delivery ratios: Inferring functional sediment connectivity from repeat high‐resolution digital elevation models. Earth surface processes and landforms, 43(7), 15471554.CrossRefGoogle Scholar
Heckmann, T., Cavalli, M., Cerdan, O., Foerster, S., Javaux, M., Lode, E., … & Brardinoni, F. (2018). Indices of sediment connectivity: Opportunities, challenges and limitations. Earth-Science Reviews, 187, 77108.CrossRefGoogle Scholar
Heckmann, T., & Schwanghart, W. (2013). Geomorphic coupling and sediment connectivity in an alpine catchment – Exploring sediment cascades using graph theory. Geomorphology, 182, 89103. https://doi.org/10.1016/j.geomorph.2012.10.033CrossRefGoogle Scholar
Heckmann, T., Schwanghart, W., & Phillips, J. D. (2015). Graph theory – recent developments of its application in geomorphology. Geomorphology, 243, 130146. https://doi.org/10.1016/j.geomorph.2014.12.024CrossRefGoogle Scholar
Hoffmann, T. (2015). Sediment residence time and connectivity in non-equilibrium and transient geomorphic systems. Earth-Science Reviews, 150, 609627. https://doi.org/10.1016/j.earscirev.2015.07.008CrossRefGoogle Scholar
Hooke, J. (2003). Coarse sediment connectivity in river channel systems: a conceptual framework and methodology. Geomorphology, 56(1–2), 7994. https://doi.org/10.1016/S0169-555X(03)00047-3CrossRefGoogle Scholar
Hooke, J. M., Sandercock, P., Cammeraat, L. H., Lesschen, J. P., Borselli, L., Torri, D., … Navarro-Cano, J. A. (2017). Mechanisms of degradation and identification of connectivity and erosion hotspots. In Hooke, J. & Sandercock, P. (eds.), Combating Desertification and Land Degradation (pp. 1337). Cham: Springer International Publishing.CrossRefGoogle Scholar
Hooke, J., & Souza, J. (2021). Challenges of mapping, modelling and quantifying sediment connectivity. Earth-Science Reviews, 223, 103847. https://doi.org/10.1016/j.earscirev.2021.103847CrossRefGoogle Scholar
Jasiewicz, J., & Stepinski, T. F. (2013). Geomorphons – A pattern recognition approach to classification and mapping of landforms. Geomorphology, 182, 147156. https://doi.org/10.1016/j.geomorph.2012.11.005CrossRefGoogle Scholar
Jordán, F., & Scheuring, I. (2004). Network ecology: Topological constraints on ecosystem dynamics. Physics of Life Reviews, 1(3), 139172. https://doi.org/10.1016/j.plrev.2004.08.001CrossRefGoogle Scholar
Kalantari, Z., Cavalli, M., Cantone, C., Crema, S., & Destouni, G. (2017). Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications. Science of the Total Environment, 581, 386398.CrossRefGoogle ScholarPubMed
Keesstra, S., Nunes, J. P., Saco, P., Parsons, T., Pöppl, R., Masselink, R., & Cerdà, A. (2018). The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Science of the Total Environment, 644, 15571572. https://doi.org/10.1016/j.scitotenv.2018.06.342CrossRefGoogle ScholarPubMed
Kinnell, P. I. A. (2004). Sediment delivery ratios: A misaligned approach to determining sediment delivery from hillslopes. Hydrological Processes, 18(16), 31913194. https://doi.org/10.1002/hyp.5738CrossRefGoogle Scholar
Koci, J., Sidle, R. C., Jarihani, B., & Cashman, M. J. (2019). Linking hydrological connectivity to gully erosion in savanna rangelands tributary to the great barrier reef using structure‐from‐motion photogrammetry. Land Degradation & Development, 64(11), 223. https://doi.org/10.1002/ldr.3421Google Scholar
Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N., & Saugy, J. N. (2017). Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession. Geomorphology, 277, 210227.CrossRefGoogle Scholar
Lane, S. N., Reaney, S. M., & Heathwaite, A. L. (2009). Representation of landscape hydrological connectivity using a topographically driven surface flow index. Water Resources Research, 45(8), 110.CrossRefGoogle Scholar
