Skip to main content Accessibility help
×
Hostname: page-component-669899f699-swprf Total loading time: 0 Render date: 2025-04-24T11:15:16.707Z Has data issue: false hasContentIssue false

14 - Drylands

from Part IV - Managing Connectivity

Published online by Cambridge University Press:  10 April 2025

Ronald Pöppl
Affiliation:
BOKU University Vienna
Anthony Parsons
Affiliation:
University of Sheffield
Saskia Keesstra
Affiliation:
Wageningen Universiteit, The Netherlands
Get access

Summary

Vegetation cover in drylands tends to be sparse and organised as a mosaic of patches with high biomass interspersed within a bare soil component. Water availability and vegetation are tightly coupled in these environments, where landscape function is determined by hydrologic and sediment connectivity. In this chapter, we analyse and synthesise previous studies describing how understanding, measuring and modifying connectivity can be used to guide the design of management strategies aiming at improving landscape resilience. We describe how drylands are very sensitive to both water and wind erosion, which have the potential to increase connectivity beyond tipping points at which the system transitions abruptly to a degraded state that may be irreversible. We discuss methods for the identification of early warning indicators of transition to degraded states, which could be used as a preventive management tool. We also describe existing strategies and approaches to reduce connectivity at different spatial scales as a way of managing degraded landscapes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Alados, C. L., Saiz, H., Gartzia, M., Nuche, P., Escós, J., Navarro, T., & Pueyo, Y. (2017). Plant–plant interactions scale up to produce vegetation spatial patterns: the influence of long- and short-term process. Ecosphere, 8 (8), p. e01915. www.doi.org/10.1002/ecs2.1915CrossRefGoogle Scholar
Ali, G. A., & Roy, A. G. (2009). Revisiting hydrologic sampling strategies for an accurate assessment of hydrologic connectivity in humid temperate systems. Geography Compass, 3 (1), pp. 350374. www.doi.org/10.1111/j.1749-8198.2008.00180.xCrossRefGoogle Scholar
Baartman, J. E., Temme, A. J., & Saco, P. M. (2018). The effect of landform variation on vegetation patterning and related sediment dynamics. Earth Surface Processes and Landforms, 43(10), pp. 21212135.CrossRefGoogle Scholar
Baartman, J. E. M., Nunes, J. P., Masselink, R., Darboux, F., Bielders, C., Degré, A., Cantreul, V., et al. (2020). What do models tell us about water and sediment connectivity? Geomorphology, 367, p. 107300. www.doi.org/10.1016/j.geomorph.2020.107300CrossRefGoogle Scholar
Bainbridge, D. A. (2007). Arid lands research needs next twenty-five years. Annals of Arid Zone, 46 (3&4), pp. 128.Google Scholar
Bautista, S., & Mayor, Á. G. (2021). El papel de la (des)conectividad ecohidrológica en el funcionamiento y el manejo de las zonas áridas. Ecosistemas, 30 (3), pp. 2265. www.doi.org/10.7818/ECOS.2265CrossRefGoogle Scholar
Belnap, J., Büdel, B., & Lange, O. L. (2003). Biological soil crusts: Characteristics and distribution. In Belnap, J. & Lange, O. L. (eds.), Biological Soil Crusts: Structure, Function, and Management (pp. 330). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Berdugo, M., Kéfi, S., Soliveres, S., & Maestre, F. T. (2017). Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nature Ecology & Evolution, 1 (2), p. 3. www.doi.org/10.1038/s41559-016-0003CrossRefGoogle ScholarPubMed
Bergametti, G., & Gillette, D. A. (2010). Aeolian sediment fluxes measured over various plant/soil complexes in the Chihuahuan desert. Journal of Geophysical Research: Earth Surface, 115 (F3). www.doi.org/10.1029/2009JF001543CrossRefGoogle Scholar
Bestelmeyer, B. T., Okin, G. S., Duniway, M. C., Archer, S. R., Sayre, N. F., Williamson, J. C., & Herrick, J. E. (2015). Desertification, land use, and the transformation of global drylands. Frontiers in Ecology and the Environment, 13 (1), pp. 2836. www.doi.org/10.1890/140162CrossRefGoogle Scholar
Bhark, E. W., & Small, E. E. (2003). Association between plant canopies and the spatial patterns of infiltration in shrubland and grassland of the Chihuahuan desert, New Mexico. Ecosystems, 6 (2), pp. 01850196. www.doi.org/10.1007/s10021-002-0210-9CrossRefGoogle Scholar
Birch, J. D., Lutz, J. A., Hogg, E. H., Simard, S. W., Pelletier, R., LaRoi, G. H., & Karst, J. (2019). Decline of an ecotone forest: 50 years of demography in the southern boreal forest. Ecosphere, 10 (4), pp. e02698. www.doi.org/10.1002/ecs2.2698CrossRefGoogle Scholar
