Skip to main content Accessibility help
×
Hostname: page-component-f554764f5-246sw Total loading time: 0 Render date: 2025-04-22T11:31:45.692Z Has data issue: false hasContentIssue false

6 - Glacial Processes

from Part II - Connectivity in Process Domains

Published online by Cambridge University Press:  10 April 2025

Ronald Pöppl
Affiliation:
BOKU University Vienna
Anthony Parsons
Affiliation:
University of Sheffield
Saskia Keesstra
Affiliation:
Wageningen Universiteit, The Netherlands
Get access

Summary

Glacial geomorphic processes can be mapped as a network of vertical and longitudinal connections between process domains in the glacier system, that can stretch from sources in continental interiors to sinks in the oceans, and through which ice, water and debris are transferred or stored. Domains can be defined structurally by their position within a flow system from areas of accumulation through to areas of ablation, but the functional or process-related connection of domains is better defined by geographic and temporal patterns in factors such as temperature that control glacier geomorphic processes. The idea of connectivity has long been important in glacier research, but without much explicit reference to connectivity science or terminology. Debris transport pathways, sediment stores, sediment budgets, and transfers of energy, water and debris through glaciers are fundamental to how glacial geomorphic systems work. There is a clear opportunity for glacial geomorphology to engage more with connectivity theory, as other areas of geomorphology have done, and for connectivity theory to be applied more explicitly to glacial environments.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Ali, G. A., & Roy, A. G. (2009). Revisiting hydrologic sampling strategies for an accurate assessment of hydrologic connectivity in humid temperate systems. Geography Compass, 3(1), 350374. https://doi.org/10.1111/j.1749-8198.2008.00180.xCrossRefGoogle Scholar
Alley, R. B. (2000). The Two-Mile Time Machine. Princeton: Princeton University Press.Google Scholar
Altmann, M., Piermattei, L., Haas, F., Heckmann, T., Fleischer, F., Rom, J., Betz-Nutz, S., Knoflach, B., Müller, S., Ramskogler, K., Pfeiffer, M., Hofmeister, F., Ressl, C., & Becht, M. (2020). Long-term changes of morphodynamics on little ice age lateral moraines and the resulting sediment transfer into mountain streams in the Upper Kauner Valley, Austria. Water, 12(12):3375. https://doi.org/10.3390/w12123375CrossRefGoogle Scholar
Bernhardt, A., Schwanghart, W., Hebbeln, D., Stuut, J. W., & Strecker, M. R. (2017). Immediate propagation of deglacial environmental change to deep-marine turbidite systems along the Chile convergent margin. Earth and Planetary Science Letters, 473, 190204. https://doi.org/10.1016/j.epsl.2017.05.017CrossRefGoogle Scholar
Bitanja, R. (1999). On the glaciological, meteorological and climatological significance of Antarctic blue ice areas. Reviews of Geophysics, 37(3), 337359.CrossRefGoogle Scholar
Boulton, G. S. (2006). Glaciers and their coupling with hydraulic and sedimentary processes. In Knight, P. G., ed., Glacier Science and Environmental Change. Oxford: Blackwell, pp. 322.Google Scholar
Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W., Reaney, S. M., & Roy, A. G. (2013). Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Science Reviews, 119, 17-34. https://doi.org/10.1016/j.earscirev.2013.02.001CrossRefGoogle Scholar
Bracken, L. J., Turnbull, L., Wainwright, J., & Bogaart, P. (2015). Sediment connectivity: A framework for understanding sediment transfer at multiple scales. Earth Surface Processes and Landforms, 40(2), 177188.CrossRefGoogle Scholar
Caine, N. (1986). Sediment movement and storage on alpine slopes in the Colorado Rocky Mountains. In Abrahams, A. D., ed., Hillslope Processes. London: Allen & Unwin, pp. 115137.Google Scholar