Lane, S. N., Brookes, C. J., Kirkby, M. J., & Holden, J. (2004). A network-index-based version of top model for use with high-resolution digital topographic data. Hydrological Processes, 18(1), 191201. https://doi.org/10.1002/hyp.5208CrossRefGoogle Scholar
Lisenby, P. E., Croke, J. & Fryirs, K. A. (2018). Geomorphic effectiveness: A linear concept in a non-linear world. Earth Surface Processes and Landforms, 43(1): 420. doi:10.1002/esp.4096.CrossRefGoogle Scholar
Liverman, D., Hanson, M. E., Brown, B. J., & MeridethJr., R. W. (1988). Global sustainability: Toward measurement. Environmental Management, 12(2), 133143.CrossRefGoogle Scholar
Liu, Y., Zhao, L. & Yu, X. (2020). A sedimentological connectivity approach for assessing on-site and off-site soil erosion control services. Ecological Indicators, 115, 106434. doi:10.1016/j.ecolind.2020.106434.CrossRefGoogle Scholar
Lizaga, I., Quijano, L., Palazón, L., Gaspar, L., & Navas, A. (2018). Enhancing connectivity index to assess the effects of land use changes in a mediterranean catchment. Land Degradation & Development, 29(3), 663675. https://doi.org/10.1002/ldr.2676CrossRefGoogle Scholar
López-Vicente, M., Quijano, L., Palazón, L., Gaspar, L., & Navas, A. (2015). Assessment of soil redistribution at catchment scale by coupling a soil erosion model and a sediment connectivity index (central Spanish pre-pyrenees). Cuadernos De Investigación Geográfica, 41(1), 127. https://doi.org/10.18172/cig.2649CrossRefGoogle Scholar
López-Vicente, M., Nadal-Romero, E., & Cammeraat, E. L. H. (2017). Hydrological connectivity does change over 70 years of abandonment and afforestation in the Spanish Pyrenees. Land Degradation & Development, 28(4), 12981310. https://doi.org/10.1002/ldr.2531CrossRefGoogle Scholar
López-Vicente, M., & Ben-Salem, N. (2019). Computing structural and functional flow and sediment connectivity with a new aggregated index: A case study in a large Mediterranean catchment. Science of the Total Environment, 651, 179191.CrossRefGoogle Scholar
Magilligan, F. J., Graber, B. E., Nislow, K. H., Chipman, J. W., Sneddon, C. S. & Fox, C. A. (2016). River restoration by dam removal: Enhancing connectivity at watershed scales. Elementa: Science of the Anthropocene, 4, 108.Google Scholar
Marchamalo, M., Hooke, J. M., & Sandercock, P. J. (2016). Flow and sediment connectivity in semi-arid landscapes in SE Spain: Patterns and controls. Land Degradation & Development, 27(4), 10321044. https://doi.org/10.1002/ldr.2352CrossRefGoogle Scholar
Marchi, L., & Dalla Fontana, G. (2005). GIS morphometric indicators for the analysis of sediment dynamics in mountain basins. Environmental Geology, 48(2), 218228. https://doi.org/10.1007/s00254-005-1292-4CrossRefGoogle Scholar
Mardhel, V., Frantar, P., Uhan, J., & Mio, A. (2004). Index of development and persistence of the river networks as a component of regional groundwater vulnerability assessment in Slovenia. International Conference on groundwater vulnerability assessment and mappingGoogle Scholar
Martinez‐Agirre, A., Álvarez‐Mozos, J., Milenković, M., Pfeifer, N., Giménez, R., Valle, J. M., & Rodríguez, Á. (2020). Evaluation of Terrestrial Laser Scanner and Structure from Motion photogrammetry techniques for quantifying soil surface roughness parameters over agricultural soils. Earth Surface Processes and Landforms, 45(3), 605621. https://doi.org/10.1002/esp.4758CrossRefGoogle Scholar
Martini, L., Cavalli, M., & Picco, L. (2022). Predicting sediment connectivity in a mountain basin: A quantitative analysis of the index of connectivity. Earth Surface Processes and Landforms, 47(6), 15001513. https://doi.org/10.1002/esp.5331CrossRefGoogle Scholar
