Skip to main content Accessibility help
×
Hostname: page-component-6587cd75c8-vj8bv Total loading time: 0 Render date: 2025-04-23T11:28:57.921Z Has data issue: false hasContentIssue false

4 - Fluvial Processes

from Part II - Connectivity in Process Domains

Published online by Cambridge University Press:  10 April 2025

Ronald Pöppl
Affiliation:
BOKU University Vienna
Anthony Parsons
Affiliation:
University of Sheffield
Saskia Keesstra
Affiliation:
Wageningen Universiteit, The Netherlands
Get access

Summary

This chapter discusses what is meant by connectivity in fluvial systems and how the connectivity approach differs from preceding research, the way in which it increases understanding of fluvial processes, and how knowledge of mechanisms and dynamics of processes fits into this framework. The focus is on longitudinal connectivity through river systems, mainly in large catchments and river channels and much of the attention is on sediment connectivity. The application of connectivity indices and graph theory are exemplified and the patterns, distributions and controls produced by connectivity analysis are demonstrated. Lateral connectivity is important in relation to the link of channels to floodplains and in maintaining functioning of wetlands. Recent developments of techniques and models have allowed additional factors to be incorporated and controls on connectivity of fluvial processes to be identified. The use of connectivity analysis as a framework is highly beneficial in management of fluvial systems and facilitates targeting of hotspots of sediment accumulation or depletion.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Al Farraj, A., & Harvey, A. (2010). Influence of hillslope-to-channel and tributary-junction coupling on channel morphology and sediments: Bowderdale Beck, Howgill Fells, NW England. Zeitschrift Fur Geomorphologie, 54(2), 203224. doi:10.1127/0372-8854/2010/0054-0018CrossRefGoogle Scholar
Arnold, J. G., White, M. J., Allen, P. M., Gassman, P. W., & Bieger, K. (2021). Conceptual framework of connectivity for a national agroecosystem model based on transport processes and management practices. Journal of the American Water Resources Association, 57(1), 154169.CrossRefGoogle Scholar
Blanpied, J., Carozza, J. M., & Antoine, J. M. (2018). Sediment connectivity in the high Pyrenees mountain range by 2013 flood analysis: role of surficial sediment storages. Geomorphologie-Relief Processus Environnement, 24(4), 389402. doi:10.4000/geomorphologie.12718CrossRefGoogle Scholar
Bombino, G., Boix-Fayos, C., Cataldo, M. F., D’Agostino, D., Denisi, P., de Vente, J., Labate, A., & Zema, D. A. (2020). A modified catchment connectivity index for applications in semi-arid torrents of the Mediterranean environment. River Research and Applications, 36 (5). https://doi.org/10.1002/rra.3606CrossRefGoogle Scholar
Borges, A. V., Darchambeau, F., Lambert, T., Morana, C., Allen, G. H., Tambwe, E., … Bouillon, S. (2019). Variations in dissolved greenhouse gases (CO2, CH4, N2O) in the Congo River network overwhelmingly driven by fluvial-wetland connectivity. Biogeosciences, 16(19), 38013834.CrossRefGoogle Scholar
Borselli, L., Cassi, P., & Torri, D. (2008). Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena, 75(3), 268277.CrossRefGoogle Scholar
Bracken, L. J., Turnbull, L., Wainwright, J., & Bogaart, P. (2015). Sediment connectivity: a framework for understanding sediment transfer at multiple scales. Earth Surface Processes and Landforms, 40(2), 177188. doi:10.1002/esp.3635CrossRefGoogle Scholar
Brierley, G. J., & Fryirs, K. A. (2005). Geomorphology and River Management. Blackwell.Google Scholar
Brierley, G., & Fryirs, K. (2009). Don’t fight the site: three geomorphic considerations in catchment-scale river rehabilitation planning. Environmental Management, 43(6), 12011218. doi:10.1007/s00267-008-9266-4CrossRefGoogle ScholarPubMed
Brierley, G., Fryirs, K., & Jain, V. (2006). Landscape connectivity: the geographic basis of geomorphic applications. Area, 38(2), 165174. doi:10.1111/j.1475-4762.2006.00671.xCrossRefGoogle Scholar
Brierley, G. J., & Fryirs, K. (1999). Tributary-trunk stream relations in a cut-and-fill landscape: a case study from Wolumla catchment, New South Wales, Australia. Geomorphology, 28(1–2), 6173. doi:10.1016/s0169-555x(98)00103-2CrossRefGoogle Scholar
Brierley, G., Tunnicliffe, J., Bizzi, S., Lee, F. Perry, G., Pöppl, R., & Fryirs, K. (2022). Quantifying sediment (Dis)connectivity in the modeling of river systems. Treatise on Geomorphology (2nd ed.) 10, 206224.CrossRefGoogle Scholar
Brunsden, D, & Thornes, J. B. (1979). Landscape sensitivity and change. Transactions of the Institute of British Geographers, NS4, 463484.CrossRefGoogle Scholar
Brunsden, D. (1993). Barriers to geomorphological change. In Thomas, D. S. G, & Allison, R. J. (eds), Landscape Sensitivity. Chichester: John Wiley & Sons, pp. 712.Google Scholar
