References[1] Abramowitz, M., and Stegun, I. A. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover.
[2] Adamo, Carlo, Scuseria, Gustavo, E., and Barone, Vincenzo. 1999. Accurate excitation energies from time-dependent density functional theory: assessing the PBE0 model. J. Chem. Phys., 111(7), 2889–2899.
[3] Adhikari, S. K. 2000. Numerical solution of the two-dimensional Gross–Pitaevskii equation for trapped interacting atoms. Phys. Lett. A, 265(1–2), 91–96.
[4] Alemany, M. M. G., Jain, Manish, Kronik, Leeor, and Chelikowsky, James, R. 2004. Real-space pseudopotential method for computing the electronic properties of periodic systems. Phys. Rev. B, 69(7), 075 101.
[5] Allen, M. P., and Tildesley, D. J. 1990. Computer Simulation of Liquids. Oxford University Press.
[6] Ammeter, J. H., Buergi, H. B., Thibeault, J. C., and Hoffmann, R. 1978. Counterintuitive orbital mixing in semiempirical and ab initio molecular orbital calculations. J. Amer. Chem. Soc., 100(12), 3686–3692.
[7] Andersen, Hans, C. 1980. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys., 72(4), 2384–2393.
[8] Anderson, Alfred, B. 1975. Derivation of the extended Hückel method with corrections: one electron molecular orbital theory for energy level and structure determinations. J. Chem. Phys., 62(3), 1187–1188.
[9] Anderson, Alfred, B., and Hoffmann, Roald 1974. Description of diatomic molecules using one electron configuration energies with two-body interactions. J. Chem. Phys., 60(11), 4271–4273.
[10] Anderson, James, B. 1976. Quantum chemistry by random walk H2P, D3h, Be1 S. J. Chem. Phys., 65(10), 4121–4127.
[11] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. 1995. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science, 269(5221), 198–201.
[12] Ando, T. 1991. Quantum point contacts in magnetic fields. Phys. Rev. B, 44(15), 8017–8027.
[13] Arfken, G. B., and Weber, H. J. 2005. Mathematical Methods for Physicists. Academic Press.
[14] Ashcroft, N. W., and Mermin, N. D. 1976. Solid State Physics. Brooks Cole.
[15] Ashoori, R. C., Stormer, H. L., Weiner, J. S., Pfeiffer, L. N., Baldwin, K. W., and West, K. W. 1993. N-electron ground state energies of a quantum dot in magnetic field. Phys. Rev. Lett., 71(4), 613–616.
[16] Askar, A., and Cakmak, A. S. 1978. Explicit integration method for the timedependent Schrödinger equation for collision problems. J. Chem. Phys., 68, 2794.
[17] Auer, J., and Krotscheck, E. 1999. A rapidly converging algorithm for solving the Kohn–Sham and related equations in electronic structure theory. Comp. Phys. Commun., 118(2–3), 139–144.
[18] Auer, J., Krotscheck, E., and Chin, Siu, A. 2001. A fourth-order real-space algorithm for solving local Schrödinger equations. J. Chem. Phys., 115(15), 6841–6846.
[19] Auerbach, Scott, M., and Leforestier, Claude. 1993. A new computational algorithm for Green's functions: Fourier transform of the Newton polynomial expansion. Comp. Phys. Commun., 78(1–2), 55–66.
[20] Baer, R. 2000. Accurate and efficient evolution of nonlinear Schrödinger equations. Phys. Rev. A, 62(6), 63 810.
[21] Baer, Roi, and Neuhauser, Daniel 2004. Real-time linear response for time-dependent density-functional theory. J. Chem. Phys., 121(20), 9803–9807.
[22] Bai, Z. 2000. Templates for the Solution of Algebraic Eigenvalue Problems. Society for Industrial Mathematics.
[23] Baker, H. C. 1983. Non-Hermitian dynamics of multiphoton ionization. Phys. Rev. Lett., 50(20), 1579–1582.
[24] Ballagh, R. J., Burnett, K., and Scott, T. F. 1997. Theory of an output coupler for Bose–Einstein condensed atoms. Phys. Rev. Lett., 78(9), 1607–1611.
[25] Bao, W., Jin, S., and Markowich, P. A. 2002. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comp. Phys., 175(2), 487–524.
[26] Baye, D., and Heenen, P.-H. 1986. Generalised meshes for quantum mechanical problems. J. Phys. A: Mathematical and General, 19(11), 2041–2059.
[27] Baye, D., and Vincke, M. 1999. Lagrange meshes from nonclassical orthogonal polynomials. Phys. Rev. E, 59(6), 7195–7199.
