Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T10:05:55.670Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  09 January 2020

Luca Incurvati
Affiliation:
Universiteit van Amsterdam
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, W. 1956, Zur Axiomatik der Mengenlehre, Mathematische Annalen 131, 336345.Google Scholar
Aczel, P. 1980, Frege structures and the notions of proposition, truth and set, in Barwise, J., Keisler, J. and Kunen, K. (eds), The Kleene Symposium, Vol. 101 of Studies in Logic and the Foundations of Mathematics, Elsevier, North-Holland, Amsterdam, pp. 31–59.Google Scholar
Aczel, P. 1988, Non-Well-Founded Sets, CSLI Publications, Stanford.Google Scholar
Anderson, A. R. and Belnap, N. D. 1975, Entailment: The Logic of Relevance and Necessity, Princeton University Press, Princeton, NJ.Google Scholar
Antonelli, A. 1999, Conceptions and paradoxes of sets, Philosophia Mathematica 7, 136163.Google Scholar
Awodey, S. 2004, An answer to Hellman’s question: “Does category theory provide a framework for mathematical structuralism?”, Philosophia Mathematica 12, 5464.Google Scholar
Bacon, A. 2013, Non-classical metatheory for non-classical logics, Journal of Philosophical Logic 42, 335355.Google Scholar
Baltag, A. 1999, STS: A structural theory of sets, Logic Journal of the IGPL 7, 481515.Google Scholar
Barwise, J. 1986, Situations, sets, and the axiom of foundation, in Paris, J., Wilkie, A. and Wilmers, G. (eds), Logic Colloquium’84, North-Holland, New York, pp. 2136.Google Scholar
Barwise, J. and Etchemendy, J. 1987, The Liar: An Essay on Truth and Circularity, Oxford University Press, Oxford.Google Scholar
Barwise, J. and Moss, L. 1991, Hypersets, Mathematical Intelligencer 13, 3141.Google Scholar
Barwise, J. and Moss, L. 1996, Vicious Circles, CSLI Publications, Stanford.Google Scholar
Baxter, D. L. M. 1988, Identity in the loose and popular sense, Mind 97, 575582.CrossRefGoogle Scholar
Beall, JC 2009, Spandrels of Truth, Oxford University Press, Oxford.CrossRefGoogle Scholar
Beall, JC, Brady, R. T., Hazen, A. P., Priest, G. and Restall, G. 2006, Relevant restricted quantification, Journal of Philosophical Logic 35, 587598.Google Scholar
Bealer, G. 1982, Quality and Concept, Clarendon Press, Oxford.CrossRefGoogle Scholar
Benacerraf, P. and Putnam, H. 1983, Philosophy of Mathematics: Selected Readings, 2nd edn, Cambridge University Press, Cambridge.Google Scholar
Bernays, P. 1935, Sur le platonisme dans les mathématiques, L’enseignement mathématique 34, 5269. English translation in Benacerraf and Putnam 1983: 258–271.Google Scholar
Bernays, P. 1961, Zur Frage der Unendlichkeitsschemata in der axiomatische Mengenlehre, in Bar-Hillel, Y., Poznanski, E. I. J., Robin, M. O. and Robinson, A. (eds), Essays on the Foundations of Mathematics, Magnes Press, Jerusalem, pp. 3–49. An English translation with a new appendix by the author appears as Bernays 1976.Google Scholar
Bernays, P. 1971, Zum Symposium über die Grundlagen der Mathematik, Dialectica 25, 171–195. Translation by Stewe Awodey available at https://pdfs.semanticscholar.org/db74/2e06bd1951948014f8e7a9f1b9b36322ee6d.pdf.Google Scholar
Bernays, P. 1976, On the problem of schemata of infinity in axiomatic set theory, in Müller, G. (ed.), Sets and Classes: On the Work by Paul Bernays, North-Holland, Amsterdam, pp. 121172.Google Scholar
Boffa, M. 1969, Sur la théorie des ensembles sans axiome de Fondement, Bulletin de la Société Mathématique de Belgique 31, 1656.Google Scholar
Boolos, G. 1971, The iterative conception of set, Journal of Philosophy 68, 215–231. Reprinted in Boolos 1998: 13–29.Google Scholar
Boolos, G. 1985, Nominalist platonism, Philosophical Review 94, 327344. Reprinted in Boolos 1998: 73–87.Google Scholar
Boolos, G. 1989, Iteration again, Philosophical Topics 17, 521. Reprinted in Boolos 1998: 88–104.Google Scholar
Boolos, G. 1993, Whence the contradiction?, Proceedings of the Aristotelian Society Supplementary Volume 67, 213233.Google Scholar
Boolos, G. 1998, Logic, Logic, and Logic, Harvard University Press, Cambridge, MA.Google Scholar
Boolos, G. 2000, Must we believe in set theory?, in Sher, G. and Tieszen, R. (eds), Between Logic and Intuition: Essays in Honor of Charles Parsons, Cambridge University Press, Cambridge, pp. 257–268. Reprinted in Boolos 1998: 120–132.Google Scholar
Booth, D. and Ziegler, R. 1996, Finsler Set Theory: Platonism and Circularity, Birkhäuser Verlag, Basel. Translation of Paul Finsler’s papers with introductory comments.Google Scholar
Brady, R. T. 1984, Depth relevance of some paraconsistent logics, Studia Logica 43, 6373.Google Scholar
Brady, R. T. 1989, The non-triviality of dialectical set theory, in Priest, G., Routley, R. and Norman, J. (eds), Paraconsistent Logic: Essays on the Inconsistent, Philosophia Verlag, Munich, pp. 437470.Google Scholar
Brady, R. T. 2003, Recent developments II, in Brady, R. (ed.), Relevant Logics and Their Rivals, Vol. II, Ashgate, London, pp. 231308.Google Scholar
Brady, R. T. 2006, Universal Logic, CSLI Publications, Stanford.Google Scholar
Brady, R. T. 2014, The simple consistency of naive set theory using metavaluations, Journal of Philosophical Logic 43, 261281.CrossRefGoogle Scholar