Collins, D. (1979). Quantitative Determination of the Subglacial Hydrology of Two Alpine Glaciers. Journal of Glaciology, 23(89), 347362. https://doi.org/10.3189/S0022143000029956CrossRefGoogle Scholar
Cook, S. J., & Swift, D. A. (2012). Subglacial basins: Their origin and importance in glacial systems and landscapes. Earth Science Reviews, 115(4), 332372. http://doi.org/10.1016/j.earscirev.2012.09.009CrossRefGoogle Scholar
Etzelmüller, B., Ødegard, R. S., Vatne, G., Mysterud, R. S., Tonning, T., and Sollid, J. L. (2000). Glacier characteristics and sediment transfer system of Longyearbreen and Larsbreen, western Spitsbergen. Norsk Geografisk Tidsskrift–Norwegian Journal of Geography, 54, 157168. https://doi.org/10.1080/002919500448530CrossRefGoogle Scholar
Evatt, G. W., Coughlan, M. J., Joy, K. H., Smedley, A. R. D., Connolly, P. J., & Abrahams, I. D. (2016). A potential hidden layer of meteorites below the ice surface of Antarctica. Nature Communications, 7, 10679. https://doi.org/10.1038/ncomms10679CrossRefGoogle ScholarPubMed
Ferguson, R. (1981). Channel forms and channel changes. In Lewin, J., ed., British Rivers. London: Allen & Unwin, pp. 90125.Google Scholar
Hassan, M. A., Bird, S., Reid, D., Ferrer-Boix, C., Hogan, D., Brardinoni, F., & Chartrand, S. (2019). Variable hillslope-channel coupling and channel characteristics of forested mountain streams in glaciated landscapes. Earth Surface Processes and Landforms, 44, 736751. https://doi.org/10.1002/esp.4527CrossRefGoogle Scholar
Jaeger, J. M., & Koppes, M. N. (2016). The role of the cryosphere in source-to-sink systems. Earth-Science Reviews, 153, 4376. https://doi.org/10.1016/j.earscirev.2015.09.011CrossRefGoogle Scholar
Knight, P. G. (1997). The basal ice layer of glaciers and ice sheets. Quaternary Science Reviews, 16, 975993. https://doi.org/10.1016/S0277-3791(97)00033-4CrossRefGoogle Scholar
Knight, P. G. (1999). Glaciers. Cheltenham: Stanley Thornes.Google Scholar
Knight, P. G., Jennings, C. E., Waller, R. I., & Robinson, Z. P. (2007). Changes in ice-margin processes and sediment routing during ice-sheet advance across a marginal moraine. Geografiska Annaler: Series A, Physical Geography, 89(3), 203215. https://doi.org/10.1111/j.1468-0459.2007.00319.xCrossRefGoogle Scholar
Kummert, M., & Delaloye, R. (2018). Mapping and quantifying sediment transfer between the front of rapidly moving rock glaciers and torrential gullies. Geomorphology, 309, 6076. https://doi.org/10.1016/j.geomorph.2018.02.021CrossRefGoogle Scholar
Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N., & Saugi, G. (2017). Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession. Geomorphology, 277, 210227. https://doi.org/10.1016/j.geomorph.2016.02.015CrossRefGoogle Scholar
Li, Y., Lu, Y., Zhang, Z., Shi, H., & Xi, H. (2019). Characterizing three-dimensional features of Antarctic subglacial lakes from the inversion of hydraulic potential – Lake Vostok as a case study. Advances in Polar Science, 30, 7075. https://doi.org/10.13679/j.advps.2019.1.00070Google Scholar
MacDonell, S., Sharp, M., & Fitzsimons, S. (2016). Cryoconite hole connectivity on the Wright Lower Glacier, McMurdo Dry Valleys, Antarctica. Journal of Glaciology, 62(234), 714724. https://doi.org/10.1017/jog.2016.62CrossRefGoogle Scholar
Mancini, D., & Lane, S. N. (2020). Changes in sediment connectivity following glacial debuttressing in an Alpine valley system. Geomorphology, 352, 106987. https://doi.org/10.1016/j.geomorph.2019.106987CrossRefGoogle Scholar
Miles, E. S., Steiner, J., Willis, I., Buri, P., Immerzeel, W. W., Chesnokova, A., & Pellicciotti, F. (2017). Pond Dynamics and Supraglacial-Englacial Connectivity on Debris-Covered Lirung Glacier, Nepal. Frontiers in Earth Science, 5(69). https://doi.org/10.3389/feart.2017.00069CrossRefGoogle Scholar