Borgogno, F., D’Odorico, P., Laio, F., & Ridolfi, L. (2009). Mathematical models of vegetation pattern formation in ecohydrology. Reviews of Geophysics, 47 (1). www.doi.org/10.1029/2007RG000256CrossRefGoogle Scholar
Borselli, L., Cassi, P., & Torri, D. (2008). Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. CATENA, 75 (3), pp. 268277. www.doi.org/10.1016/j.catena.2008.07.006CrossRefGoogle Scholar
Bracken, L. J., & Croke, J. (2007). The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrological Processes, 21 (13), pp. 17491763. www.doi.org/10.1002/hyp.6313CrossRefGoogle Scholar
Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W., Reaney, S. M., & Roy, A. G. (2013). Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Science Reviews, 119, pp. 1734. www.doi.org/10.1016/j.earscirev.2013.02.001CrossRefGoogle Scholar
Bradley, E. F., & Mulhearn, P. J. (1983). Development of velocity and shear stress distribution in the wake of a porous shelter fence. Journal of Wind Engineering and Industrial Aerodynamics, 15 (1), pp. 145156. www.doi.org/10.1016/0167-6105(83)90185-XCrossRefGoogle Scholar
Burrell, A. L., Evans, J. P., & De Kauwe, M. G. (2020). Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nature Communications, 11 (1), pp. 3853. www.doi.org/10.1038/s41467-020-17710-7CrossRefGoogle ScholarPubMed
Cai, W., Wang, G., Santoso, A., McPhaden, M. J., Wu, L., Jin, F.-F., Timmermann, A., et al. (2015). Increased frequency of extreme La Niña events under greenhouse warming. Nature Climate Change, 5 (2), pp. 132137. www.doi.org/10.1038/nclimate2492CrossRefGoogle Scholar
Calsamiglia, A., Fortesa, J., García-Comendador, J., Lucas-Borja, M. E., Calvo-Cases, A., & Estrany, J. (2018a). Spatial patterns of sediment connectivity in terraced lands: Anthropogenic controls of catchment sensitivity. Land Degradation & Development, 29 (4), pp. 11981210. www.doi.org/10.1002/ldr.2840CrossRefGoogle Scholar
Calsamiglia, A., García-Comendador, J., Fortesa, J., López-Tarazón, J. A., Crema, S., Cavalli, M., Calvo-Cases, A., & Estrany, J. (2018b). Effects of agricultural drainage systems on sediment connectivity in a small Mediterranean lowland catchment. Geomorphology, 318, pp. 162171. www.doi.org/10.1016/j.geomorph.2018.06.011CrossRefGoogle Scholar
Calsamiglia, A., Lucas-Borja, M. E., Fortesa, J., García-Comendador, J., & Estrany, J. (2017). Changes in soil quality and hydrological connectivity caused by the abandonment of terraces in a Mediterranean burned catchment. Forests, 8 (9), p. 333CrossRefGoogle Scholar
Cammeraat, L. H., & Imeson, A. C. (1999). The evolution and significance of soil–vegetation patterns following land abandonment and fire in Spain. CATENA, 37 (1), pp. 107127. www.doi.org/10.1016/S0341-8162(98)00072-1CrossRefGoogle Scholar
Cavalli, M., Trevisani, S., Comiti, F., & Marchi, L. (2013). Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology, 188, pp. 3141. www.doi.org/10.1016/j.geomorph.2012.05.007CrossRefGoogle Scholar
Chappell, A., Webb, N. P., Guerschman, J. P., Thomas, D. T., Mata, G., Handcock, R. N., Leys, J. F., & Butler, H. J. (2018). Improving ground cover monitoring for wind erosion assessment using MODIS BRDF parameters. Remote Sensing of Environment, 204, pp. 756768. www.doi.org/10.1016/j.rse.2017.09.026CrossRefGoogle Scholar
Dickinson, R. E. (1984). Modeling evapotranspiration for three-dimensional global climate models. In Hansen, J. E. & Takahashi, T. (Eds.), Climate Processes and Climate Sensitivity (Vol. 5, pp. 5872). Washington, DC: American Geophysical Union.CrossRefGoogle Scholar
Dunkerley, D. L. (2002). Infiltration rates and soil moisture in a groved mulga community near Alice Springs, arid central Australia: evidence for complex internal rainwater redistribution in a runoff–runon landscape. Journal of Arid Environments, 51 (2), pp. 199219. www.doi.org/10.1006/jare.2001.0941CrossRefGoogle Scholar
Fensham, R. J., Fairfax, R. J., & Archer, S. R. (2005). Rainfall, land use and woody vegetation cover change in semi-arid Australian savanna. Journal of Ecology, 93 (3), pp. 596606. www.doi.org/10.1111/j.1365-2745.2005.00998.xCrossRefGoogle Scholar
Fick, S. E., Decker, C., Duniway, M. C., & Miller, M. E. (2016). Small-scale barriers mitigate desertification processes and enhance plant recruitment in a degraded semiarid grassland. Ecosphere, 7 (6), pp. e01354. www.doi.org/10.1002/ecs2.1354CrossRefGoogle Scholar
Fryirs, K. A., Brierley, G. J., Preston, N. J., & Kasai, M. (2007). Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. CATENA, 70 (1), pp. 4967. www.doi.org/10.1016/j.catena.2006.07.007CrossRefGoogle Scholar