Burgess, J. 2004, E Pluribus Unum: Plural logic and set theory, Philosophia Mathematica 3, 193221.Google Scholar
Burgess, J. 2005, Fixing Frege, Princeton University Press, Princeton, NJ.Google Scholar
Cameron, R. 2008, Turtles all the way down: Regress, priority and fundamentality, Philosophical Quarterly 58, 114.Google Scholar
Cantor, G. 1883, Über unendliche, lineare Punktmannigfaltigkeiten, Mathematische Annalen 21, 545–586. Reprinted in Cantor 1932: 165–209.Google Scholar
Cantor, G. 1887–88, Mitteilungen zur Lehre vom Transfiniten, Zeitschrift für Philosophie und philosophische Kritik 91 /92, 81–125 and 240–265. Reprinted in Cantor 1932: 378–439.Google Scholar
Cantor, G. 1895, Beiträge zur Begründung der transfiniten Mengenlehre, Mathematische Annalen 46, 481–512. Reprinted in Cantor 1932: 282–311.Google Scholar
Cantor, G. 1899, Cantor an Dedekind, in Cantor 1932: 443–447. Translated in van Heijenoort 1967: 113–117.Google Scholar
Cantor, G. 1932, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, Springer, Berlin. Edited by Ernst Zermelo.Google Scholar
Cappelen, H. 2018, Fixing Language: An Essay on Conceptual Engineering, Oxford University Press, Oxford.Google Scholar
Chierchia, G. and Turner, R. 1988, Semantics and property theory, Linguistics and Philosophy 11, 261302.Google Scholar
Church, A. 1974, Set theory with a universal set, in Henkin, L. (ed.), Proceedings of the Tarski Symposium, Vol. 25 of Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, RI, pp. 297–308.Google Scholar
Clark, P. 1993, Sets and indefinitely extensible concepts and classes, Proceedings of the Aristotelian Society 67, 235249.Google Scholar
Cleland, C. 1991, On the individuation of events, Synthese 86, 229254.Google Scholar
Cocchiarella, N. B. 1985, Frege’s double correlation thesis and Quine’s set theories NF and ML, Journal of Philosophical Logic 14, 139.Google Scholar
Cocchiarella, N. B. 1992, Conceptual realism versus Quine on classes and higher-order logic, Synthese 90, 379436.Google Scholar
Coret, J. 1964, Formules stratifiées et axiome de fondation, Comptes Rendus hebdo-madaires des séances de l’Académie des Sciences de Paris série A 264, 809–812 and 837–839.Google Scholar
Cotnoir, A. 2010, Anti-symmetry and non-extensional mereology, Philosophical Quarterly 60, 396405.Google Scholar
Cotnoir, A. J. and Baxter, D. L. M. (eds): 2014, Composition as Identity, Oxford University Press, Oxford.CrossRefGoogle Scholar
Crabbé, M. 1992, On NFU, Notre Dame Journal of Formal Logic 33, 112119.Google Scholar
Crabbé, M. 2001, Reassurance for the logic of paradox, Review of Symbolic Logic 4, 479485.CrossRefGoogle Scholar
Curry, H. 1942, The inconsistency of certain formal logics, Journal of Symbolic Logic 7, 115117.Google Scholar
Davidson, D. 1969, The individuation of events, in Rescher, N. (ed.), Essays in Honor of Carl G. Hempel, Reidel, Dordrecht, pp. 216–234. Reprinted in Davidson 2001: 123–129.Google Scholar
Davidson, D. 2001, Essays on Action and Events, 2nd edn, Clarendon Press, Oxford.Google Scholar
Decock, L. 2002, Trading Ontology for Ideology: The Interplay of Logic, Set Theory and Semantics in Quine’s Philosophy, Springer, Dordrecht.Google Scholar
Devlin, K. 1993, The Joy of Sets: Fundamentals of Contemporary Set Theory, 2nd edn, Springer, New York.Google Scholar
Dummett, M. 1963, The philosophical significance of Gödel’s theorem, Ratio 5, 140–155. Reprinted in Dummett 1978: 186–201.Google Scholar
Dummett, M. 1978, Truth and Other Enigmas, Duckworth, London.Google Scholar
Dummett, M. 1981, Frege: Philosophy of Language, 2nd edn, Duckworth, London.Google Scholar
Dummett, M. 1991, Frege: Philosophy of Mathematics, Harvard University Press, Cambridge, MA.Google Scholar
Dummett, M. 1993, What is mathematics about?, in Dummett, M., The Seas of Language, Oxford University Press, Oxford, pp. 429445.Google Scholar
Ernst, M. 2017, Category theory and foundations, in Landry, E. (ed.), Categories for the Working Philosopher, Oxford University Press, Oxford, pp. 6989.Google Scholar
Feferman, S. 1977, Categorical foundations and foundations of category theory, in Butts, R. E. and Hintikka, J. (eds), Logic, Foundations of Mathematics and Computability Theory, Vol. 1, Reidel, Dordrecht, pp. 149165.Google Scholar
Feferman, S. 2004, Typical ambiguity: Trying to have your cake and eat it too, in Link, G. (ed.), One Hundred Years of Russell’s Paradox, Walter de Gruyter, Berlin, pp. 135151.Google Scholar
Feferman, S. 2012, Foundations of unlimited category theory: What remains to be done, Review of Symbolic Logic 6, 615.Google Scholar
Field, H. 1980, Science without Numbers, Oxford University Press, Oxford.Google Scholar
Field, H. 2008, Saving Truth from Paradox, Oxford University Press, Oxford.Google Scholar
Field, H. Lederman, H. and Øgaard, T. F. 2017, Prospects for a naive theory of classes, Notre Dame Journal of Formal Logic 58, 461506.Google Scholar
Fine, K. 1994, Essence and modality, in Tomberlin, J. (ed.), Philosophical Perspectives 8: Logic and Language, Ridgeview, Atascadero, CA, pp. 116.Google Scholar
Fine, K. 1995, Ontological dependence, Proceedings of the Aristotelian Society 95, 269290.Google Scholar
Fine, K. 2005, Class and membership, Journal of Philosophy 102, 547572.Google Scholar