Cabre, A., Remy, D., Aguilar, G., Carretier, S., & Riquelme, R. (2020). Mapping rainstorm erosion associated with an individual storm from InSAR coherence loss validated by field evidence for the Atacama Desert. Earth Surface Processes and Landforms, 45(9), 20912106. doi:10.1002/esp.4868CrossRefGoogle Scholar
Cammeraat, L. H. (2002). A review of two strongly contrasting geomorphological systems within the context of scale. Earth Surface Processes and Landforms, 27, 12011222.CrossRefGoogle Scholar
Cavalli, M., Trevisani, S., Comiti, F., & Marchi, L. (2013). Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology, 188, 3141.CrossRefGoogle Scholar
Chartin, C., Evrard, O., Laceby, J. P., Onda, Y., Ottl’e, C., Lef‘evre, I., & Cerdan, O. (2017). The impact of typhoons on sediment connectivity: lessons learnt from contaminated coastal catchments of the Fukushima Prefecture (Japan). Earth Surface Processes and Landforms, 42 (2). https://doi.org/10.1002/esp.4056CrossRefGoogle Scholar
Chen, Y., & Wang, Y. G. (2019). Changes in river connectivity indexes in the lower Yellow River between 1960 and 2015. River Research and Applications, 35(9), 13771386.CrossRefGoogle Scholar
Chiverrell, R. C., Foster, G. C., Marshall, P., Harvey, A. M., & Thomas, G. S. P. (2009). Coupling relationships: Hillslope-fluvial linkages in the Hodder catchment, NW England. Geomorphology, 109 (3–4), 222235. doi:10.1016/j.geomorph.2009.03.004CrossRefGoogle Scholar
Chiverrell, R. C., Foster, G. C., Thomas, G. S. P., & Marshall, P. (2010). Sediment transmission and storage: the implications for reconstructing landform development. Earth Surface Processes and Landforms, 35(1), 415. doi:10.1002/esp.1806CrossRefGoogle Scholar
Cienciala, P., Nelson, A. D., Haas, A. D., & Xu, Z. W. (2020). Lateral geomorphic connectivity in a fluvial landscape system: unraveling the role of confinement, biogeomorphic interactions, and glacial legacies. Geomorphology, 354. doi:10.1016/j.geomorph.2020.107036CrossRefGoogle Scholar
Cislaghi, A., Bischetti, G. B., 2019. Source areas, connectivity, and delivery rate of sediments in mountainous-forested hillslopes: a probabilistic approach. Science of the Total Environment, 652. https://doi.org/10.1016/j.scitotenv.2018.10.318Google ScholarPubMed
Citterio, A., & Piegay, H. (2009). Overbank sedimentation rates in former channel lakes: characterization and control factors. Sedimentology, 56(2): 461482.CrossRefGoogle Scholar
Cossart, É., & Fressard, M. (2017). Assessment of structural sediment connectivity within catchments: Insights from graph theory. Earth Surface Dynamics, 5(2). https://doi.org/10.5194/esurf-5-253-2017CrossRefGoogle Scholar
Coulthard, T. J., & Van De Wiel, M. J. (2017). Modelling long term basin scale sediment connectivity, driven by spatial land use changes. Geomorphology, 277, 265281. doi:10.1016/j.geomorph.2016.05.027CrossRefGoogle Scholar
Covino, T. (2017). Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks. Geomorphology, 277, 133144. doi:10.1016/j.geomorph.2016.09.030CrossRefGoogle Scholar
Crema, S., & Cavalli, M. (2018). SedInConnect: a stand-alone, free and open source tool for the assessment of sediment connectivity. Computers and Geosciences, 111, 3945.CrossRefGoogle Scholar
Croke, J., Fryirs, K., & Thompson, C. (2013). Channel-floodplain connectivity during an extreme flood event: implications for sediment erosion, deposition, and delivery. Earth Surface Processes and Landforms, 38(12), 14441456. doi:10.1002/esp.3430CrossRefGoogle Scholar
Czuba, J. A., & Foufoula-Georgiou, E. (2015). Dynamic connectivity in a fluvial network for identifying hotspots of geomorphic change. Water Resources Research, 51(3): 14011421.CrossRefGoogle Scholar
de Souza, J. O. P., & Correa, A. C. D. (2020). Evolution scenarios of landscape connectivity in semiarid environment – Saco Creek watershed, Serra Talhada/pe – Brazil. Revista Brasileira De Geomorfologia, 21(1), 6377. doi:10.20502/rbg.v21i1.1529Google Scholar
Dezso, J., Loczy, D., Salem, A. M., & Nagy, G. (2019). Floodplain connectivity. In Loczy, D. (ed.), Drava River: Environmental Problems and Solutions, pp. 215230.CrossRefGoogle Scholar
D’Haen, K., Dusar, B., Verstraeten, G., Degryse, P., & De Brue, H. (2013). A sediment fingerprinting approach to understand the geomorphic coupling in an eastern Mediterranean mountainous river catchment. Geomorphology, 197, 6475.CrossRefGoogle Scholar
Diaz-Redondo, M., Egger, G., Marchamalo, M., Damm, C., de Oliveira, R. P., & Schmitt, L. (2018). Targeting lateral connectivity and morphodynamics in a large river-floodplain system: the upper Rhine River. River Research and Applications, 34(7), 734744. doi:10.1002/rra.3287CrossRefGoogle Scholar