[28] Beck, Thomas, L. 2000. Real-space mesh techniques in density-functional theory. Rev. Mod. Phys., 72(4), 1041–1080.
[29] Berman, M., Kosloff, R., and Tal-Ezer, H. 1992. Solution of the time-dependent Liouville–von-Neumann equation: dissipative evolution. J. Phys. A: Mathematical and General, 25, 1283–1307.
[30] Bertsch, G. F., Iwata, J. I., Rubio, A., and Yabana, K. 2000. Real-space, real-time method for the dielectric function. Phys. Rev. B, 62(12), 7998–8002.
[31] Bhatia, A. K. 1970. Transitions (1s2p)3P-(2p2)3Pe in He and (2s2p)3P-(2p2)3Pe in H-. Phys. Rev. A, 2(5), 1667–1668.
[32] Blanes, S., Casas, F., Oteo, J. A., and Ros, J. 2009. The Magnus expansion and some of its applications. Phys. Rep., 470(5–6), 151–238.
[33] Blum, V., Gehrke, R., Hanke, F., et al. 2009. Ab initio molecular simulations with numeric atom-centered orbitals. Comp. Phys. Commun., 180(11), 2175–2196.
[34] Bockstedte, M., Kley, A., Neugebauer, J., and Scheffler, M. 1997. Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Comp. Phys. Commun., 107(1–3), 187–222.
[35] Bolton, F. 1996. Fixed-phase quantum Monte Carlo method applied to interacting electrons in a quantum dot. Phys. Rev. B, 54(7), 4780–4793.
[36] Bongs, K., Burger, S., Birkl, G., et al. 1999. Coherent evolution of bouncing Bose–Einstein condensates. Phys. Rev. Lett., 83(18), 3577–3580.
[37] Boyd, J. P. 2001. Chebyshev and Fourier Spectral Methods, Second Edition. Dover Publications.
[38] Bradley, C. C., Sackett, C. A., and Hulet, R. G. 1997. Bose–Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett., 78(6), 985–989.
[39] Briggs, E. L., Sullivan, D. J., and Bernholc, J. 1996. Real-space multigrid-based approach to large-scale electronic structure calculations. Phys. Rev. B, 54(20), 14362–14375.
[40] Broeckhove, J., Lathouwers, L., Kesteloot, E., and Van Leuven, P. 1988. On the equivalence of time-dependent variational principles. Chem. Phys. Lett., 149(5–6), 547–550.
[41] Brouard, S., Macias, D., and Muga, J. G. 1994. Perfect absorbers for stationary and wavepacket scattering. J. Phys. A: Mathematical and General, 27, L439–L445.
[42] Bruce, N. A., and Maksym, P. A. 2000. Quantum states of interacting electrons in a real quantum dot. Phys. Rev. B, 61(7), 4718–4726.
[43] Bubin, Sergiy, and Adamowicz, Ludwik 2006. Nonrelativistic variational calculations of the positronium molecule and the positronium hydride. Phys. Rev. A, 74(5), 052 502.
[44] Burdick, W. R., Saad, Y., Kronik, L., Vasiliev, I., Jain, M., and Chelikowsky, J. R. 2003. Parallel implementation of time-dependent density functional theory. Comp. Phys. Commun., 156(1), 22–42.
[45] Burke, Kieron, Werschnik, Jan, and Gross, E. K. U. 2005. Time-dependent density functional theory: past, present, and future. J. Chem. Phys., 123(6), 062 206.
[46] Büttiker, M., Thomas, H., and Prêtre, A. 1994. Current partition in multiprobe conductors in the presence of slowly oscillating external potentials. Z. Phys. B, Condensed Matter, 94(1), 133–137.
[47] Calzaferri, G., Forss, L., and Kamber, I. 1989. Molecular geometries by the extended Hückel molecular orbital (EHMO) method. J. Phys. Chem., 93(14), 5366–5371.
[48] Calzolari, Arrigo, Cavazzoni, Carlo, and Nardelli, Marco 2004. Electronic and transport properties of artificial gold chains. Phys. Rev. Lett., 93(9), 096 404.
[49] Cann, Natalie Mary, and Thakkar, Ajit, J. 1992. Oscillator strengths for S–P and P–D transitions in heliumlike ions. Phys. Rev. A, 46(9), 5397–5405.
[50] Canning, A., Wang, L. W., Williamson, A., and Zunger, A. 2000. Parallel empirical pseudopotential electronic structure calculations for million atom systems. J. Comp. Phys., 160(1), 29–41.
[51] Casida, M. E., Jamorski, C., Casida, K. C., and Salahub, D. R. 1998. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys., 108(11), 4439–4449.