Finsler, P. 1926, Über die Grundlagen der Mengenlehre, I, Mathematische Zeitschrift 25, 683–713. Reprinted and translated in Booth and Ziegler 1996: 103–132.Google Scholar
Florio, S. 2014, Unrestricted quantification, Philosophy Compass 9, 441454.Google Scholar
Florio, S. and Leach-Krouse, G. 2017, What Russell should have said to Burali-Forti, Review of Symbolic Logic 10, 682718.CrossRefGoogle Scholar
Forster, T. 1995, Set Theory with a Universal Set, 2nd edn, Oxford University Press, Oxford.Google Scholar
Forster, T. 2003, ZF + every set is the same size as a wellfounded set, Journal of Symbolic Logic 68, 14.Google Scholar
Forster, T. 2008, The iterative conception of set, The Review of Symbolic Logic 1, 97110.Google Scholar
Forti, M. and Honsell, F. 1983, Set theory with free construction principles, Annali Scuola Normale Superiore di Pisa, Classe di Scienze 10, 493522.Google Scholar
Fraenkel, A., Bar-Hillel, Y. and Lévi, A. 1973, Foundations of Set Theory, North-Holland, Amsterdam.Google Scholar
Frege, G. 1884, Die Grundlagen der Arithmetik, Wilhelm Koebner, Breslau. Translated as Frege 1953.Google Scholar
Frege, G. 1892, On concept and object, Vierteljahrsschrift für wisseschaftliche Philosophie 16, 192–205. Translated in Geach and Black 1952: 42–55.Google Scholar
Frege, G. 1893/1190, Grundgesetze der Arithmetik, Vol. I and II, Verlag Hermann Pohle, Jena. Translated in Frege 2013.Google Scholar
Frege, G. 1953, The Foundations of Arithmetic, 2nd edn, Basil Blackwell, Oxford.Google Scholar
Frege, G. 1979, Posthumous Writings, Chicago University Press, Chicago, IL. Edited by Hans Hermes, Friedrich Kambartel and Friedrich Kaulbach. Translated by Peter Long and Roger White.Google Scholar
Frege, G. 2013, Basic Laws of Arithmetic: Derived using Concept-Script, Oxford University Press, Oxford. Translated by P. Ebert and M. Rossberg (with C. Wright).Google Scholar
Friedman, H. 1971, Higher set theory and mathematical practice, Annals of Mathematical Logic 2, 325357.Google Scholar
Geach, P. and Black, M. (eds): 1952, Translations from the Philosophical Writings of Gottlob Frege, Basic Blackwell, Oxford.Google Scholar
Gloede, K. 1976, Reflection principles and indescribability, in Müller, G. (ed.), Sets and Classes: On the Work by Paul Bernays, North-Holland, Amsterdam, pp. 277323.Google Scholar
Gödel, K. *1933, The present situation in the foundations of mathematics, in Gödel 1990: 45–53.Google Scholar
Gödel, K. 1944, Russell’s mathematical logic, in Schilpp, P. A. (ed.), The Philosophy of Bertrand Russell, Northwestern University, Evanston and Chicago, pp. 123–153. Reprinted in Gödel 1990: 119–141.Google Scholar
Gödel, K. 1947, What is Cantor’s continuum problem?, American Mathematical Monthly 54, 515–525. Reprinted in Gödel 1990: 176–187.Google Scholar
Gödel, K. *1951, Some basic theorems on the foundations of mathematics and their implications, in Gödel 1995: 304–323.Google Scholar
Gödel, K. 1958, Über eine bisher noch nicht benütze Erweitrung des finiten Standpunktes, Dialectica 12, 280–287. Reprinted and translated in Gödel 1990: 240–251.Google Scholar
Gödel, K. 1964, What is Cantor’s continuum problem?, in Benacerraf and Putnam 1983: 470–485. Revised and expanded version of Gödel 1947. Reprinted in Gödel 1990: 254–270.Google Scholar
Gödel, K. 1972, On an extension of finitary mathematics which has not yet been used, to have appeared in Dialectica. First published in Gödel 1990: 271–280. Revised and expanded English translation of Gödel 1958.Google Scholar
Gödel, K. 1990, Collected Works II, Oxford University Press, Oxford.Google Scholar
Gödel, K. 1995, Collected Works III, Oxford University Press, Oxford.Google Scholar
Grattan-Guiness, I. 1971, The correspondence between Georg Cantor and Philip Jourdain, Jahresbericht der Deutschen Mathematiker-Vereinigung 73, 111130.Google Scholar
Grišin, V. N. 1974, A nonstandard logic and its application to set theory, Studies in Formalized Languages and Nonclassical Logics, Nauka, Moscow, pp. 135171. In Russian.Google Scholar
Hailperin, T. 1944, A set of axioms for logic, Journal of Symbolic Logic 9, 119.Google Scholar
Hale, B. and Wright, C. 2001, The Reason’s Proper Study: Essays towards a Neo-Fregean Philosophy of Mathematics, Clarendon Press, Oxford.Google Scholar
Hallett, M. 1984, Cantorian Set Theory and Limitation of Size, Clarendon Press, Oxford.Google Scholar
Hamacher-Hermes, A. 1994, Inhalts- oder UmfgangsLogik? , Alber, Freiburg.Google Scholar
Haslanger, S. 2000, Gender and race: What are they? What do we want them to be?, Noûs 34, 3155.Google Scholar
Haslanger, S. 2012, Resisting Reality: Social Construction and Social Critique, Oxford University Press, Oxford.Google Scholar
Hazen, A. 1993, Review of Pollard 1990, Philosophia Mathematica 1, 173179.Google Scholar
Henson, C. W. 1973, Type-raising operations on cardinal and ordinal numbers in Quine’s ‘New Foundations’, Journal of Symbolic Logic 38, 5968.Google Scholar
Holmes, R. 1998, Elementary Set Theory with a Universal Set, Vol. 10 of Cahiers du Centre de Logique, Bruylant-Academia, Louvain-la-Neuve.Google Scholar
Holmes, R. 2001, Strong axioms of infinity in NFU, Journal of Symbolic Logic 66, 87116.Google Scholar