Ferguson, R. I. (1981). Channel forms and channel changes. In Lewin, J. (ed.), British Rivers. London: Allen and Unwin, pp. 90125.Google Scholar
Fressard, M., Cossart, E., 2019. A graph theory tool for assessing structural sediment connectivity: Development and application in the Mercurey vineyards (France). The Science of the Total Environment, 651, 25662584.CrossRefGoogle ScholarPubMed
Fritz, K. M., Schofield, K. A., Alexander, L. C., McManus, M. G., Golden, H. E., Lane, C. R., … Pollard, A. I. (2018). Physical and chemical connectivity of streams and riparian wetlands to downstream waters: a synthesis. Journal of the American Water Resources Association, 54(2), 323345. doi:10.1111/1752-1688.12632CrossRefGoogle ScholarPubMed
Fryirs, K. (2013). (Dis)Connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surface Processes and Landforms, 38(1), 3046. doi:10.1002/esp.3242CrossRefGoogle Scholar
Fryirs, K., & Brierley, G. J. (1999). Slope-channel decoupling in Wolumla catchment, New South Wales, Australia: the changing nature of sediment sources following European settlement. Catena, 35(1), 4163. doi:10.1016/s0341-8162(98)00119-2CrossRefGoogle Scholar
Fryirs, K., & Brierley, G. J. (2001). Variability in sediment delivery and storage along river courses in Bega catchment, NSW, Australia: implications for geomorphic river recovery. Geomorphology, 38(3–4), 237265.CrossRefGoogle Scholar
Fryirs, K and Gore, D., 2013. Sediment tracing in the upper Hunter catchment using elemental and mineralogical compositions: implications for catchment-scale suspended sediment (dis)connectivity and management. Geomorphology, 193, 112121.CrossRefGoogle Scholar
Fryirs, K. A., Brierley, G. J., Preston, N. J., & Kasai, M. (2007a). Buffers, barriers and blankets: the (dis)connectivity of catchment-scale sediment cascades. Catena, 70(1), 4967. doi:10.1016/j.catena.2006.07.007CrossRefGoogle Scholar
Fryirs, K. A., Brierley, G. J., Preston, N. J., & Spencer, J. (2007b). Catchment-scale (dis)connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia. Geomorphology, 84(3–4), 297316. doi:10.1016/j.geomorph.2006.01.044CrossRefGoogle Scholar
Fuller, I. C., & Death, R. G. (2018). The science of connected ecosystems: What is the role of catchment-scale connectivity for healthy river ecology? Land Degradation & Development, 29(5), 14131426. doi:10.1002/ldr.2903CrossRefGoogle Scholar
Gao, P., & Zhang, Z. R. (2016). Spatial patterns of sediment dynamics within a medium-sized watershed over an extreme storm event. Geomorphology, 267, 2536. doi:10.1016/j.geomorph.2016.05.025CrossRefGoogle Scholar
Gilbert, J. T., & Wilcox, A. C. (2020). Sediment routing and floodplain exchange (SeRFE): a spatially explicit model of sediment balance and connectivity through river networks. Journal of Advances in Modeling Earth Systems, 12(9). doi:10.1029/2020ms002048CrossRefGoogle Scholar
Godfrey, A. E., Everitt, B. L., & Duque, J. F. M. (2008). Episodic sediment delivery and landscape connectivity in the Mancos Shale badlands and Fremont River system, Utah, USA. Geomorphology, 102(2), 242251. doi:10.1016/j.geomorph.2008.05.002CrossRefGoogle Scholar
Gootman, K. S., Gonzalez-Pinzon, R., Knapp, J. L. A., Garayburu-Caruso, V., & Cable, J. E. (2020). Spatiotemporal variability in transport and reactive processes across a first- to fifth-order fluvial network. Water Resources Research, 56(5). doi:10.1029/2019wr026303CrossRefGoogle Scholar
Gran, K. B., & Czuba, J. A. (2017). Sediment pulse evolution and the role of network structure. Geomorphology, 277, 1730. doi:10.1016/j.geomorph.2015.12.015CrossRefGoogle Scholar
Grauso, S., Pasanisi, F., & Tebano, C. (2018). Assessment of a simplified connectivity index and specific sediment potential in river basins by means of geomorphometric tools. Geosciences, 8(2). doi:10.3390/geosciences8020048CrossRefGoogle Scholar
Gumiero, B., Mant, J., Hein, T., Elso, J., & Boz, B. (2013). Linking the restoration of rivers and riparian zones/wetlands in Europe: sharing knowledge through case studies. Ecological Engineering, 56, 3650. doi:10.1016/j.ecoleng.2012.12.103CrossRefGoogle Scholar
Harries, R. M., Gailleton, B., Kirstein, L. A., Attal, M., Whittaker, A. C., & Mudd, S. M. (2021). Impact of climate on landscape form, sediment transfer and the sedimentary record. Earth Surface Processes and Landforms, 46(5), 9901006. doi:10.1002/esp.5075CrossRefGoogle Scholar
Harvey, A. M. (1996). The role of alluvial fans in the mountain fluvial systems of southeast Spain: implications of climatic change. Earth Surface Processes and Landforms, 21(6), 543553.3.0.CO;2-F>CrossRefGoogle Scholar
Harvey, A. M. (1997). Coupling between hillslope gully systems and stream channels in the Howgill Fells, northwest England: temporal implications. Geomorphologie: Relief, Processus, Environnement, 1, 320.CrossRefGoogle Scholar