Fuentes, D., Smanis, A., & Valdecantos, A. (2017). Recreating sink areas on semiarid degraded slopes by restoration. Land Degradation & Development, 28 (3), pp. 10051015. www.doi.org/https://doi.org/10.1002/ldr.2671CrossRefGoogle Scholar
Gherardi, L. A., & Sala, O. E. (2015). Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proceedings of the National Academy of Sciences, 112 (41), pp. 12735–12740. www.doi.org/10.1073/pnas.1506433112CrossRefGoogle ScholarPubMed
Gillette, D. A., Adams, J., Endo, A., Smith, D., & Kihl, R. (1980). Threshold velocities for input of soil particles into the air by desert soils. Journal of Geophysical Research: Oceans, 85 (C10), pp. 56215630. www.doi.org/10.1029/JC085iC10p05621CrossRefGoogle Scholar
Gillette, D. A., Herrick, J. E., & Herbert, G. A. (2006). Wind characteristics of mesquite streets in the Northern Chihuahuan Desert, New Mexico, USA. Environmental Fluid Mechanics, 6 (3), pp. 241275. www.doi.org/10.1007/s10652-005-6022-7CrossRefGoogle Scholar
Havstad, K. M., Peters, D. P. C., Skaggs, R., Brown, J., Bestelmeyer, B., Fredrickson, E., Herrick, J., & Wright, J. (2007). Ecological services to and from rangelands of the United States. Ecological Economics, 64 (2), pp. 261268. www.doi.org/10.1016/j.ecolecon.2007.08.005CrossRefGoogle Scholar
Herrick, J. E., van Zee, J. W., McCord, S. E., Courtright, E. M., Karl, J. W., & Burkett, L. M. (2005). Monitoring manual for grassland, shrubland and savanna ecosystems: Vol. I: Core Methods. Las Cruces, New Mexico: USDA-ARS Jornada Experimental Range.Google Scholar
Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., Shinoda, M., et al. (2017). Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 55 (3), pp. 719778. www.doi.org/10.1002/2016RG000550CrossRefGoogle Scholar
Huang, L., He, B., Chen, A., Wang, H., Liu, J., , A., & Chen, Z. (2016). Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Scientific Reports, 6 (1), pp. 24639. www.doi.org/10.1038/srep24639CrossRefGoogle ScholarPubMed
Imeson, A. C., & Prinsen, H. A. M. (2004). Vegetation patterns as biological indicators for identifying runoff and sediment source and sink areas for semi-arid landscapes in Spain. Agriculture, Ecosystems & Environment, 104 (2), pp. 333342. www.doi.org/10.1016/j.agee.2004.01.033CrossRefGoogle Scholar
IPCC. (2019). Summary for policymakers. In Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., & Malley, J. (eds.), Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems: In Press.Google Scholar
IPCC. (2021). Summary for policymakers. In Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., & Zhou, B. (eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 332). Cambridge, UK and New York: Cambridge University Press.Google Scholar
Iwaniec, D. M., Gooseff, M., Suding, K. N., Samuel Johnson, D., Reed, D. C., Peters, D. P. C., Adams, B., et al. (2021). Connectivity: insights from the U.S. Long Term Ecological Research Network. Ecosphere, 12 (5), pp. e03432. www.doi.org/10.1002/ecs2.3432CrossRefGoogle Scholar
Johnson, J. C., Williams, C. J., Guertin, D. P., Archer, S. R., Heilman, P., Pierson, F. B., & Wei, H. (2021). Restoration of a shrub-encroached semi-arid grassland: Implications for structural, hydrologic, and sediment connectivity. Ecohydrology, 14 (4), pp. e2281. www.doi.org/10.1002/eco.2281CrossRefGoogle Scholar
Kawamura, R. (1951). Study of Sand Movement by Wind: University of California.Google Scholar
Keesstra, S., Nunes, J. P., Saco, P., Parsons, T., Poeppl, R., Masselink, R., & Cerdà, A. (2018). The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Science of The Total Environment, 644, pp. 15571572. www.doi.org/10.1016/j.scitotenv.2018.06.342CrossRefGoogle ScholarPubMed
Kéfi, S., Holmgren, M., & Scheffer, M. (2016). When can positive interactions cause alternative stable states in ecosystems? Functional Ecology, 30 (1), pp. 8897. www.doi.org/10.1111/1365-2435.12601CrossRefGoogle Scholar
Kimiti, D. W., Riginos, C., & Belnap, J. (2017). Low-cost grass restoration using erosion barriers in a degraded African rangeland. Restoration Ecology, 25 (3), pp. 376384. www.doi.org/10.1111/rec.12426CrossRefGoogle Scholar
Lavee, H., Imeson, A. C., & Sarah, P. (1998). The impact of climate change on geomorphology and desertification along a mediterranean-arid transect. Land Degradation & Development, 9 (5), pp. 407422. www.doi.org/10.1002/(SICI)1099-145X(199809/10)9:5<407::AID-LDR302>3.0.CO;2-63.0.CO;2-6>CrossRefGoogle Scholar