Holmes, R. 2009, Alternative axiomatic set theories, in E. N. Zalta (ed.), Stanford Encyclopedia of Philosophy (Spring 2009 Edition). Available at http://plato.stanford.edu/archives/spr2009/entries/settheory-alternative/.Google Scholar
Horsten, L. 2010, Impredicative identity criteria, Philosophy and Phenomenological Research 80, 411439.Google Scholar
Horwich, P. 1990, Truth, Basil Blackwell, Oxford and Cambridge, MA.Google Scholar
Horwich, P. 1998, Truth, 2nd edn, Clarendon Press, Oxford.Google Scholar
Hossack, K. 2014, Sets and plural comprehension, Journal of Philosophical Logic 43, 517539.Google Scholar
Incurvati, L. 2008, On adopting Kripke semantics in set theory, Review of Symbolic Logic 1, 8196.Google Scholar
Incurvati, L. 2010, Set Theory: Its Justification, Logic and Extent, PhD thesis, University of Cambridge.Google Scholar
Incurvati, L. 2012, How to be a minimalist about sets, Philosophical Studies 159, 6987.Google Scholar
Incurvati, L. 2014, The graph conception of set, Journal of Philosophical Logic 43, 181208.Google Scholar
Incurvati, L. 2016, Can the cumulative hierarchy be categorically characterized?, Logique et Analyse 59, 367387.Google Scholar
Incurvati, L. 2017, Maximality principles in set theory, Philosophia Mathematica 25, 159193.Google Scholar
Incurvati, L. and Murzi, J. 2017, Maximally consistent sets of instances of Naive Comprehension, Mind 126, 371384.Google Scholar
Jané, I. 1995, The role of the absolute infinite in Cantor’s conception of set, Erkenntnis 42, 375402.Google Scholar
Jané, I. and Uzquiano, G. 2004, Well- and non-well-founded Fregean extensions, Journal of Philosophical Logic 33, 437465.Google Scholar
Jech, T. 2003, Set Theory: The Third Millenium Edition, Springer, Berlin.Google Scholar
Jensen, R. 1969, On the consistency of a slight(?) modification of Quine’s New Foundations, Synthese 19, 250263.Google Scholar
Johnstone, P., Power, J., Tsujishita, T., Watanabe, H. and Worrell, J. 2001, On the structure of categories of coalgebras, Theoretical Computer Science 260, 87117.Google Scholar
Kanamori, A. 2003, The Higher Infinite, 2nd edn, Springer, Berlin.Google Scholar
Kim, J. 1973, Causation, nomic subsumption, and the concept of event, Journal of Philosophy 70, 217236.Google Scholar
Kleene, S. C. 1952, Introduction to Metamathematics, North Holland, Amsterdam.Google Scholar
Koellner, P. 2003, The Search for New Axioms, PhD thesis, MIT, Cambridge, MA.Google Scholar
Koellner, P. 2009, On reflection principles, Annals of Pure and Applied Logic 157, 206219.Google Scholar
Kreisel, G. 1967, Informal rigour and completeness proofs, in Lakatos, I. (ed.), Problems in the Philosophy of Mathematics, North-Holland, Amsterdam, pp. 138171.Google Scholar
Kreisel, G. 1980, Kurt Gödel, Biographical Memoirs of Fellows of the Royal Society of London 26, 149224.Google Scholar
Kundera, M. 1984, The Unbearable Lightness of Being, Harper and Row, New York.Google Scholar
Ladyman, J. and Presnell, S. 2018, Does homotopy type theory provide a foundation for mathematics?, British Journal for the Philosophy of Science 69, 377420.Google Scholar
Lavine, S. 1994, Understanding the Infinite, Harvard University Press, Cambridge, MA.Google Scholar
Lear, J. 1977, Sets and semantics, Journal of Philosophy 74, 86102.Google Scholar
Leitgeb, H. 2007, On the metatheory of Field’s ‘Solving the paradoxes, escaping revenge’, in Beall, JC (ed.), Revenge of the Liar, Oxford University Press, Oxford, pp. 159183.Google Scholar
Leng, M. 2007, What’s there to know?, in Leng, M., Paseau, A. and Potter, M. (eds), Mathematical Knowledge, Oxford University Press, Oxford, pp. 84108.Google Scholar
Leśniewski, S. 1916, Podstawy ogólnej teoryi mnogości. I, Prace Polskiego Kola Naukowego w Moskwie, Moscow. Translation in Leśniewski 1992: 129–173.Google Scholar
Leśniewski, S. 1992, Foundations of the General Theory of Sets. I, Vol. 1, Kluwer, Dordrecht.Google Scholar
Lévy, A. 1960, Axiom schemata of strong infinity in axiomatic set theory, Pacific Journal of Mathematics 10, 223238.Google Scholar
Lévy, A. and Vaught, R. 1961, Principles of partial reflection in the set theories of Zermelo and Ackermann, Pacific Journal of Mathematics 11, 10451062.Google Scholar
Lewis, D. 1983, New work for a theory of universals, Australasian Journal of Philosophy 61, 343377.Google Scholar
Lewis, D. 1991, Parts of Classes, Basil Blackwell, Oxford.Google Scholar
Linnebo, Ø. 2008, Structuralism and the notion of dependence, Philosophical Quarterly 58, 5979.Google Scholar
Linnebo, Ø. 2010, Pluralities and sets, Journal of Philosophy 107, 144164.Google Scholar
Linnebo, Ø. 2018, Dummett on indefinite extensibility, Philosophical Issues 28, 196220.Google Scholar
Linnebo, Ø. and Pettigrew, R. 2011, Category theory as an autonomous foundation, Philosophia Mathematica 19, 227254.Google Scholar
Linnebo, Ø. and Rayo, A. 2012, Hierarchies ontological and ideological, Mind 121, 269308.Google Scholar
Lipton, P. 2003, Inference to the Best Explanation, Routledge, London and New York.Google Scholar
Lowe, E. J. 1989, What is a criterion of identity?, Philosophical Quarterly 39, 121.Google Scholar
Lowe, E. J. 1991, One-level versus two-level identity criteria, Analysis 51, 192194.Google Scholar
Lowe, E. J. 2003, Individuation, in Loux, M. and Zimmerman, D. (eds), Oxford Handbook of Metaphysics, Oxford University Press, Oxford, pp. 7595.Google Scholar