[52] Castro, Alberto, Marques, Miguel, A. L., and Rubio, Angel 2004. Propagators for the time-dependent Kohn–Sham equations. J. Chem. Phys., 121(8), 3425–3433.
[53] Cencek, Wojciech, and Kutzelnigg, Werner 1996. Accurate relativistic energies of oneand two-electron systems using Gaussian wave functions. J. Chem. Phys., 105(14), 5878–5885.
[54] Cencek, Wojciech, Komasa, Jacek, and Rychlewski, Jacek 1995. Benchmark calculations for two-electron systems using explicitly correlated Gaussian functions. Chem. Phys. Lett., 246(4–5), 417–420.
[55] Ceperley, D., Chester, G. V., and Kalos, M. H. 1977. Monte Carlo simulation of a many-fermion study. Phys. Rev. B, 16(7), 3081–3099.
[56] Ceperley, D. M., and Alder, B. J. 1984. Quantum Monte Carlo for molecules: Green's function and nodal release. J. Chem. Phys., 81(12), 5833–5844.
[57] Cerimele, M. M., Chiofalo, M. L., Pistella, F., Succi, S., and Tosi, M. P. 2000a. Numerical solution of the Gross–Pitaevskii equation using an explicit finite-difference scheme: an application to trapped Bose–Einstein condensates. Phys. Rev. E, 62(1), 1382–1389.
[58] Cerimele, M. M., Pistella, F., and Succi, S. 2000b. Particle-inspired scheme for the Gross–Pitaevski equation: an application to Bose–Einstein condensation. Comp. Phys. Commun., 129(1–3), 82–90.
[59] Chelikowsky, James, R., and Louie, Steven, G. 1984. First-principles linear combination of atomic orbitals method for the cohesive and structural properties of solids: application to diamond. Phys. Rev. B, 29(6), 3470–3481.
[60] Chelikowsky, J. R., Troullier, N., and Saad, Y. 1994. Finite-difference-pseudopotential method: electronic structure calculations without a basis. Phys. Rev. Lett., 72(8), 1240–1243.
[61] Chelikowsky, J. R., Troullier, N., Wu, K., and Saad, Y. 1994. Higher-order finitedifference pseudopotential method: an application to diatomic molecules. Phys. Rev. B, 50(16), 11 355–11 364.
[62] Chicone, Carmen 1999. Ordinary Differential Equations with Applications. Springer-Verlag.
[63] Child, M. S. 1991. Analysis of a complex absorbing barrier. Molecular Phys., 72(1), 89–93.
[64] Chin, Siu, A. 1997. Symplectic integrators from composite operator factorizations. Phys. Lett. A, 226(6), 344–348.
[65] Chu, Xi, and Chu, Shih-I. 2001. Time-dependent density-functional theory for molecular processes in strong fields: study of multiphoton processes and dynamical response of individual valence electrons of N2 in intense laser fields. Phys. Rev. A, 64(6), 063 404.
[66] Condon, E. U. 1937. Theories of optical rotatory power. Rev. Mod. Phys., 9(4), 432–457.
[67] Dalfovo, F., and Stringari, S. 1996. Bosons in anisotropic traps: ground state and vortices. Phys. Rev. A, 53(4), 2477–2485.
[68] Dalfovo, F., Giorgini, S., Pitaevskii, L. P., and Stringari, S. 1999. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys., 71(3), 463–512.
[69] Datta, S. 1997. Electronic Transport in Mesoscopic Systems. Cambridge University Press.
[70] Davidson, E. R., 1975. Note. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comp. Phys., 17, 87–94.
[71] Davidson, E. R., Hagstrom, S. A., Chakravorty, S. J., Umar, V. M., and Fischer, C. F. 1991. Ground-state correlation energies for two-to ten-electron atomic ions. Phys. Rev. A, 44(11), 7071–7083.
[72] Davis, K. B., Mewes, M. O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D. M., and Ketterle, W. 1995. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75(22), 3969–3973.
[73] Delley, B. 2000. From molecules to solids with the DMol3 approach. J. Chem. Phys., 113(18), 7756–7764.
[74] Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H., and Bai, Z. 2000. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM Software, Environments, and Tools Series.
[75] Derosa, P. A., and Seminario, J. M. 2001. Electron transport through single molecules: scattering treatment using density functional and green function theories. J. Phys. Chem. B, 105(2), 471–481.
[76] Devenyi, A., Cho, K., Arias, T. A., and Joannopoulos, J. D. 1994. Adaptive Riemannian metric for all-electron calculations. Phys. Rev. B, 49(19), 13 373–13 376.