Leenders, J. K., Sterk, G., & Van Boxel, J. H. (2011). Modelling wind-blown sediment transport around single vegetation elements. Earth Surface Processes and Landforms, 36 (9), pp. 12181229. www.doi.org/10.1002/esp.2147CrossRefGoogle Scholar
Li, J., Okin, G. S., Alvarez, L., & Epstein, H. (2008). Effects of wind erosion on the spatial heterogeneity of soil nutrients in two desert grassland communities. Biogeochemistry, 88 (1), pp. 7388. www.doi.org/10.1007/s10533-008-9195-6CrossRefGoogle Scholar
Lisenby, P. E., & Fryirs, K. A. (2017). ‘Out with the Old?’ Why coarse spatial datasets are still useful for catchment-scale investigations of sediment (dis)connectivity. Earth Surface Processes and Landforms, 42 (10), pp. 15881596. www.doi.org/10.1002/esp.4131CrossRefGoogle Scholar
Locosselli, G. M., Brienen, R. J. W., Leite, M. D. S., Gloor, M., Krottenthaler, S., de Oliveira, A. A., Barichivich, J., et al. (2020). Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proceedings of the National Academy of Sciences, 117 (52), pp. 33358–33364. www.doi.org/10.1073/pnas.2003873117CrossRefGoogle ScholarPubMed
Ludwig, J. A., Bastin, G. N., Chewings, V. H., Eager, R. W., & Liedloff, A. C. (2007). Leakiness: A new index for monitoring the health of arid and semiarid landscapes using remotely sensed vegetation cover and elevation data. Ecological Indicators, 7 (2), pp. 442454. www.doi.org/10.1016/j.ecolind.2006.05.001CrossRefGoogle Scholar
Ludwig, J. A., & Tongway, D. J. (1996). Rehabilitation of semiarid landscapes in australia. ii. restoring vegetation patches. Restoration Ecology, 4 (4), pp. 398406. www.doi.org/10.1111/j.1526-100X.1996.tb00192.xCrossRefGoogle Scholar
Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J., & Imeson, A. C. (2005). Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology, 86 (2), pp. 288297. www.doi.org/10.1890/03-0569CrossRefGoogle Scholar
Maestre, F. T., Bowker, M. A., Puche, M. D., Belén Hinojosa, M., Martínez, I., García-Palacios, P., Castillo, A. P., et al. (2009). Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecology Letters, 12 (9), pp. 930941. www.doi.org/10.1111/j.1461-0248.2009.01352.xCrossRefGoogle ScholarPubMed
Magliano, P. N., Whitworth-Hulse, J. I., & Baldi, G. (2019). Interception, throughfall and stemflow partition in drylands: Global synthesis and meta-analysis. Journal of Hydrology, 568, pp. 638645. www.doi.org/10.1016/j.jhydrol.2018.10.042CrossRefGoogle Scholar
Marchamalo, M., Hooke, J. M., & Sandercock, P. J. (2016). Flow and sediment connectivity in semi-arid landscapes in SE Spain: Patterns and controls. Land Degradation & Development, 27 (4), pp. 10321044. www.doi.org/10.1002/ldr.2352CrossRefGoogle Scholar
Masselink, R. J. H., Keesstra, S. D., Temme, A. J. A. M., Seeger, M., Giménez, R., & Casalí, J. (2016). Modelling discharge and sediment yield at catchment scale using connectivity components. Land Degradation & Development, 27 (4), pp. 933945. www.doi.org/10.1002/ldr.2512CrossRefGoogle Scholar
Mayaud, J. R., Wiggs, G. F. S., & Bailey, R. M. (2017). A field-based parameterization of wind flow recovery in the lee of dryland plants. Earth Surface Processes and Landforms, 42 (2), pp. 378386. www.doi.org/10.1002/esp.4082CrossRefGoogle Scholar
Mayor, A. G., Bautista, S., Rodriguez, F., & Kéfi, S. (2019). Connectivity-Mediated Ecohydrological Feedbacks and Regime Shifts in Drylands. Ecosystems, 22 (7), pp. 14971511. www.doi.org/10.1007/s10021-019-00366-wCrossRefGoogle Scholar
Mayor, Á. G., Bautista, S., Small, E. E., Dixon, M., & Bellot, J. (2008). Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography: A tool for assessing potential water and soil losses in drylands. Water Resources Research, 44 (10). www.doi.org/10.1029/2007WR006367CrossRefGoogle Scholar
Mekonnen, M., Keesstra, S. D., Baartman, J. E. M., Stroosnijder, L., & Maroulis, J. (2017). Reducing sediment connectivity through man-made and natural sediment sinks in the Minizr Catchment, Northwest Ethiopia. Land Degradation & Development, 28 (2), pp. 708717. www.doi.org/10.1002/ldr.2629CrossRefGoogle Scholar
Merino-Martín, L., Moreno-de las Heras, M., Espigares, T., & Nicolau, J. M. (2015). Overland flow directs soil moisture and ecosystem processes at patch scale in Mediterranean restored hillslopes. CATENA, 133, 7184. www.doi.org/10.1016/j.catena.2015.05.002CrossRefGoogle Scholar
Meron, E., Gilad, E., von Hardenberg, J., Shachak, M., & Zarmi, Y. (2004). Vegetation patterns along a rainfall gradient. Chaos, Solitons & Fractals, 19 (2), pp. 367376. www.doi.org/10.1016/S0960-0779(03)00049-3CrossRefGoogle Scholar
