Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T01:38:07.718Z Has data issue: false hasContentIssue false

4 - Further developments for confidence distribution

Published online by Cambridge University Press:  05 March 2016

Tore Schweder
Affiliation:
Universitetet i Oslo
Nils Lid Hjort
Affiliation:
Universitetet i Oslo
Get access

Summary

Confidence distributions were introduced, developed and broadly discussed in the previous chapter, with emphasis on typical constructions and behaviour in smooth parametric models. The present chapter considers various extensions and modifications for use in less straightforward situations. These include cases in which the parameter range of the focus parameter is bounded; the Neyman–Scott problem with a high number of nuisance parameters; the Fieller problem with a ratio of two normal means, and other cases of multimodal likelihoods; Markov chain models; and hazard rate inference.

Introduction

The likelihood machinery is and remains a very powerful and versatile toolbox for theoretical and practical statistics. Theorems 2.2 and 2.4, along with various associated results and consequences, are in constant use, for example, qua algorithms in statistical software packages that use the implied approximations to normality and to chi-squaredness. The confidence distribution methods developed in Chapter 3 also rely in part on this machinery. Along with further supplements and amendments using modified profile deviances or bootstrap techniques for improved accuracy, as investigated in Chapters 7 and 8, this may lead to broadly applicable algorithms implemented in standard statistical software packages.

In the present chapter we pursue the study of stylised and real data examples further, beyond the clearest and cleanest cases dealt with in the previous chapter. We illustrate how certain difficulties arise in cases with bounded parameters or bounded confidence, or with multimodal log-likelihoods, and extend the catalogue of confidence distributions to situations involving Markov chains and time series, hazard rate models with censored data and so forth.

Bounded parameters and bounded confidence

In Chapter 3 we illustrated the use of confidence distributions in fairly regular situations, where the distributions in question in particular have a full, natural range, with C(ψ) starting somewhere at zero and growing smoothly to one. There are important situations in which this picture needs modification, however, and we shall discuss two such general issues here. The first concerns cases where the focus parameter lies in an interval with a natural boundary, as with variance components or in situations where a priori concerns dictate that one parameter must be at least as large as another one.

Type
Chapter
Information
Confidence, Likelihood, Probability
Statistical Inference with Confidence Distributions
, pp. 100 - 153
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×