[77] Dhara, Asish, K., and Ghosh, Swapan, K. 1987. Density-functional theory for timedependent systems. Phys. Rev. A, 35(1), 442–444.
[78] Di Ventra, Massimiliano 2008. Electrical Transport in Nanoscale Systems. Cambridge University Press.
[79] Di Ventra, M., Pantelides, S. T., and Lang, N. D. 2000. First-principles calculation of transport properties of a molecular device. Phys. Rev. Lett., 84(5), 979–982.
[80] Dodd, R. J. 1996. Approximate solutions of the nonlinear Schrödinger equation for ground and excited states of Bose–Einstein condensates. J. Res. Nat. Inst. Stand. Technol., 101(4), 545–552.
[81] Doltsinis, Nikos, L., and Sprik, Michiel 2000. Electronic excitation spectra from timedependent density functional response theory using plane-wave methods. Chem. Phys. Lett., 330(5–6), 563–569.
[82] Drake, G. W. F., and Yan, Zong-Chao 1992. Energies and relativistic corrections for the Rydberg states of helium: Variational results and asymptotic analysis. Phys. Rev. A, 46(5), 2378–2409.
[83] Drummond, P. D., and Kheruntsyan, K. V. 2000. Asymptotic solutions to the Gross–Pitaevskii gain equation: growth of a Bose–Einstein condensate. Phys. Rev. A, 63(1), 013605.
[84] Edwards, Mark, and Burnett, K. 1995. Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms. Phys. Rev. A, 51(2), 1382–1386.
[85] Egger, R., Häusler, W., Mak, C. H., and Grabert, H. 1999. Crossover from Fermi liquid to Wigner molecule behavior in quantum dots. Phys. Rev. Lett., 82(16), 3320–3323.
[86] Elstner, M., Porezag, D., Jungnickel, G., et al. 1998. Self-consistent-charge densityfunctional tight-binding method for simulations of complex materials properties. Phys. Rev. B, 58(11), 7260–7268.
[87] Emberly, Eldon, G., and Kirczenow, George. 2001. Models of electron transport through organic molecular monolayers self-assembled on nanoscale metallic contacts. Phys. Rev. B, 64(23), 235 412.
[88] Faleev, S. V., Léonard, F., Stewart, D. A., and van Schilfgaarde, M. 2005. Ab initio tight-binding LMTO method for nonequilibrium electron transport in nanosystems. Phys. Rev. B, 71(19), 195 422.
[89] Feit, M. D., and Fleck, J. A. Jr., 1983. Solution of the Schrödinger equation by a spectral method II: vibrational energy levels of triatomic molecules. J. Chem. Phys., 78(1), 301–308.
[90] Feit, M. D., J. A., Fleck Jr., and Steiger, A. 1982. Solution of the Schrödinger equation by a spectral method. J. Comput. Phys., 47(3), 412–433.
[91] Fetter, Alexander, L. 1996. Ground state and excited states of a confined condensed Bose gas. Phys. Rev. A, 53(6), 4245–4249.
[92] Filippi, Claudia, and Umrigar, C. J. 1996. Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules. J. Chem. Phys., 105(1), 213–226.
[93] Fiolhais, C., Nogueira, F., and Marques, M. (eds.) 2003. A Primer in Density Functional Theory. Lecture Notes in Physics, vol. 620. Springer-Verlag.
[94] Foulkes, W.Matthew, C., and Haydock, Roger 1989. Tight-binding models and density-functional theory. Phys. Rev. B, 39(17), 12 520–12 536.
[95] Frediani, L., Rinkevicius, Z., and Ågren, H. 2005. Two-photon absorption in solution by means of time-dependent density-functional theory and the polarizable continuum model. J. Chem. Phys., 122(24), 244 104.
[96] Frenkel, D., and Smit, B. 2002. Understanding Molecular Simulation, Second Edition: From Algorithms to Applications. Academic Press.
[97] Frigo, Matteo, and Johnson, Steven, G. 2005. The design and implementation of FFTW3. Proc. IEEE, 93(2), 216–231. Special issue on program generation, optimization, and platform adaptation.
[98] Frolov, Alexei, M., and Smith, Vedene, H. 1994. One-photon annihilation in the Ps- ion and the angular (e-, e-) correlation in two-electron ions. Phys. Rev. A, 49(5), 3580–3585.
[99] Fuchs, Martin, and Scheffler, Matthias 1999. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comp. Phys. Commun., 119(1), 67–98.
[100] Fujimoto, Yoshitaka, and Hirose, Kikuji 2003. First-principles treatments of electron transport properties for nanoscale junctions. Phys. Rev. B, 67(19), 195 315.