Misra, R. (1983). Indian savannas. In Bourliere, F. (ed.), Ecosystems of the world (pp. 151166). New York: Elsevier.Google Scholar
Monger, C., Sala, O. E., Duniway, M. C., Goldfus, H., Meir, I. A., Poch, R. M., Throop, H. L., & Vivoni, E. R. (2015). Legacy effects in linked ecological–soil–geomorphic systems of drylands. Frontiers in Ecology and the Environment, 13 (1), pp. 1319. www.doi.org/10.1890/140269CrossRefGoogle Scholar
Moreno-de las Heras, M., Díaz-Sierra, R., Nicolau, J. M., & Zavala, M. A. (2011). Evaluating restoration of man-made slopes: a threshold approach balancing vegetation and rill erosion. Earth Surface Processes and Landforms, 36 (10), pp. 13671377. https://doi.org/10.1002/esp.2160CrossRefGoogle Scholar
Moreno-de las Heras, M., Lindenberger, F., Latron, J., Lana-Renault, N., Llorens, P., Arnáez, J., Romero-Díaz, A., & Gallart, F. (2019). Hydro-geomorphological consequences of the abandonment of agricultural terraces in the Mediterranean region: Key controlling factors and landscape stability patterns. Geomorphology, 333, pp. 7391. www.doi.org/10.1016/j.geomorph.2019.02.014CrossRefGoogle Scholar
Moreno-de las Heras, M., Merino-Martín, L., Saco, P. M., Espigares, T., Gallart, F., & Nicolau, J. M. (2020). Structural and functional control of surface-patch to hillslope runoff and sediment connectivity in Mediterranean dry reclaimed slope systems. Hydrology and Earth System Sciences, 24 (5), pp. 28552872. www.doi.org/10.5194/hess-24-2855-2020CrossRefGoogle Scholar
Moreno-de las Heras, M., Saco, P. M., Willgoose, G. R., & Tongway, D. J. (2011). Assessing landscape structure and pattern fragmentation in semiarid ecosystems using patch-size distributions. Ecological Applications, 21 (7), pp. 27932805. www.doi.org/10.1890/10-2113.1CrossRefGoogle ScholarPubMed
Moreno-de las Heras, M., Saco, P. M., Willgoose, G. R., & Tongway, D. J. (2012). Variations in hydrological connectivity of Australian semiarid landscapes indicate abrupt changes in rainfall-use efficiency of vegetation. Journal of Geophysical Research: Biogeosciences, 117 (G3). www.doi.org/10.1029/2011JG001839CrossRefGoogle Scholar
Moreno-de las Heras, M., Turnbull, L., & Wainwright, J. (2016). Seed-bank structure and plant-recruitment conditions regulate the dynamics of a grassland-shrubland Chihuahuan ecotone. Ecology, 97 (9), 23032318. https://doi.org/10.1002/ecy.1446CrossRefGoogle ScholarPubMed
Okin, G. S. (2008). A new model of wind erosion in the presence of vegetation. Journal of Geophysical Research: Earth Surface, 113 (F2). www.doi.org/10.1029/2007JF000758CrossRefGoogle Scholar
Okin, G. S., Moreno de las Heras, M., Saco, P. M., Throop, H. L., Vivoni, E. R., Parsons, A. J., Wainwright, J., & Peters, D. P. (2015). Connectivity in dryland landscapes: shifting concepts of spatial interactions. Frontiers in Ecology and the Environment, 13 (1), pp. 2027. www.doi.org/10.1890/140163CrossRefGoogle Scholar
Okin, G. S., Parsons, A. J., Wainwright, J., Herrick, J. E., Bestelmeyer, B. T., Peters, D. C., & Fredrickson, E. L. (2009). Do changes in connectivity explain desertification? BioScience, 59 (3), pp. 237244. www.doi.org/10.1525/bio.2009.59.3.8CrossRefGoogle Scholar
Okin, G. S., Sala, O. E., Vivoni, E. R., Zhang, J., & Bhattachan, A. (2018). The interactive role of wind and water in functioning of drylands: What does the future hold? BioScience, 68 (9), pp. 670677. www.doi.org/10.1093/biosci/biy067CrossRefGoogle Scholar
Paz-Kagan, T., Ohana-Levi, N., Shachak, M., Zaady, E., & Karnieli, A. (2017). Ecosystem effects of integrating human-made runoff-harvesting systems into natural dryland watersheds. Journal of Arid Environments, 147, pp. 133143. www.doi.org/10.1016/j.jaridenv.2017.07.015CrossRefGoogle Scholar
Peng, H.-Y., Li, X.-Y., Li, G.-Y., Zhang, Z.-H., Zhang, S.-Y., Li, L., Zhao, G.-Q., et al. (2013). Shrub encroachment with increasing anthropogenic disturbance in the semiarid Inner Mongolian grasslands of China. CATENA, 109, pp. 3948. www.doi.org/10.1016/j.catena.2013.05.008CrossRefGoogle Scholar
Peters, D. P., Havstad, K. M., Archer, S. R., & Sala, O. E. (2015). Beyond desertification: new paradigms for dryland landscapes. Frontiers in Ecology and the Environment, 13 (1), pp. 412. www.doi.org/10.1890/140276CrossRefGoogle Scholar
Peters, D. P., Sala, O. E., Allen, C. D., Covich, A., & Brunson, M. (2007). Cascading events in linked ecological and socioeconomic systems. Frontiers in Ecology and the Environment, 5 (4), pp. 221224. www.doi.org/10.1890/1540-9295(2007)5[221:CEILEA]2.0.CO;2CrossRefGoogle Scholar