Harvey, A. M. (2002). Effective timescales of coupling within fluvial systems. Geomorphology, 44(3–4), 175201. doi:10.1016/s0169-555x(01)00174-xCrossRefGoogle Scholar
Harvey, A. M. (2007). Differential recovery from the effects of a 100-year storm: Significance of long-term hillslope-channel coupling; Howgill Fells, northwest England. Geomorphology, 84(3–4), 192208. doi:10.1016/j.geomorph.2006.03.009CrossRefGoogle Scholar
Harvey, AM. (2012). The coupling status of alluvial fans and debris cones: a review and synthesis. Earth Surface Processes and Landforms, 37, 6476.CrossRefGoogle Scholar
Heckmann, T., Cavalli, M., Cerdan, O., Foerster, S., Javaux, M., Lode, E., … Brardinoni, F. (2018). Indices of sediment connectivity: opportunities, challenges and limitations. Earth-Science Reviews, 187, 77108. doi:10.1016/j.earscirev.2018.08.004CrossRefGoogle Scholar
Heckmann, T., & Schwanghart, W. (2013). Geomorphic coupling and sediment connectivity in an alpine catchment – exploring sediment cascades using graph theory. Geomorphology, 182, 89103. doi:10.1016/j.geomorph.2012.10.033CrossRefGoogle Scholar
Heritage, G., & Entwistle, N. (2020). Impacts of river engineering on river channel behaviour: implications for managing downstream flood risk. Water, 12(5). doi:10.3390/w12051355CrossRefGoogle Scholar
Hohensinner, S., Jungwirth, M., Muhar, S., & Schmutz, S. (2014). Importance of multi-dimensional morphodynamics for habitat evolution: Danube River 1715–2006. Geomorphology, 215, 319. doi:10.1016/j.geomorph.2013.08.001CrossRefGoogle Scholar
Hooke, J. (2003). Coarse sediment connectivity in river channel systems: a conceptual framework and methodology. Geomorphology, 56(1–2), 7994. doi:10.1016/s0169-555x(03)00047-3CrossRefGoogle Scholar
Hooke, J. M., (2004). Analysis of coarse sediment connectivity in semi-arid river channels. In IAHS Publn 288, Sediment Transfer through the Fluvial System, Moscow Conference August 2004, pp. 269–275.Google Scholar
Hooke, J. M. (2006). Human impacts on fluvial systems in the Mediterranean region. Geomorphology, 79(3–4), 311335. doi:10.1016/j.geomorph.2006.06.036CrossRefGoogle Scholar
Hooke, J., & Sandercock, P. (2012). Use of vegetation to combat desertification and land degradation: recommendations and guidelines for spatial strategies in Mediterranean lands. Landscape and Urban Planning, 107, 389400.CrossRefGoogle Scholar
Hooke, J. M., & Sandercock, P. J. (eds.) (2017). Combating Desertification and Land Degradation: Spatial Strategies Using Vegetation. Springer Briefing, 110 pp. Cham: Springer.CrossRefGoogle Scholar
Hooke, J., & Souza, J. (2021). Challenges of mapping, modelling and quantifying sediment connectivity. Earth-Science Reviews, 223. doi:10.1016/j.earscirev.2021.103847CrossRefGoogle Scholar
Hudson, P. F., Sounny-Slittine, M. A., & LaFevor, M. (2013). A new longitudinal approach to assess hydrologic connectivity: Embanked floodplain inundation along the lower Mississippi River. Hydrological Processes, 27(15), 21872196. doi:10.1002/hyp.9838CrossRefGoogle Scholar
Jacobson, R. B., Janke, T. P., & Skold, J. J. (2011). Hydrologic and geomorphic considerations in restoration of river-floodplain connectivity in a highly altered river system, Lower Missouri River, USA. Wetlands Ecology and Management, 19(4), 295316.CrossRefGoogle Scholar
Jain, V., & Tandon, S. K. (2010). Conceptual assessment of (dis)connectivity and its application to the Ganga River dispersal system. Geomorphology, 118(3–4), 349358. doi:10.1016/j.geomorph.2010.02.002CrossRefGoogle Scholar
James, L. A., Monohan, C., & Ertis, B. (2019). Long-term hydraulic mining sediment budgets: Connectivity as a management tool. Science of the Total Environment, 651, 20242035. doi:10.1016/j.scitotenv.2018.09.358CrossRefGoogle ScholarPubMed
Joyce, H. M., Hardy, R. J., Warburton, J., & Large, A. R. G. (2018). Sediment continuity through the upland sediment cascade: geomorphic response of an upland river to an extreme flood event. Geomorphology, 317, 4561. doi:10.1016/j.geomorph.2018.05.002CrossRefGoogle Scholar
Kalantari, Z., Ferreira, C. S. S., Koutsouris, A. J., Ahmer, A. K., Cerd‘a, A., Destouni, G. (2019). Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture. Science of the Total Environment, 661. https://doi.org/10.1016/j.scitotenv.2019.01.009.CrossRefGoogle ScholarPubMed
Khan, S., Fryirs, K., & Bizzi, S. (2021). Modelling sediment (dis)connectivity across a river network to understand locational-transmission-filter sensitivity for identifying hotspots of potential geomorphic adjustment. Earth Surface Processes and Landforms. doi:10.1002/esp.5213CrossRefGoogle Scholar
Knighton, D. (1998). Fluvial Forms and Processes: A New Perspective. Arnold.Google Scholar
Kuo, C. W., & Brierley, G. J. (2013). The influence of landscape configuration upon patterns of sediment storage in a highly connected river system. Geomorphology, 180, 255266. doi:10.1016/j.geomorph.2012.10.015CrossRefGoogle Scholar
Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N., & Saugy, J. N. (2017). Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession. Geomorphology, 277, 210227. doi:10.1016/j.geomorph.2016.02.015CrossRefGoogle Scholar
Lane, S. N., Reid, S. C., Tayefi, V., Yu, D., & Hardy, R. J. (2008). Reconceptualising coarse sediment delivery problems in rivers as catchment-scale and diffuse. Geomorphology, 98(3–4), 227249. doi:10.1016/j.geomorph.2006.12.028CrossRefGoogle Scholar
Lehotsky, M., Rusnak, M., Kidova, A., & Dudzak, J. (2018). Multitemporal assessment of coarse sediment connectivity along a braided-wandering river. Land Degradation & Development, 29(4), 12491261. doi:10.1002/ldr.2870CrossRefGoogle Scholar
Lewin, J., & Ashworth, P. J. (2014). Defining large river channel patterns: Alluvial exchange and plurality. Geomorphology, 215, 8398. doi:10.1016/j.geomorph.2013.02.024CrossRefGoogle Scholar
Lexartza-Artza, I., & Wainwright, J. (2011). Making connections: changing sediment sources and sinks in an upland catchment. Earth Surface Processes and Landforms, 36(8). https://doi.org/10.1002/esp.2134.CrossRefGoogle Scholar
Li, B. W., Yang, Z. F., Cai, Y. P., & Li, B. (2021). The frontier evolution and emerging trends of hydrological connectivity in river systems: a scientometric review. Frontiers of Earth Science, 15(1), 8193. doi:10.1007/s11707-020-0852-yCrossRefGoogle Scholar
Lisenby, P. E., & Fryirs, K. A. (2017). Sedimentologically significant tributaries: catchment-scale controls on sediment (dis) connectivity in the Lockyer Valley, SEQ, Australia. Earth Surface Processes and Landforms, 42(10), 14931504. doi:10.1002/esp.4130CrossRefGoogle Scholar
Lisenby, P. E., Fryirs, K. A., & Thompson, C. J. (2020). River sensitivity and sediment connectivity as tools for assessing future geomorphic channel behavior. International Journal of River Basin Management, 18(3), 279293. doi:10.1080/15715124.2019.1672705CrossRefGoogle Scholar
Liu, Y. L., Cui, B. S., Du, J. Z., Wang, Q., Yu, S. L., & Yang, W. (2020). A method for evaluating the longitudinal functional connectivity of a river-lake-marsh system and its application in China. Hydrological Processes, 34(26), 52785297. doi:10.1002/hyp.13946CrossRefGoogle Scholar
López-Vicente, M., Ben-Salem, N., 2019. Computing structural and functional flow and sediment connectivity with a new aggregated index: a case study in a large Mediterranean catchment. Science of the Total Environment, 651. https://doi.org/10.1016/j.scitotenv.2018.09.170CrossRefGoogle Scholar
Magilligan, F. J., Roberts, M. O., Marti, M., & Renshaw, C. E. (2021). The impact of run-of-river dams on sediment longitudinal connectivity and downstream channel equilibrium. Geomorphology, 376. doi:10.1016/j.geomorph.2020.107568CrossRefGoogle Scholar
Mahoney, D. T., Fox, J. F., al Aamery, N. (2018). Watershed erosion modeling using the probability of sediment connectivity in a gently rolling system. Journal of Hydrology, 561. https://doi.org/10.1016/j.jhydrol.2018.04.034CrossRefGoogle Scholar
Mahoney, D., Blandford, B., & Fox, J. (2021). Coupling the probability of connectivity and RUSLE reveals pathways of sediment transport and soil loss rates for forest and reclaimed mine landscapes. Journal of Hydrology, 594. doi:10.1016/j.jhydrol.2021.125963CrossRefGoogle Scholar
Mahoney, D. T., Fox, J., Al-Aamery, N., & Clare, E. (2020). Integrating connectivity theory within watershed modelling part I: Model formulation and investigating the timing of sediment connectivity. Science of the Total Environment, 740. doi:10.1016/j.scitotenv.2020.140385Google ScholarPubMed
Marcal, M., Brierley, G., & Lima, R. (2017). Using geomorphic understanding of catchment-scale process relationships to support the management of river futures: Macae Basin, Brazil. Applied Geography, 84, 2341. doi:10.1016/j.apgeog.2017.04.008CrossRefGoogle Scholar
Marchamalo, M., Hooke, J. M., & Sandercock, P. J. (2016). Flow and sediment connectivity in semi-arid landscapes in SE Spain: patterns and controls. Land Degradation and Development, 27(4), 10321044.CrossRefGoogle Scholar
Marteau, B., Gibbins, C., Vericat, D., & Batalla, R. J. (2020). Geomorphological response to system-scale river rehabilitation I: sediment supply from a reconnected tributary. River Research and Applications, 36(8), 14881503. doi:10.1002/rra.3683CrossRefGoogle Scholar
Mather, A. E., & Stokes, M. (2018). Bedrock structural control on catchment-scale connectivity and alluvial fan processes, High Atlas Mountains, Morocco. In Ventra, D., & Clarke, L. E. (eds.), Geology and Geomorphology of Alluvial and Fluvial Fans: Terrestrial and Planetary Perspectives, vol. 440, pp. 103128.CrossRefGoogle Scholar