Piotrowski, J. A. (2006). Groundwater under ice sheets and glaciers. In Knight, P. G, ed., Glacier Science and Environmental Change. Oxford: Blackwell.Google Scholar
Pöppl, R. E., & Parsons, A. J. (2018). The geomorphic cell: A basis for studying connectivity. Earth Surface Processes and Landforms, 34, 11551159. https://doi.org/10.1002/esp.4300CrossRefGoogle Scholar
Porter, P., Smart, M., Irvine-Fynn, T. D. L. (2019). Glacial sediment stores and their reworking. In: Heckmann, T. & Morche, D. eds., Geomorphology of Proglacial Systems. Geography of the Physical Environment. Cham: Springer. https://doi.org/10.1007/978-3-319-94184-4_10Google Scholar
Small, R., Beecroft, I., & Stirling, D. (1984). Rates of deposition on Lateral Moraine Embankments, Glacier De Tsidjiore Nouve, Valais, Switzerland. Journal of Glaciology, 30(106), 275281. https://doi.org/10.3189/S0022143000006092CrossRefGoogle Scholar
Small, R. J. (1987). Moraine sediment budgets. In Gurnell, A. M. & Clark, M. J., eds., Glacio-Fluvial Sediment Transfer – An Alpine Perspective. Chichester: John Wiley and Sons, pp. 165197.Google Scholar
Stevens, I., Irvine-Fynn, T., Porter, P. R., Cook, J., Edwards, A., Smart, M., Moorman, B., Hodson, A., & Mitchell, A. (2018). Near-surface hydraulic conductivity of Northern Hemisphere glaciers. Hydrological Processes, 32(7), 850865. https://doi.org/10.1002/hyp.11439CrossRefGoogle Scholar
Stocker-Waldhuber, M., Kuhn, M. (2019). Closing the balances of ice, water and sediment fluxes through the terminus of gepatschferner. In Heckmann, T and Morche, D, eds. Geomorphology of Proglacial Systems. Geography of the Physical Environment. Cham: Springer. https://doi.org/10.1007/978-3-319-94184-4_5Google Scholar
Swift, D. A., Cook, S. J., Graham, D., Midgley, N., Fallick, A. E., Storrar, R., Toubes Rodrigo, M., & Evans, D. (2018). Terminal zone glacial sediment transfer at a temperate overdeepened glacier system. Quaternary Science Reviews, 180, 111–131. https://doi.org/10.1016/j.quascirev.2017.11.027CrossRefGoogle Scholar
Swift, D. A., Tallentire, G. D., Farinotti, D., Cook, S. J., Higson, W. J., & Bryant, R. G. (2021). The hydrology of glacier-bed overdeepenings: Sediment transport mechanics, drainage system morphology, and geomorphological implications. Earth Surface Processes and Landforms, 46, 115. https://doi.org/10.1002/esp.5173CrossRefGoogle Scholar
Toubes-Rodrigo, M., Potgieter-Vermaak, S., Sen, R., Oddsdottir, E. S, Elliott, D., & Cook, S. (2021). Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution-derived hydrogen. Microbiology Open, 10(4), e1200. https://doi.org/10.1002/mbo3.1200CrossRefGoogle ScholarPubMed
Warburton, J. (1990). An alpine proglacial fluvial sediment budget. Geografiska Annaler Series A, Physical Geography, 72(3/4), 261272. https://doi.org/10.2307/521154CrossRefGoogle Scholar
Wright, A. P., Siegert, M. J., Le Brocq, A. M., & Gore, D. B. (2008). High sensitivity of subglacial hydrological pathways in Antarctica to small ice-sheet changes. Geophysical Research Letters, 35, L17504. https://doi.org/10.1029/2008GL034937CrossRefGoogle Scholar
Wright, A. P., Young, D. A., Roberts, J. L., Schroeder, D. M., Bamber, J. L., Dowdeswell, J. A., Young, N. W., Le Brocq, A. M., Warner, R. C., Payne, A. J., Blankenship, D. D., van Ommen, T. D., & Siegert, M. J. (2012). Evidence of a hydrological connection between the ice divide and ice sheet margin in the Aurora Subglacial Basin, East Antarctica. Journal of Geophysical Research Earth Surface, 117(F1), F01033. https://doi.org/10.1029/2011JF002066Google Scholar
Wright, A., Young, D., Bamber, J., Dowdeswell, J., Payne, A., Blankenship, D., & Siegert, M. (2014). Subglacial hydrological connectivity within the Byrd Glacier catchment, East Antarctica. Journal of Glaciology, 60(220), 345352. https://doi.org/10.3189/2014JoG13J014CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×