Peters, D. P. C., Okin, G. S., Herrick, J. E., Savoy, H. M., Anderson, J. P., Scroggs, S. L. P., & Zhang, J. (2020). Modifying connectivity to promote state change reversal: the importance of geomorphic context and plant–soil feedbacks. Ecology, 101 (9), pp. e03069. www.doi.org/10.1002/ecy.3069CrossRefGoogle ScholarPubMed
Peters, D. P. C., Yao, J., & Havstad, K. M. (2004). Insights to invasive species dynamics from desertification studies. Weed Technology, 18 (sp1), pp. 12211225.CrossRefGoogle Scholar
Pi, H., Webb, N. P., Huggins, D. R., & Sharratt, B. (2020). Critical standing crop residue amounts for wind erosion control in the inland Pacific Northwest, USA. CATENA, 195, pp. 104742. www.doi.org/10.1016/j.catena.2020.104742CrossRefGoogle Scholar
Poeppl, R. E., Keesstra, S. D., & Maroulis, J. (2017). A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems. Geomorphology, 277, pp. 237250. www.doi.org/10.1016/j.geomorph.2016.07.033CrossRefGoogle Scholar
Power, S., Delage, F., Chung, C., Kociuba, G., & Keay, K. (2013). Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502 (7472), pp. 541545. www.doi.org/10.1038/nature12580CrossRefGoogle ScholarPubMed
Puigdefabregas, J., Sole, A., Gutierrez, L., Del Barrio, G., & Boer, M. (1999). Scales and processes of water and sediment redistribution in drylands: Results from the Rambla Honda field site in Southeast Spain. Earth Science Reviews, 48 (1–2), pp. 3970. www.doi.org/10.1016/S0012-8252(99)00046-XCrossRefGoogle Scholar
Rango, A., Chopping, M., Ritchie, J., Havstad, K., Kustas, W., & Schmugge, T. (2000). Morphological Characteristics of shrub coppice dunes in desert grasslands of Southern New Mexico derived from scanning LIDAR. Remote Sensing of Environment, 74 (1), pp. 2644. www.doi.org/10.1016/S0034-4257(00)00084-5CrossRefGoogle Scholar
Ratajczak, Z., D’Odorico, P., Collins, S. L., Bestelmeyer, B. T., Isbell, F. I., & Nippert, J. B. (2017). The interactive effects of press/pulse intensity and duration on regime shifts at multiple scales. Ecological Monographs, 87 (2), pp. 198218. www.doi.org/10.1002/ecm.1249CrossRefGoogle Scholar
Raupach, M. R., Gillette, D. A., & Leys, J. F. (1993). The effect of roughness elements on wind erosion threshold. Journal of Geophysical Research: Atmospheres, 98 (D2), pp. 30233029. www.doi.org/10.1029/92JD01922CrossRefGoogle Scholar
Ravi, S., D’Odorico, P., & Okin, G. S. (2007). Hydrologic and aeolian controls on vegetation patterns in arid landscapes. Geophysical Research Letters, 34 (24). www.doi.org/10.1029/2007GL031023CrossRefGoogle Scholar
Reynolds, J. F., & Stafford Smith, D. M. (2002). Global desertification: Do humans cause deserts? Dahlem Workshop Report 88. Berlin, Germany: Dahlem University Press.Google Scholar
Reynolds, J. F., Stafford Smith, D. M., Lambin, E. F., Turner, B. L., Mortimore, M., Batterbury, S. P. J., Downing, T. E., et al. (2007). Global desertification: Building a science for dryland development. Science, 316 (5826), pp. 847851. www.doi.org/10.1126/science.1131634CrossRefGoogle ScholarPubMed
Rietkerk, M., Dekker, S. C., de Ruiter, P. C., & van de Koppel, J. (2004). Self-organized patchiness and catastrophic shifts in ecosystems. Science, 305 (5692), pp. 19261929. www.doi.org/10.1126/science.1101867CrossRefGoogle ScholarPubMed
Rodrigo Comino, J., Keesstra, S. D., & Cerdà, A. (2018). Connectivity assessment in Mediterranean vineyards using improved stock unearthing method, LiDAR and soil erosion field surveys. Earth Surface Processes and Landforms, 43 (10), pp. 21932206. www.doi.org/10.1002/esp.4385CrossRefGoogle Scholar
Rodríguez, F., Mayor, Á. G., Rietkerk, M., & Bautista, S. (2018). A null model for assessing the cover-independent role of bare soil connectivity as indicator of dryland functioning and dynamics. Ecological Indicators, 94, pp. 512519. www.doi.org/10.1016/j.ecolind.2017.10.023CrossRefGoogle Scholar
Rossi, M. J., Ares, J. O., Jobbágy, E. G., Vivoni, E. R., Vervoort, R. W., Schreiner-McGraw, A. P., & Saco, P. M. (2018). Vegetation and terrain drivers of infiltration depth along a semiarid hillslope. Science of the Total Environment, 644, pp. 13991408CrossRefGoogle ScholarPubMed
Saco, P. M., & Moreno-de las Heras, M. (2013). Ecogeomorphic coevolution of semiarid hillslopes: Emergence of banded and striped vegetation patterns through interaction of biotic and abiotic processes. Water Resources Research, 49 (1), pp. 115126. www.doi.org/10.1029/2012WR012001CrossRefGoogle Scholar
Saco, P. M., Moreno-de las Heras, M., Keesstra, S., Baartman, J., Yetemen, O., & Rodríguez, J. F. (2018). Vegetation and soil degradation in drylands: Non linear feedbacks and early warning signals. Current Opinion in Environmental Science & Health, 5, pp. 6772. www.doi.org/10.1016/j.coesh.2018.06.001CrossRefGoogle Scholar