Lowe, E. J. 2005, Ontological dependence, in E. N. Zalta (ed.), Stanford Encyclopedia of Philosophy (Fall 2008 Edition). Available at http://plato.stanford.edu/archives/fall2008/entries/dependence-ontological/.Google Scholar
Lowe, E. J. 2007, Sortals and the individuation of objects, Mind and Language 22, 514533.Google Scholar
MacLane, S. 1986, Mathematics, Form and Function, Springer-Verlag, New York.Google Scholar
Maddy, P. 1983, Proper classes, Journal of Symbolic Logic 48, 113139.Google Scholar
Maddy, P. 1988, Believing the axioms. I, Journal of Symbolic Logic 53, 481511.Google Scholar
Maddy, P. 1990, Realism in Mathematics, Clarendon Press, Oxford.Google Scholar
Maddy, P. 1996, Set theoretic naturalism, Journal of Symbolic Logic 61, 490514.Google Scholar
Maddy, P. 1997, Naturalism in Mathematics, Clarendon Press, Oxford.Google Scholar
Maddy, P. 2007, Second Philosophy: A Naturalistic Method, Oxford University Press, New York.Google Scholar
Maddy, P. 2011, Defending the Axioms: On the Philosophical Foundations of Set Theory, Oxford University Press, New York.Google Scholar
Martin, D. 1970, Review of Set Theory and Its Logic by Willard Van Orman Quine, Journal of Philosophy 67, 111114.Google Scholar
Martin, D. A. 1975, Borel determinacy, Annals of Mathematics 102, 363371.Google Scholar
Martin, D. A. 1998, Mathematical evidence, in Dales, H. G. and Oliveri, G. (eds), Truth in Mathematics, Clarendon Press, Oxford, pp. 215230.Google Scholar
Martin, D. A. 2001, Multiple universes of sets and indeterminate truth-values, Topoi 20, 516.Google Scholar
Martin, D. A. and Steel, J. R. 1989, A proof of projective determinacy, Journal of the American Mathematical Society 2, 71125.Google Scholar
Mathias, A. 2001, Slim models of Zermelo set theory, Journal of Symbolic Logic 66, 487496.Google Scholar
McGee, V. 1992, Two problems with Tarski’s theory of consequence, Proceedings of the Aristotelian Society 92, 273292.Google Scholar
McGee, V. 1997, How we learn mathematical language, Philosophical Review 106, 3568.Google Scholar
McLarty, C. 1992, Failure of cartesian closedness in NF, Journal of Symbolic Logic 57, 555556.Google Scholar
McLarty, C. 1993, Anti-foundation and self-reference, Journal of Philosophical Logic 22, 1928.Google Scholar
Meadows, T. 2015, Unpicking Priest’s bootstraps, Thought 4, 181188.Google Scholar
Menzel, C. 2014, Wide sets, ZFCU, and the iterative conception, Journal of Philosophy 111, 5783.Google Scholar
Meschkowski, H. 1967, Probleme des Unendlichen: Werk und Leben Georg Cantors, Vieweg, Braunschweig.Google Scholar
Meyer, R., Routley, R. and Dunn, J. M. 1979, Curry’s Paradox, Analysis 39, 124128.Google Scholar
Mirimanoff, D. 1917, Remarque sur la théorie des ensembles et les antinomies Cantorienne. I, L’Enseignment Mathématique 19, 3752.Google Scholar
Mitchell, E. 1976, A Model of Set Theory with a Universal Set, PhD thesis, University of Wisconsin at Madison.Google Scholar
Montague, R. 1957, Contributions to the Axiomatic Foundation of Set Theory, PhD thesis, University of California, Berkeley.Google Scholar
Montague, R. 1961, Fraenkel’s addition to the axioms of Zermelo, in Bar-Hillel, Y., Poznanski, E. I. J., Rabin, M. O. and Robinson, A. (eds), Essays on the Foundations of Mathematics, Magnes Press, Jerusalem, pp. 91114.Google Scholar
Morris, S. 2017, The significance of Quine’s New Foundations for the philosophy of set theory, The Monist 100, 167179.Google Scholar
Moschovakis, Y. N. 2006, Notes on Set Theory, 2nd edn, Springer, New York.Google Scholar
Moss, L. 2009, Non-wellfounded set theory, in E. N. Zalta (ed.), Stanford Encyclopedia of Philosophy (Fall 2009 Edition). Available at http://plato.stanford.edu/archives/fall2009/entries/nonwellfounded-set-theory/.Google Scholar
Myhill, J. 1984, Paradoxes, Synthese 60, 129143.Google Scholar
Oliver, A. 2000, Logic, mathematics and philosophy: Review of Boolos 1998, British Journal for the Philosophy of Science 51, 857873.Google Scholar
Oliver, A. and Smiley, T. 2006, What are sets and what are they for?, Philosophical Perspectives 20, 123155.Google Scholar
Oliver, A. and Smiley, T. 2012, Plural Logic, Oxford University Press, Oxford.Google Scholar
Orey, S. 1964, New Foundations and the Axiom of Counting, Notre Dame Journal of Formal Logic 31, 655660.Google Scholar
Parikh, R. 1971, Existence and feasibility in arithmetic, Journal of Symbolic Logic 36, 494508.Google Scholar
Parsons, C. 1974, Sets and classes, Noûs 8, 112.Google Scholar
Parsons, C. 1977, What is the iterative conception of set?, in Butts, R. E. and Hintikka, J. (eds), Logic, Foundations of Mathematics, and Computability Theory. Proceedings of the Fifth International Congress of Logic, Methodology and the Philosophy of Science (London, Ontario, 1975), Reidel, Dordrecht. Reprinted in Benacerraf and Putnam 1983: 503–529.Google Scholar
Parsons, C. 2008, Mathematical Thought and Its Objects, Cambridge University Press, Cambridge.Google Scholar
Parsons, C. 2014, Analyticity for realists, in Kennedy, J. (ed.), Interpreting Gödel, Cambridge University Press, Cambridge, pp. 131150.Google Scholar
Paseau, A. 2007, Boolos on the justification of set theory, Philosophia Mathematica 15, 3053.Google Scholar