Meerkerk, A. L., van Wesemael, B., & Bellin, N. (2009). Application of connectivity theory to model the impact of terrace failure on runoff in semi-arid catchments. Hydrological Processes, 23(19), 27922803. https://doi.org/10.1002/hyp.7376CrossRefGoogle Scholar
Najafi, S., Dragovich, D., Heckmann, T., & Sadeghi, S. H. (2021a). Sediment connectivity concepts and approaches. Catena, 196, 104880.CrossRefGoogle Scholar
Najafi, S., Sadeghi, S. H., & Heckmann, T. (2021b). Analysis of sediment accessibility and availability concepts based on sediment connectivity throughout a watershed. Land Degradation & Development, 32(10), 30233044.CrossRefGoogle Scholar
Newman, M. (2010). Networks: An Introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
Nunes, J. P., Wainwright, J., Bielders, C. L., Darboux, F., Fiener, P., Finger, D., & Turnbull, L. (2018). Better models are more effectively connected models. Earth Surface Processes and Landforms, 32(4), 1297. https://doi.org/10.1002/esp.4323Google Scholar
Ortíz-Rodríguez, A. J., Borselli, L., & Sarocchi, D. (2017). Flow connectivity in active volcanic areas: Use of index of connectivity in the assessment of lateral flow contribution to main streams. Catena, 157, 90111. https://doi.org/10.1016/j.catena.2017.05.009CrossRefGoogle Scholar
Otto, J.-C. (2006). Paraglacial sediment storage quantification in the Turtmann Valley, Swiss Alps (Doctoral Dissertation), Bonn. Retrieved from http://hss.ulb.uni-bonn.de/diss_online/Google Scholar
Parsons, A. J., Wainwright, J., Brazier, R. E., & Powell, D. M. (2006). Is sediment delivery a fallacy? Earth Surface Processes and Landforms, 31(10), 13251328. https://doi.org/10.1002/esp.1395CrossRefGoogle Scholar
Phillips, J. D., Schwanghart, W., & Heckmann, T. (2015). Graph theory in the geosciences. Earth-Science Reviews, 143, 147160. https://doi.org/10.1016/j.earscirev.2015.02.002CrossRefGoogle Scholar
Pöppl, R. E., & Parsons, A. J. (2018). The geomorphic cell: A basis for studying connectivity. Earth Surface Processes and Landforms, 43(5), 11551159. https://doi.org/10.1002/esp.4300CrossRefGoogle Scholar
Pöppl, R. E., Dilly, L. A., Haselberger, S., Renschler, C. S. & Baartman, J. E. M. (2019). Combining soil erosion modeling with connectivity analyses to assess lateral fine sediment input into agricultural streams. Water, 11(9), 1793. https://doi.org/10.3390/w11091793CrossRefGoogle Scholar
Reid, S. C., Lane, S. N., Montgomery, D. R., & Brookes, C. J. (2007). Does hydrological connectivity improve modelling of coarse sediment delivery in upland environments? Geomorphology, 90(3–4), 263282. https://doi.org/10.1016/j.geomorph.2006.10.023CrossRefGoogle Scholar
Schopper, N., Mergili, M., Frigerio, S., Cavalli, M., & Pöppl, R. (2019). Analysis of lateral sediment connectivity and its connection to debris flow intensity patterns at different return periods in the Fella River system in northeastern Italy. Science of the Total Environment, 658, 15861600. https://doi.org/10.1016/j.scitotenv.2018.12.288CrossRefGoogle ScholarPubMed
Schrott, L., Hufschmidt, G., Hankammer, M., Hoffmann, T., & Dikau, R. (2003). Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology, 55, 4563.CrossRefGoogle Scholar
Schwanghart, W., & Kuhn, N. J. (2010). TopoToolbox: A set of Matlab functions for topographic analysis. Environmental Modelling & Software, 25(6), 770781.CrossRefGoogle Scholar
Shore, M., Murphy, P. N. C., Jordan, P., Mellander, P.-E., Kelly-Quinn, M., Cushen, M., Mechan, S., Shine, O. & Melland, A.R. (2013). Evaluation of a surface hydrological connectivity index in agricultural catchments. Environmental Modelling & Software, 47, 715. doi:10.1016/j.envsoft.2013.04.003.CrossRefGoogle Scholar
Singh, M., Tandon, S. K., & Sinha, R. (2017). Assessment of connectivity in a water-stressed wetland (Kaabar Tal) of Kosi-Gandak interfan, north Bihar Plains, India. Earth Surface Processes and Landforms, 42(13), 19821996. https://doi.org/10.1002/esp.4156CrossRefGoogle Scholar