Saco, P. M., Rodríguez, J. F., Moreno-de las Heras, M., Keesstra, S., Azadi, S., Sandi, S., Baartman, J., Rodrigo-Comino, J., et al. (2020). Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems. CATENA, 186, pp. 104354. www.doi.org/10.1016/j.catena.2019.104354CrossRefGoogle Scholar
Saco, P. M., Willgoose, G. R., & Hancock, G. R. (2007). Eco-geomorphology of banded vegetation patterns in arid and semi-arid regions. Hydrology and Earth System Sciences, 11 (6), pp. 17171730. www.doi.org/10.5194/hess-11-1717-2007CrossRefGoogle Scholar
Saintilan, N., Bowen, S., Maguire, O., Karimi, S. S., Wen, L., Powell, M., Colloff, M. J., et al. (2021). Resilience of trees and the vulnerability of grasslands to climate change in temperate Australian wetlands. Landscape Ecology, 36 (3), pp. 803814. www.doi.org/10.1007/s10980-020-01176-5CrossRefGoogle Scholar
Scanlon, T. M., Caylor, K. K., Levin, S. A., & Rodriguez-Iturbe, I. (2007). Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature, 449 (7159), pp. 209212. www.doi.org/10.1038/nature06060CrossRefGoogle ScholarPubMed
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413 (6856), pp. 591596. www.doi.org/10.1038/35098000CrossRefGoogle ScholarPubMed
Schneider, F. D., & Kéfi, S. (2016). Spatially heterogeneous pressure raises risk of catastrophic shifts. Theoretical Ecology, 9 (2), pp. 207217. www.doi.org/10.1007/s12080-015-0289-1CrossRefGoogle Scholar
Seager, R., Liu, H., Henderson, N., Simpson, I., Kelley, C., Shaw, T., Kushnir, Y., & Ting, M. (2014). Causes of increasing aridification of the mediterranean region in response to rising greenhouse gases. Journal of Climate, 27 (12), pp. 46554676. www.doi.org/10.1175/JCLI-D-13-00446.1CrossRefGoogle Scholar
Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., et al. (2015). Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 12 (3), pp. 653679. www.doi.org/10.5194/bg-12-653-2015CrossRefGoogle Scholar
Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., & Townshend, J. R. (2018). Global land change from 1982 to 2016. Nature, 560 (7720), pp. 639643.CrossRefGoogle ScholarPubMed
Stavi, I., Siad, S. M., Kyriazopoulos, A. P., & Halbac-Cotoara-Zamfir, R. (2020). Water runoff harvesting systems for restoration of degraded rangelands: A review of challenges and opportunities. Journal of Environmental Management, 255, pp. 109823. www.doi.org/10.1016/j.jenvman.2019.109823CrossRefGoogle ScholarPubMed
Stewart, J., Parsons, A. J., Wainwright, J., Okin, G. S., Bestelmeyer, B. T., Fredrickson, E. L., & Schlesinger, W. H. (2014). Modeling emergent patterns of dynamic desert ecosystems. Ecological Monographs, 84 (3), pp. 373410. www.doi.org/10.1890/12-1253.1CrossRefGoogle Scholar
Suding, K. N., & Hobbs, R. J. (2009). Threshold models in restoration and conservation: a developing framework. Trends in Ecology & Evolution, 24 (5), pp. 271279. www.doi.org/10.1016/j.tree.2008.11.012CrossRefGoogle ScholarPubMed
Tongway, D. J., & Hindley, N. (2004). Landscape function analysis: procedures for monitoring and assessing landscapes. Canberra, Australia: CSIRO Sustainable Ecosystems.Google Scholar
Tongway, D. J., & Ludwig, J. A. (2001). Theories on the origins, maintenance, dynamics, and functioning of banded landscapes. In Tongway, D. J., Valentin, C., & Seghieri, J. (eds.), Banded Vegetation Patterning in Arid and Semiarid Environments: Ecological Processes and Consequences for Management (pp. 2031). New York: Springer.CrossRefGoogle Scholar
Tongway, D. J., & Ludwig, J. A. (2011). Restoring disturbed landscapes: putting principles into practice. Island Press.CrossRefGoogle Scholar
Turnbull, L., & Wainwright, J. (2019). From structure to function: Understanding shrub encroachment in drylands using hydrological and sediment connectivity. Ecological Indicators, 98, pp. 608618. www.doi.org/10.1016/j.ecolind.2018.11.039CrossRefGoogle Scholar
Turnbull, L., Wainwright, J., & Brazier, R. E. (2008). A conceptual framework for understanding semi-arid land degradation: ecohydrological interactions across multiple-space and time scales. Ecohydrology, 1 (1), pp. 2334. www.doi.org/10.1002/eco.4CrossRefGoogle Scholar
Turnbull, L., Wilcox, B. P., Belnap, J., Ravi, S., D’Odorico, P., Childers, D., Gwenzi, W., et al. (2012). Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands. Ecohydrology, 5 (2), pp. 174183. www.doi.org/10.1002/eco.265CrossRefGoogle Scholar