Pollard, S. 1988, Plural quantification and the axiom of choice, Philosophical Studies 54, 393397.Google Scholar
Pollard, S. 1990, Philosophical Introduction to Set Theory, Notre Dame University Press, Notre Dame.Google Scholar
Pollard, S. 1992, Choice again, Philosophical Studies 66, 285296.Google Scholar
Potter, M. 2004, Set Theory and Its Philosophy, Oxford University Press, Oxford.Google Scholar
Potter, M. 2009, Abstractionist class theory: is there any such thing?, in Lear, J. and Oliver, A. (eds), The Force of Argument: Essays in Honor of Timothy Smiley, Routledge, London, pp. 186204.Google Scholar
Priest, G. 1979, The logic of paradox, Journal of Philosophical Logic 8, 219241.Google Scholar
Priest, G. 2001, Minimally inconsistent LP, Studia Logica 50, 321331.Google Scholar
Priest, G. 2002, Beyond the Limits of Thought, 2nd, extended edn, Oxford University Press, Oxford.Google Scholar
Priest, G. 2006a, Doubt Truth to Be a Liar, Oxford University Press, New York.Google Scholar
Priest, G. 2006b, In Contradiction, 2nd edn, Oxford University Press, Oxford.Google Scholar
Priest, G. 2017, What If ? the exploration of an idea, Australasian Journal of Logic 14, 54127.Google Scholar
Priest, G. and Routley, R. 1989, Applications of paraconsistent logic, in Priest, G., Routley, R. and Norman, J. (eds), Paraconsistent Logic: Essays on the Inconsistent, Philosophia Verlag, Hamden, pp. 369373.Google Scholar
Quine, W. V. 1937, New foundations for mathematical logic, American Mathematical Monthly 44, 7080.Google Scholar
Quine, W. V. 1938a, On Cantor’s Theorem, Journal of Symbolic Logic 2, 120124.Google Scholar
Quine, W. V. 1938b, On the theory of types, Journal of Symbolic Logic 3, 125139.Google Scholar
Quine, W. V. 1940, Mathematical Logic, Norton, New York.Google Scholar
Quine, W. V. 1941, Whitehead and the rise of modern logic, in Schilpp, P. A. (ed.), The Philosophy of Alfred North Whitehead, Northwestern University, Evanston and Chicago, pp. 127–163. Reprinted in Quine 1995: 336.Google Scholar
Quine, W. V. 1951a, Mathematical Logic, revised edition of Quine 1940 edn, Harvard University Press, Cambridge, MA.Google Scholar
Quine, W. V. 1951b, Two dogmas of empiricism, Philosophical Review 60, 2043.Google Scholar
Quine, W. V. 1956, Unification of universes in set theory, Journal of Symbolic Logic 21, 267279.Google Scholar
Quine, W. V. 1963, Set Theory and Its Logic, Harvard University Press, Cambridge, MA.Google Scholar
Quine, W. V. 1970, Reply to D. A. Martin, Journal of Philosophy 67, 247248.Google Scholar
Quine, W. V. 1987a, The inception of New Foundations. In Quine 1995: 286289.Google Scholar
Quine, W. V. 1987b, Quiddities: An Intermittently Philosophical Dictionary, Harvard University Press, Cambridge, MA.Google Scholar
Quine, W. V. 1995, Selected Logic Papers, Harvard University Press, Cambridge, MA.Google Scholar
Ramsey, F. P. 1925, The foundations of mathematics, Proceedings of the London Mathematical Society 25, 338384. Reprinted in Ramsey 1990: 164–224.Google Scholar
Ramsey, F. P. 1990, Philosophical Papers, Cambridge University Press, Cambridge. Edited by D. H. Mellor.Google Scholar
Rawls, J. 1971, A Theory of Justice, Harvard University Press, Cambridge, MA.Google Scholar
Rayo, A. and Uzquiano, G. 1999, Toward a theory of second-order consequence, Notre Dame Journal of Formal Logic 40, 315325.Google Scholar
Rayo, A. and Williamson, T. 2003, A completeness theorem for unrestricted first-order languages, in Beall, JC (ed.), Liar and Heaps, Clarendon Press, Oxford, pp. 331356.Google Scholar
Reinhardt, W. N. 1974, Remarks on reflection principles, large cardinals, and elementary embeddings, in Jech, T. J. (ed.), Axiomatic Set Theory II: Proceedings of Symposia in Pure Mathematics, 13, American Mathematical Society, Providence, RI, pp. 189205.Google Scholar
Restall, G. 1992, A note on naive set theory in LP, Notre Dame Journal of Formal Logic 33, 422432.Google Scholar
Rieger, A. 2000, An argument for Finsler-Aczel set theory, Mind 109, 241253.Google Scholar
Ripley, D. 2015, Naive set theory and nontransitive logic, Review of Symbolic Logic pp. 553–571.Google Scholar
Rosser, J. B. 1942, The Burali-Forti Paradox, Journal of Symbolic Logic 7, 117.Google Scholar
Rosser, J. B. 1953, Logic for Mathematicians, McGraw-Hill, New York.Google Scholar
Rosser, J. B. and Wang, H. 1950, Non-standard models for formal logics, Journal of Symbolic Logic 15, 113129.Google Scholar
Routley, R. 1980, Exploring Meinong’s Jungle and Beyond: An Investigation of Noneism and the Theory of Items, Philosophy Department, RSSS, Australian National University, Canberra.Google Scholar
Ruffino, M. 2003, Why Frege would not be a neo-Fregean, Mind 112, 5178.Google Scholar
Russell, B. 1902, Letter to Frege. In van Heijenoort 1967: 124125.Google Scholar
Russell, B. 1903, Principles of Mathematics, Allen & Unwin, London.Google Scholar
Russell, B. 1906, On some difficulties in the theory of transfinite numbers and order types, Proceedings of the London Mathematical Society 4, 2953.Google Scholar
Russell, B. 1959, My Philosophical Development, Routledge, London.Google Scholar
Rutten, J. 2000, Universal coalgebra: A theory of systems, Theoretical Computer Science 249, 380.Google Scholar