Maxwell, C. M., Fernald, A. G., Cadol, D., Faist, A. M., & King, J. P. (2021). Managing flood flow connectivity to landscapes to build buffering capacity to disturbances: An ecohydrologic modeling framework for drylands. Journal of Environmental Management, 278. doi:10.1016/j.jenvman.2020.111486CrossRefGoogle ScholarPubMed
Mayor, Á. G., Bautista, S., Small, E. E., Dixon, M., & Bellot, J. (2008). Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography: a tool for assessing potential water and soil losses in drylands. Water Resources Research, 44, W10423.CrossRefGoogle Scholar
Messenzehl, K., Hoffmann, T., & Dikau, R. (2014). Sediment connectivity in the high-alpine valley of Val Müschauns, Swiss National Park – linking geomorphic field mapping with geomorphometric modelling. Geomorphology, 221. https://doi.org/10.1016/j.geomorph.2014.05.033CrossRefGoogle Scholar
Miller, J. R., Lord, M. L., Villarroel, L. F., Germanoski, D., & Chambers, J. C. (2012). Structural organization of process zones in upland watersheds of central Nevada and its influence on basin connectivity, dynamics, and wet meadow complexes. Geomorphology, 139, 384402. doi:10.1016/j.geomorph.2011.11.004CrossRefGoogle Scholar
Miller, J. R., Mackin, G., Lechler, P., Lord, M., & Lorentz, S. (2013). Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa. Hydrology and Earth System Sciences, 17(2), 761781. doi:10.5194/hess-17-761-2013CrossRefGoogle Scholar
Mishra, K., Sinha, R., Jain, V., Nepal, S., & Uddin, K. (2019). Towards the assessment of sediment connectivity in a large Himalayan river basin. Science of the Total Environment, 661, 251265. doi:10.1016/j.scitotenv.2019.01.118CrossRefGoogle Scholar
Najafi, S., Dragovich, D., Heckmann, T., & Sadeghi, S. H. (2021). Sediment connectivity concepts and approaches. Catena, 196. doi:10.1016/j.catena.2020.104880CrossRefGoogle Scholar
Nicholas, A.P., Ashworth, P.G., Kirkby, M., Macklin, M.G. & Murray, T. (1995). Sediment slugs: large-scale fluctuations in fluvial sediment transport rates and storage volumes. Progress in Physical Geography Earth and Environment, 19, 500519. doi:10.1177/030913339501900404CrossRefGoogle Scholar
Nicoll, T., & Brierley, G. (2017). Within-catchment variability in landscape connectivity measures in the Garang catchment, upper Yellow River. Geomorphology, 277, 197209. doi:10.1016/j.geomorph.2016.03.014CrossRefGoogle Scholar
Oldknow, C. J., & Hooke, J. M. (2017). Alluvial terrace development and changing landscape connectivity in the Great Karoo, South Africa. Insights from the Wilgerbosch River catchment, Sneeuberg. Geomorphology, 288, 1238. doi:10.1016/j.geomorph.2017.03.009CrossRefGoogle Scholar
Ondrackova, L., & Macka, Z. (2019). Geomorphic (dis)connectivity in a middle-mountain context: human interventions in the landscape modify catchment-scale sediment cascades. Area, 51(1), 113125. doi:10.1111/area.12424CrossRefGoogle Scholar
Parida, S., Singh, V., & Tandon, S. K. (2019). Sediment connectivity and evolution of gravel size composition in Dehra Dun – an Intermontane Valley in the frontal zone of NW Himalaya. Zeitschrift Fur Geomorphologie, 62(2), 83105. doi:10.1127/zfg/2019/0568CrossRefGoogle Scholar
Park, E. (2020). Characterizing channel-floodplain connectivity using satellite altimetry: mechanism, hydrogeomorphic control, and sediment budget. Remote Sensing of Environment, 243. doi:10.1016/j.rse.2020.111783CrossRefGoogle Scholar
Pechenick, A. M., Rizzo, D. M., Morrissey, L. A., Garvey, K. M., Underwood, K. L., & Wemple, B. C. (2014). A multi-scale statistical approach to assess the effects of connectivity of road and stream networks on geomorphic channel condition. Earth Surface Processes and Landforms, 39(11), 15381549. doi:10.1002/esp.3611CrossRefGoogle Scholar
Persichillo, M. G., Bordoni, M., Cavalli, M., Crema, S., & Meisina, C. (2018). The role of human activities on sediment connectivity of shallow landslides. Catena, 160. https://doi.org/10.1016/j.catena.2017.09.025CrossRefGoogle Scholar
Pöppl, R. E., Dilly, L. A., Haselberger, S., Renschler, C. S., & Baartman, J. E. M. (2019). Combining soil erosion modeling with connectivity analyses to assess lateral fine sediment input into agricultural streams. Water, 11(9). doi:10.3390/w11091793Google Scholar
Pöppl, R. E., Fryirs, K. A., Tunnicliffe, J., & Brierley, G. J. (2020). Managing sediment (dis)connectivity in fluvial systems. Science of the Total Environment, 736. doi:10.1016/j.scitotenv.2020.139627Google Scholar
Pöppl, R. E., Keiler, M., von Elverfeldt, K., Zweimueller, I., & Glade, T. (2012). The influence of riparian vegetation cover on diffuse lateral sediment connectivity and biogeomorphic processes in a medium-sized agricultural catchment, Austria. Geografiska Annaler Series a-Physical Geography, 94A(4), 511529. doi:10.1111/j.1468-0459.2012.00476.xCrossRefGoogle Scholar