Urgeghe, A. M., & Bautista, S. (2015). Size and connectivity of upslope runoff-source areas modulate the performance of woody plants in Mediterranean drylands. Ecohydrology, 8 (7), pp. 12921303. www.doi.org/10.1002/eco.1582CrossRefGoogle Scholar
Urgeghe, A.M., Mayor, A.G., Turrión, D., Rodríguez, F., & Bautista, S.(2021).Disentangling the independent effects of vegetation cover and pattern on runoff and sediment yield in dryland systems – Uncovering processes through mimicked plant patches. Journal of Arid Environment, 193, pp. 104585.CrossRefGoogle Scholar
Valentin, C., d’Herbès, J. M., & Poesen, J. (1999). Soil and water components of banded vegetation patterns. CATENA, 37 (1), pp. 124. www.doi.org/10.1016/S0341-8162(99)00053-3CrossRefGoogle Scholar
van Auken, O. W. (2009). Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environmental Management, 90 (10), pp. 29312942. www.doi.org/10.1016/j.jenvman.2009.04.023CrossRefGoogle ScholarPubMed
van den Elsen, E., Stringer, L. C., De Ita, C., Hessel, R., Kéfi, S., Schneider, F. D., Bautista, S., et al. (2020). Advances in understanding and managing catastrophic ecosystem shifts in Mediterranean ecosystems. Frontiers in Ecology and Evolution, 8. Original Research. www.doi.org/10.3389/fevo.2020.561101CrossRefGoogle Scholar
Vicente, E., Moreno-de las Heras, M., Merino-Martín, L., Nicolau, J. M., & Espigares, T. (2022). Assessing the effects of nurse shrubs, sink patches and plant water-use strategies for the establishment of late-successional tree seedlings in Mediterranean reclaimed mining hillslopes. Ecological Engineering, 176, pp. 106538. www.doi.org/10.1016/j.ecoleng.2021.106538CrossRefGoogle Scholar
Wainwright, J. (2009). Desert ecogeomorphology. In Parsons, A. J. & Abrahams, A. D. (eds.), Geomorphology of Desert Environments (pp. 2166). Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
Wainwright, J., Parsons, A. J., & Abrahams, A. D. (1999). Rainfall energy under creosotebush. Journal of Arid Environments, 43 (2), pp. 111120. www.doi.org/10.1006/jare.1999.0540CrossRefGoogle Scholar
Wainwright, J., Turnbull, L., Ibrahim, T. G., Lexartza-Artza, I., Thornton, S. F., & Brazier, R. E. (2011). Linking environmental régimes, space and time: Interpretations of structural and functional connectivity. Geomorphology, 126 (3), pp. 387404. www.doi.org/10.1016/j.geomorph.2010.07.027CrossRefGoogle Scholar
Webb, N. P., McCord, S. E., Edwards, B. L., Herrick, J. E., Kachergis, E., Okin, G. S., & Van Zee, J. W. (2021). Vegetation canopy gap size and height: critical indicators for wind erosion monitoring and management. Rangeland Ecology & Management, 76, pp. 7883. www.doi.org/10.1016/j.rama.2021.02.003CrossRefGoogle Scholar
Wilcox, B. P., Breshears, D. D., & Allen, C. D. (2003). Ecohydrology of a resource-coserving semiarid woodland: Effects of scale and disturbance. Ecological Monographs, 73 (2), pp. 223239. www.doi.org/10.1890/0012-9615(2003)073[0223:EOARSW]2.0.CO;2CrossRefGoogle Scholar
Wohl, E., Brierley, G., Cadol, D., Coulthard, T. J., Covino, T., Fryirs, K. A., Grant, G., et al. (2019). Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms, 44 (1), pp. 426. www.doi.org/10.1002/esp.4434CrossRefGoogle Scholar
Xu, C., van Nes, E. H., Holmgren, M., Kéfi, S., & Scheffer, M. (2015). Local facilitation may cause tipping points on a landscape level preceded by early-warning indicators. The American Naturalist, 186 (4), pp. E81–E90. www.doi.org/10.1086/682674CrossRefGoogle ScholarPubMed
Yahdjian, L., Sala, O. E., & Havstad, K. M. (2015). Rangeland ecosystem services: shifting focus from supply to reconciling supply and demand. Frontiers in Ecology and the Environment, 13 (1), pp. 4451. www.doi.org/10.1890/140156CrossRefGoogle Scholar
Ye, J.-S., Reynolds, J. F., Maestre, F. T., & Li, F.-M. (2016). Hydrological and ecological responses of ecosystems to extreme precipitation regimes: A test of empirical-based hypotheses with an ecosystem model. Perspectives in Plant Ecology, Evolution and Systematics, 22, pp. 3646. www.doi.org/10.1016/j.ppees.2016.08.001CrossRefGoogle Scholar
Zobell, R. A., Cameron, A., Goodrich, S., Huber, A., & Grandy, D. (2020). Ground cover – What are the critical criteria and why does it matter? Rangeland Ecology & Management, 73 (4), pp. 569576. www.doi.org/10.1016/j.rama.2020.02.002CrossRefGoogle Scholar
Zurlini, G., Jones, K. B., Riitters, K. H., Li, B.-L., & Petrosillo, I. (2014). Early warning signals of regime shifts from cross-scale connectivity of land-cover patterns. Ecological Indicators, 45, pp. 549560. www.doi.org/10.1016/j.ecolind.2014.05.018CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×