Schaffer, J. 2009, On what grounds what, in Chalmers, D., Manley, D. and Wasserman, R. (eds), Metametaphysics, Oxford University Press, Oxford, pp. 347383.Google Scholar
Scharp, K. 2013, Replacing Truth, Oxford University Press, Oxford.Google Scholar
Schindler, T. 2019, Classes, why and how, Philosophical Studies 176, 407435.Google Scholar
Scott, D. 1955, Definitions by abstraction in axiomatic set theory, Bulletin of the American Mathematical Society 61, 442.Google Scholar
Scott, D. 1960, A different kind of model for set theory. Unpublished paper given at the Stanford Congress of Logic, Methodology and Philosophy of Science.Google Scholar
Scott, D. 1961, Measurable cardinals and constructible sets, Bulletin de l’Académie Polonaise des Sciences 9, 521524.Google Scholar
Scott, D. 1974, Axiomatizing set theory, in Jech, T. J. (ed.), Axiomatic Set Theory II. Proceedings of Symposia in Pure Mathematics, 13, American Mathematical Society, Providence, RI, pp. 207–214.Google Scholar
Shapiro, S. 1991, Foundations without Foundationalism: A Case for Second-Order Logic, Oxford University Press, Oxford.Google Scholar
Shapiro, S. 1997, Philosophy of Mathematics: Structure and Ontology, Oxford University Press, New York.Google Scholar
Shapiro, S. 2000, Thinking about Mathematics, Oxford University Press, New York.Google Scholar
Shapiro, S. 2003, Prolegomenon to any future neo-logicist set theory: Abstraction and indefinite extensibility, British Journal for the Philosophy of Science 54, 5991.Google Scholar
Shapiro, S. 2004, Foundations of mathematics: Metaphysics, epistemology, structure, Philosophical Quarterly 54, 1637.Google Scholar
Shapiro, S. 2006a, Computability, proof, and open-texture, in Olszweski, A., Woleński, J. and Janusz, R. (eds), Church’s Thesis After 70 Years, Ontos-Verlag, Heusenstamm, pp. 420451.Google Scholar
Shapiro, S. 2006b, Structure and identity, in MacBride, F. (ed.), Identity and Modality, Oxford University Press, Oxford, pp. 109145.Google Scholar
Shapiro, S. 2008, Identity, indiscernibility, and ante rem structuralism: The tale of i and − i, Philosophia Mathematica 16, 126.Google Scholar
Shapiro, S. and Weir, A. 1999, New V, ZF and abstraction, Philosophia Mathematica 7, 293321.Google Scholar
Shapiro, S. and Wright, C. 2006, All things indefinitely extensible, in Rayo, A. and Uzquiano, G. (eds), Absolute Generality, Oxford University Press, Oxford, pp. 255304.Google Scholar
Shoenfield, J. R. 1965, Mathematical Logic, Addison-Wesley, Reading, MA.Google Scholar
Shoenfield, J. R. 1977, Axioms of set theory, in Barwise, J. (ed.), Handbook of Mathematical Logic, North-Holland, Amsterdam, pp. 321344.Google Scholar
Sider, T. 2007, Parthood, Philosophical Review 116, 5191.Google Scholar
Simons, P. 1991, Part/whole ii: Mereology since 1900, in Burkhardt, H. and Smith, B. (eds), Handbook of Metaphysics and Ontology, Philosophia, Munich, pp. 209210.Google Scholar
Simpson, S. G. 1999, Subsystems of Second-Order Arithmetic, Springer-Verlag, Berlin.Google Scholar
Soames, S. 1999, Understanding Truth, Oxford University Press, Oxford.Google Scholar
Specker, E. P. 1953a, The Axiom of Choice in Quine’s New Foundations for Mathematical Logic, Proceedings of the National Academy of Sciences of the United States of America 39, 972975.Google Scholar
Specker, E. P. 1953b, Dualtität, Dialectica 12, 451465.Google Scholar
Specker, E. P. 1962, Typical ambiguity, in Nagel, E. (ed.), Logic, Methodology and Philosophy of Science, Stanford University Press, Stanford, CA, pp. 116123.Google Scholar
Strawson, P. 1979, Individuals, University Paperbacks, London.Google Scholar
Sullivan, P. 2007, How did Frege fall into the contradiction?, Ratio 20, 91107.Google Scholar
Tait, W. W. 1998, Zermelo’s conception of set theory and reflection principles, in Schirn, M. (ed.), The Philosophy of Mathematics Today, Oxford University Press, Oxford, pp. 469483.Google Scholar
Tait, W. W. 2001, Gödel’s unpublished papers in the foundations of mathematics, Philosophia Mathematica 9, 87126.Google Scholar
Tarski, A. 1955, The notion of rank in axiomatic set theory and some of its applications, Bulletin of the American Mathematical Society 61, 443.Google Scholar
Thomas, M. 2014, Expressive limitations of naïve set theory in LP and minimally inconsistent LP, Review of Symbolic Logic 7, 341350.Google Scholar
Thomas, M. 2018, Approximating cartesian closed categories in NF-style set theories, Journal of Philosophical Logic 47, 143160.Google Scholar
Trueman, R. 2015, The concept horse with no name, Philosophical Studies 172, 18891906.Google Scholar
Turi, D. and Rutten, J. 1998, On the foundations of final coalgebra semantics: non-wellfounded sets, partial orders, metric spaces, Mathematical Structures in Computer Science 8, 481540.Google Scholar
Turing, A. 1936, On computable numbers, with an application to the Entscheindungsprob-lem, Proceedings of the London Mathematical Society 42, 230265.Google Scholar
Tutte, W. T. 2001, Graph Theory, paperback edn, Cambridge University Press, Cambridge.Google Scholar
Urquhart, A. 1988, Russell’s zigzag path to the ramified theory of types, Russell: The Journal of Bertrand Russell Studies 8, 8291.Google Scholar
Uzquiano, G. 1999, Models of second-order Zermelo set theory, Bulletin of Symbolic Logic 5, 289302.Google Scholar
