Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T08:42:55.291Z Has data issue: false hasContentIssue false

7 - The Graph Conception

Published online by Cambridge University Press:  09 January 2020

Luca Incurvati
Affiliation:
Universiteit van Amsterdam
Get access

Summary

The chapter presents and discusses the graph conception of set. According to the graph conception, sets are things depicted by graphs of a certain sort. The chapter begins by presenting four set theories, due to Aczel, which are formulated by using the notion of a graph. The graph conception is then introduced, and a historical excursion into forerunners of the conception is also given. The chapter continues by clarifying the relationship between the conception and the four theories described by Aczel. It concludes by discussing four objections to the graph conception: the objection that set theories based on graphs do not introduce new isomorphism types; the objection that the graph conception does not provide us with an intuitive model for the set theory it sanctions; the objection that the graph conception cannot naturally allow for Urelemente; and the objection that a set theory based on the graph conception cannot provide an autonomous foundation for mathematics. It is argued that whilst the first two objections fail, the remaining two retain their force.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The Graph Conception
  • Luca Incurvati, Universiteit van Amsterdam
  • Book: Conceptions of Set and the Foundations of Mathematics
  • Online publication: 09 January 2020
  • Chapter DOI: https://doi.org/10.1017/9781108596961.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The Graph Conception
  • Luca Incurvati, Universiteit van Amsterdam
  • Book: Conceptions of Set and the Foundations of Mathematics
  • Online publication: 09 January 2020
  • Chapter DOI: https://doi.org/10.1017/9781108596961.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The Graph Conception
  • Luca Incurvati, Universiteit van Amsterdam
  • Book: Conceptions of Set and the Foundations of Mathematics
  • Online publication: 09 January 2020
  • Chapter DOI: https://doi.org/10.1017/9781108596961.008
Available formats
×