Pöppl, R. E., Keesstra, S. D., & Maroulis, J. (2017). A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems. Geomorphology, 277, 237250. doi:10.1016/j.geomorph.2016.07.033CrossRefGoogle Scholar
Pöppl, R. E., Coulthard, T., Keesstra, S. D., & Keiler, M. (2019). Modeling the impact of dam removal on channel evolution and sediment delivery in a multiple dam setting. International Journal of Sediment Research, 34(6), 537549. doi:10.1016/j.ijsrc.2019.06.001CrossRefGoogle Scholar
Poesen, J. W. A., & Hooke, J. M. (1997). Erosion, flooding and channel management in Mediterranean environments of southern Europe. Progress in Physical Geography-Earth and Environment, 21(2), 157199. doi:10.1177/030913339702100201CrossRefGoogle Scholar
Puttock, A., Macleod, C. J. A., Bol, R., Sessford, P., Dungait, J., & Brazier, R. E. (2013). Changes in ecosystem structure, function and hydrological connectivity control water, soil and carbon losses in semi-arid grass to woody vegetation transitions. Earth Surface Processes and Landforms, 38(13). https://doi.org/10.1002/esp.3455CrossRefGoogle Scholar
Rhoads, B. L. (2020). River dynamics: Geomorphology to Support Management. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Roehl, J. W. (1962). Sediment source areas, delivery ratios and influencing morphological factors. In Symposium of Bari, 59 (59).Google Scholar
Rowntree, K., & Foster, I. (2012). A reconstruction of historical changes in sediment sources, sediment transfer and sediment yield in a small, semi-arid Karoo catchment, South Africa. Zeitschrift Fur Geomorphologie, 56, 87100. doi:10.1127/0372-8854/2012/s-00074CrossRefGoogle Scholar
Saco, P. M., Rodriguez, J. F., Moreno-de las Heras, M., Keesstra, S., Azadi, S., Sandi, S., … Rossi, M. J. (2020). Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems. Catena, 186. doi:10.1016/j.catena.2019.104354CrossRefGoogle Scholar
Sandercock, P., & Hooke, J. (2006). Strategies for reducing sediment connectivity and land degradation in desertified areas using vegetation: The RECONDES project. IAHS-AISH Publication, 306, 127135.Google Scholar
Sandercock, P. J., & Hooke, J. M. (2011). Vegetation effects on sediment connectivity and processes in an ephemeral channel in SE Spain. Journal of Arid Environments, 75 (3), 239254.CrossRefGoogle Scholar
Schmitt, R. J. P., Bizzi, S., & Castelletti, A. (2016). Tracking multiple sediment cascades at the river network scale identifies controls and emerging patterns of sediment connectivity. Water Resources Research, 52(5), 39413965. doi:10.1002/2015wr018097CrossRefGoogle Scholar
Schmitt, R. J. P., Bizzi, S., Castelletti, A. F., & Kondolf, G. M. (2018). Stochastic modeling of sediment connectivity for reconstructing sand fluxes and origins in the unmonitored Se Kong, Se San, and Sre Pok tributaries of the Mekong river. Journal of Geophysical Research-Earth Surface, 123(1), 225. doi:10.1002/2016jf004105CrossRefGoogle Scholar
Schumm, S. A. (1977). The Fluvial System. New York: Wiley, 338 pp.Google Scholar
Sidle, R. C., Gomi, T., Usuga, J. C. L., & Jarihani, B. (2017). Hydrogeomorphic processes and scaling issues in the continuum from soil pedons to catchments. Earth-Science Reviews, 175, 7596.CrossRefGoogle Scholar
Singh, M, & Sinha, R. (2019). Evaluating dynamic hydrological connectivity of a floodplain wetland in North Bihar, India using geostatistical methods. Science of the Total Environment, 651, 24732488.CrossRefGoogle ScholarPubMed
Singh, M., & Sinha, R. (2020). Distribution, diversity, and geomorphic evolution of floodplain wetlands and wetland complexes in the Ganga plains of north Bihar, India. Geomorphology, 351. doi:10.1016/j.geomorph.2019.106960CrossRefGoogle Scholar
Singh, M., Sinha, R., & Tandon, S. K. (2021). Geomorphic connectivity and its application for understanding landscape complexities: a focus on the hydro-geomorphic systems of India. Earth Surface Processes and Landforms, 46(1), 110130. doi:10.1002/esp.4945CrossRefGoogle Scholar
Singh, M., Tandon, S. K., & Sinha, R. (2017). Assessment of connectivity in a water-stressed wetland (Kaabar Tal) of Kosi-Gandak interfan, north Bihar Plains, India. Earth Surface Processes and Landforms, 42(13), 19821996. doi:10.1002/esp.4156CrossRefGoogle Scholar
Skarpich, V., Galia, T., Ruman, S., & Macka, Z. (2019). Variations in bar material grain-size and hydraulic conditions of managed and re-naturalized reaches of the gravel-bed Becva River (Czech Republic). Science of the Total Environment, 649, 672685. doi:10.1016/j.scitotenv.2018.08.329CrossRefGoogle ScholarPubMed
Souza, J. O. P., Correa, A. C. B., & Brierley, G. J. (2016). An approach to assess the impact of landscape connectivity and effective catchment area upon bedload sediment flux in Saco Creek Watershed, Semiarid Brazil. Catena, 138, 1329. doi:10.1016/j.catena.2015.11.006CrossRefGoogle Scholar