Uzquiano, G. 2015a, Modality and paradox, Philosophy Compass 10, 284300.Google Scholar
Uzquiano, G. 2015b, A neglected resolution of Russell’s paradox of propositions, Review of Symbolic Logic 8, 328344.Google Scholar
van den Berg, B. and De Marchi, F. 2007, Non-well-founded trees in categories, Annals of Pure and Applied Logic 146, 4059.Google Scholar
van Heijenoort, J. 1967, From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge, MA.Google Scholar
van Inwagen, P. 1990, Material Beings, Cornell University Press, Ithaca, NY.Google Scholar
Varzi, A. 2008, The extensionality of parthood and composition, Philosophical Quarterly 58, 108133.Google Scholar
von Neumann, J. 1923, Letter to Ernst Zermelo, 15 August 1923. In Meschkowski 1967: 271–273.Google Scholar
von Neumann, J. 1925, Eine Axiomatisierung der Mengenlehre, Journal für die reine und angewandte Mathematik 154, 219–240. English translation in van Heijenoort 1967: 393–413.Google Scholar
Waismann, F. 1945, Verifiability, Proceedings of the Aristotelian Society Supplementary Volume 19, 119150.Google Scholar
Wang, H. 1950, A formal system of logic, Journal of Symbolic Logic 15, 2532.Google Scholar
Wang, H. 1974, From Mathematics to Philosophy, Routledge and Kegan Paul, London.Google Scholar
Wang, H. 1977, Large sets, in Butts, R. E. and Hintikka, J. (eds), Logic, Foundations of Mathematics, and Computability Theory: Proceedings of the Fifth International Congress of Logic, Methodology and the Philosophy of Science (London, Ontario, 1975), Reidel, Dordrecht, pp. 309334.Google Scholar
Wang, H. 1996, A Logical Journey: From Gödel to Philosophy, MIT Press, Cambridge, MA.Google Scholar
Weber, Z. 2010a, Extensionality and restriction in naive set theory, Studia Logica 94, 87104.Google Scholar
Weber, Z. 2010b, Transfinite numbers in paraconsistent set theory, Review of Symbolic Logic 3, 7192.Google Scholar
Weber, Z. 2012, Transfinite cardinals in paraconsistent set theory, Review of Symbolic Logic 5, 269292.Google Scholar
Weber, Z. 2013, Notes on inconsistent set theory, in Tanaka, K., Berto, F., Mares, E. and Paoli, F. (eds), Paraconsistency: Logic and Applications, Springer, Dordrecht, pp. 315328.Google Scholar
Weir, A. 1998a, Naïve set theory is innocent!, Mind 107, 763798.Google Scholar
Weir, A. 1998b,Naïve set theory, paraconsistency and indeterminacy: part I, Logique et Analyse161–163,219–266.Google Scholar
Weir, A. 1999, Naïve set theory, paraconsistency and indeterminacy: part II, Logique et Analyse 167–168, 283–340.Google Scholar
Weir, A. 2004, There are no true contradictions, in Priest, G., Beall, JC and Armour-Garb, B. (eds), The Law of Non-Contradiction: New Philosophical Essays, Clarendon Press, Oxford, pp. 385–417.Google Scholar
Welch, P. 2014, Global reflection principles, in Leitgeb, H., Niiniluoto, I., Seppälä, P. and Sober, E. (eds), Logic, Methodology and Philosophy of Science: Proceedings of the Fifteenth International Congress, College Publications, London, pp. 82100.Google Scholar
Welch, P. and Horsten, L. 2016, Reflecting on absolute infinity, Journal of Philosophy 113, 89111.Google Scholar
Whitehead, A. N. and Russell, B. 1910, 1912, 1913, Principa Mathematica, Cambridge University Press, Cambridge. 3 volumes.Google Scholar
Williamson, T. 1990, Identity and Discrimination, Basil Blackwell, Oxford.Google Scholar
Williamson, T. 1991, Fregean directions, Analysis 51, 194195.Google Scholar
Williamson, T. 1994, Never say never, Topoi 13, 135145.Google Scholar
Williamson, T. 2007, The Philosophy of Philosophy, Blackwell, Oxford.Google Scholar
Woods, J. 2003, Paradox and Paraconsistency: Conflict Resolution in the Abstract Sciences, Cambridge University Press, Cambridge.Google Scholar
Wright, C. 1983, Frege’s Conception of Numbers as Objects, Aberdeen University Press, Aberdeen.Google Scholar
Zermelo, E. 1904, Beweis daß jede Menge wohlgeordnet werden kann, Mathematische Annalen 59, 514516.Google Scholar
Zermelo, E. 1908, Untersuchungen über die Grundlagen der Mengenlehre I, Mathematische Annalen 65, 261–281. Reprinted with translation in Zermelo 2010: 188–229.Google Scholar
Zermelo, E. 1930, Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre, Fundamenta Mathematicae 16, 29–47. Reprinted and translated in Zermelo 2010: 400–431.Google Scholar
Zermelo, E. 2010, Collected Works, Vol. I, Springer-Verlag, Berlin. Edited by Heinz-Dieter Ebbinghaus, Craig G. Fraser and Akihiro Kanamori.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Luca Incurvati, Universiteit van Amsterdam
  • Book: Conceptions of Set and the Foundations of Mathematics
  • Online publication: 09 January 2020
  • Chapter DOI: https://doi.org/10.1017/9781108596961.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Luca Incurvati, Universiteit van Amsterdam
  • Book: Conceptions of Set and the Foundations of Mathematics
  • Online publication: 09 January 2020
  • Chapter DOI: https://doi.org/10.1017/9781108596961.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Luca Incurvati, Universiteit van Amsterdam
  • Book: Conceptions of Set and the Foundations of Mathematics
  • Online publication: 09 January 2020
  • Chapter DOI: https://doi.org/10.1017/9781108596961.010
Available formats
×