Skolaut, C., Liébault, F., Habersack, H., Lenzi, M. A., Rusjan, S., Sodnik, J. & Pichler, A. (2015). Synthesis Report: Sediment Management in Alpine Basins (SedAlp): Integrating sediment continuum, risk mitigation and hydropower. Accessed September 15, 2017. www.sedalp.eu/download/reports.shtmlGoogle Scholar
Smetanova, A., Paton, E. N., Maynard, C., Tindale, S., Fernández-Getino, A. P., Perez, M. J. M., Bracken, L., Le Bissonnaid, L. & Keesstra, S. (2018). Stakeholders’ perception of the relevance of water and sediment connectivity in water and land management. Land Degradation and Development, 29, 15412036, doi:10.1002/ldr.2934.CrossRefGoogle Scholar
Souza, J. O., Correa, A. C. & Brierley, G. J., (2016). An approach to assess the impact of landscape connectivity and effective catchment area upon bedload sediment flux in Saco Creek Watershed, Semiarid Brazil. Catena. 138, 1329. https://doi.org/10.1016/j.catena.2015.11.006CrossRefGoogle Scholar
Straffelini, E., Cucchiaro, S., & Tarolli, P. (2021). Mapping potential surface ponding in agriculture using UAV‐SfM. Earth Surface Processes and Landforms. Advance online publication. https://doi.org/10.1002/esp.5135CrossRefGoogle Scholar
Tarboton, D. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2), 309319.CrossRefGoogle Scholar
Thompson, J. J. D., Doody, D. G., Flynn, R. & Watson, C. J. (2012). Dynamics of critical source areas: does connectivity explain chemistry? The Science of the Total Environment, 435-436: 499508. doi:10.1016/j.scitotenv.2012.06.104.CrossRefGoogle ScholarPubMed
Trevisani, S., & Cavalli, M. (2016). Topography-based flow-directional roughness: Potential and challenges. Earth Surface Dynamics, 4(2), 343358.CrossRefGoogle Scholar
Turley, M., Hassan, M.A. & Slaymaker, O. (2021). Quantifying sediment connectivity: Moving toward a holistic assessment through a mixed methods approach. Earth Surface Processes and Landforms, 46(12): 25012519. doi:10.1002/esp.5191.CrossRefGoogle Scholar
Turnbull, L., Hütt, M.-T., Ioannides, A. A., Kininmonth, S., Pöppl, R., Tockner, K., … Parsons, A. J. (2018). Connectivity and complex systems: Learning from a multi-disciplinary perspective. Applied Network Science, 3(1), 47. https://doi.org/10.1007/s41109-018-0067-2CrossRefGoogle ScholarPubMed
Vigiak, O., Beverly, C., Roberts, A., Thayalakumaran, T., Dickson, M., McInnes, J. & Borselli, L., (2016). Detecting changes in sediment sources in drought periods: The Latrobe River case study. Environmental Modelling & Software, 85, 4255. https://doi.org/10.1016/j.envsoft.2016.08.011CrossRefGoogle Scholar
Walling, D. E. (1983). The sediment delivery problem: Scale Problems in Hydrology. Journal of Hydrology, 65(1–3), 209237. https://doi.org/10.1016/0022-1694(83)90217-2CrossRefGoogle Scholar
Wilson, J. P., & Bishop, M. P. (2013). 3.7 Geomorphometry. In Shroder, J., Switzer, A. D., & Kennedy, D. M. (eds.), Treatise on Geomorphology (pp. 162186). Elsevier. https://doi.org/10.1016/B978-0-12-374739-6.00049-XCrossRefGoogle Scholar
Wohl, E., Brierley, G., Cadol, D., Coulthard, T. J., Covino, T., Fryirs, K. A., … & Sklar, L. S. (2019). Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms, 44(1), 426.CrossRefGoogle Scholar
Wohl, E., & Beckman, N. D. (2014). Leaky rivers: Implications of the loss of longitudinal fluvial disconnectivity in headwater streams. Geomorphology, 205, 2735. https://doi.org/10.1016/j.geomorph.2011.10.022CrossRefGoogle Scholar
Wohl, E., Rathburn, S., Chignell, S., Garrett, K., Laurel, D., Livers, B., … Wegener, P. (2017). Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado. Geomorphology, 277, 171181. https://doi.org/10.1016/j.geomorph.2016.05.004CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×