Tan, Z. Q., Li, Y. L., Zhang, Q., Liu, X. G., Song, Y. Y., Xue, C. Y., & Lu, J. Z. (2021). Assessing effective hydrological connectivity for floodplains with a framework integrating habitat suitability and sediment suspension behavior. Water Research, 201. doi:10.1016/j.watres.2021.117253CrossRefGoogle ScholarPubMed
Tangi, M., Schmitt, R., Bizzi, S., & Castelletti, A. (2019). The CASCADE toolbox for analyzing river sediment connectivity and management. Environmental Modelling & Software, 119, 400406. doi:10.1016/j.envsoft.2019.07.008CrossRefGoogle Scholar
Tena, A., Piegay, H., Seignemartin, G., Barra, A., Berger, J. F., Mourier, B., & Winiarski, T. (2020). Cumulative effects of channel correction and regulation on floodplain terrestrialisation patterns and connectivity. Geomorphology, 354. doi:10.1016/j.geomorph.2020.107034CrossRefGoogle Scholar
Thompson, C. J., Fryirs, K., & Croke, J. (2016). The disconnected sediment conveyor belt: patterns of longitudinal and lateral erosion and deposition during a catastrophic flood in the Lockyer valley, south east Queensland, Australia. River Research and Applications, 32(4), 540551. doi:10.1002/rra.2897CrossRefGoogle Scholar
Toone, J., Rice, S. P., & Piegay, H. (2014). Spatial discontinuity and temporal evolution of channel morphology along a mixed bedrock-alluvial river, upper Drome River, southeast France: Contingent responses to external and internal controls. Geomorphology, 205, 516. doi:10.1016/j.geomorph.2012.05.033CrossRefGoogle Scholar
Trimble, S. W. (1983). A sediment budget for Coon Creek Basin in the Driftless Area, Wisconsin, 1853–1977. American Journal of Science, 283, 454474.CrossRefGoogle Scholar
Upadhayay, H. R., Lamichhane, S., Bajracharya, R. M., Cornelis, W., Collins, A. L., & Boeckx, P. (2020). Sensitivity of source apportionment predicted by a Bayesian tracer mixing model to the inclusion of a sediment connectivity index as an informative prior: Illustration using the Kharka catchment (Nepal). Science of the Total Environment, 713. doi:10.1016/j.scitotenv.2020.136703CrossRefGoogle Scholar
van der Waal, B., & Rowntree, K. (2018). Landscape connectivity in the upper Mzimvubu River catchment: an assessment of anthropogenic influences on sediment connectivity. Land Degradation & Development, 29(3), 713723. doi:10.1002/ldr.2766CrossRefGoogle Scholar
Vanacker, V., Molina, A., Govers, G., Poesen, J., Dercon, G., & Deckers, S. (2005). River channel response to short-term human-induced change in landscape connectivity in Andean ecosystems. Geomorphology, 72(1–4), 340353. doi:10.1016/j.geomorph.2005.05.013CrossRefGoogle Scholar
Wang, D. C., Wang, X., Huang, Y., Zhang, X., Zhang, W., Xin, Y., … Cao, Z. J. (2021). Impact analysis of small hydropower construction on river connectivity on the upper reaches of the great rivers in the Tibetan Plateau. Global Ecology and Conservation, 26. doi:10.1016/j.gecco.2021.e01496CrossRefGoogle Scholar
Walley, Y., Tunnicliffe, J., & Brierley, G. (2018). The influence of network structure upon sediment routing in two disturbed catchments, East Cape, New Zealand. Geomorphology, 307, 3849. doi:10.1016/j.geomorph.2017.10.029CrossRefGoogle Scholar
Walling, D. E. (1983). The sediment delivery problem. Journal of Hydrology, 65, 209237.CrossRefGoogle Scholar
Warner, R. F. (2006). Natural and artificial linkages and discontinuities in a Mediterranean landscape: Some case studies from the Durance Valley, France. Catena, 66(3), 236250. doi:10.1016/j.catena.2006.02.004CrossRefGoogle Scholar
Wohl, E., Brierley, G., Cadol, D., Coulthard, T. J., Covino, T., Fryirs, K. A., … Sklar, L. S. (2019). Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms, 44(1), 426. doi:10.1002/esp.4434CrossRefGoogle Scholar
Zanandrea, F., Michel, G. P., Kobiyama, M., Censi, G., & Abatti, B. H. (2021). Spatial-temporal assessment of water and sediment connectivity through a modified connectivity index in a subtropical mountainous catchment. Catena, 204. doi:10.1016/j.catena.2021.105380CrossRefGoogle Scholar
Zhao, L., Liu, Y., & Luo, Y. (2020). Assessing hydrological connectivity mitigated by reservoirs, vegetation cover, and climate in Yan River Watershed on the Loess Plateau, China: the network approach. Water, 12(6). doi:10.3390/w12061742CrossRefGoogle Scholar
Zingaro, M., Refice, A., Giachetta, E., D’Addabbo, A., Lovergine, F., de Pasquale, V., Pepe, G., Brandolini, P., Cevasco, A., & Capolongo, D. (2019). Sediment mobility and connectivity in a catchment: a new mapping approach. Science of the Total Environment, 672. doi:10.1016/j.scitotenv.2019.03.461CrossRefGoogle Scholar
Zingaro, M., Refice, A., D’Addabbo, A., Hostache, R., Chini, M., & Capolongo, D. (2020). Experimental application of sediment flow connectivity index (SCI) in flood monitoring. Water, 12(7). doi:10.3390/w12071857CrossRefGoogle Scholar

Accessibility information

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×