[101] Fujito, M., Natori, A., and Yasunaga, H. 1996. Many-electron ground states in anisotropic parabolic quantum dots. Phys. Rev. B, 53(15), 9952–9958.
[102] Füsti-Molnár, László, and Pulay, Peter 2002. The Fourier transform Coulomb method: efficient and accurate calculation of the Coulomb operator in a Gaussian basis. J. Chem. Phys., 117(17), 7827–7835.
[103] Geim, A. K., and Novoselov, K. S. 2007. The rise of graphene. Nature Materials, 6, 183–191.
[104] Goedecker, Stefan 1999. Linear scaling electronic structure methods. Rev. Mod. Phys., 71(4), 1085–1123.
[105] Golub, G. H., and Van Loan, C. F. 1996. Matrix computations. Johns Hopkins University Press.
[106] Golub, Gene, H., and Welsch, John, H. 1969. Calculation of Gauss quadrature rules. Math. Comp. 23, 221–230; addendum, ibid., 23(106, loose microfiche suppl.), A1–A10.
[107] Gonze, X., Ghosez, Ph., and Godby, R. W. 1995. Density–polarization functional theory of the response of a periodic insulating solid to an electric field. Phys. Rev. Lett., 74(20), 4035–4038.
[108] Gonze, X., Beuken, J. M., Caracas, R., et al. 2002. First-principles computation of material properties: the ABINIT software project. Comput. Mat. Sci., 25(3), 478–492.
[109] Goringe, C. M., Bowler, D. R., and Hernandez, E. 1997. Tight-binding modelling of materials. Rep. Progr. Phys., 60(12), 1447.
[110] Görling, Andreas 1996. Density-functional theory for excited states. Phys. Rev. A, 54(5), 3912–3915.
[111] Gramespacher, Thomas, and Büttiker, Markus 2000. Distribution functions and current–current correlations in normal-metal–superconductor heterostructures. Phys. Rev. B, 61(12), 8125–8132.
[112] Greene, Chris, H. 1983. Atomic photoionization in a strong magnetic field. Phys. Rev. A, 28(4), 2209–2216.
[113] Griebel, M., Knapek, S., and Zumbusch, G. W. 2007. Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications. Springer Verlag.
[114] Griffin, A., Snoke, D. W., and Stringari, S. (eds.) 1996. Bose–Einstein Condensation. Cambridge University Press.
[115] Gross, E. K. U., and Kohn, Walter 1985. Local density-functional theory of frequencydependent linear response. Phys. Rev. Lett., 55(26), 2850–2852.
[116] Gygi, F. 1993. Electronic-structure calculations in adaptive coordinates. Phys. Rev. B, 48(16), 11 692–11 700.
[117] Gygi, François 1995. Ab initio molecular dynamics in adaptive coordinates. Phys. Rev. B, 51(16), 11 190–11 193.
[118] Gygi, François, and Galli, Giulia 1995. Real-space adaptive-coordinate electronicstructure calculations. Phys. Rev. B, 52(4), R2229–R2232.
[119] Haile, J. M. 1997. Molecular Dynamics Simulation: Elementary Methods. Wiley Interscience.
[120] Halasz, G. J., and Vibok, A. 2003. Comparison of the imaginary and complex absorbing potentials using multistep potential method. Int. J. Quantum Chem., 92(2), 168–173.
[121] Ham, F. S., and Segall, B. 1961. Energy bands in periodic lattices – Green's function method. Phys. Rev., 124(6), 1786–1796.
[122] Hamann, D. R. 1995a. Application of adaptive curvilinear coordinates to the electronic structure of solids. Phys. Rev. B, 51(11), 7337–7340.
[123] Hamann, D. R. 1995b. Band structure in adaptive curvilinear coordinates. Phys. Rev. B, 51(15), 9508–9514.
[124] Hamann, D. R. 1996. Generalized-gradient functionals in adaptive curvilinear coordinates. Phys. Rev. B, 54(3), 1568–1574.
[125] Hamann, D. R. 2001. Comparison of global and local adaptive coordinates for density-functional calculations. Phys. Rev. B, 63(7), 075 107.
[126] Hardin, R. H., and Tappert, F. D. 1973. Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. SIAM Rev., 15(423), 0–021.
[127] Harju, A., Sverdlov, V. A., Nieminen, R. M., and Halonen, V. 1999. Many-body wave function for a quantum dot in a weak magnetic field. Phys. Rev. B, 59(8), 5622–5626.
[128] Harris, J. 1985. Simplified method for calculating the energy of weakly interacting fragments. Phys. Rev. B, 31(4), 1770–1779.
[129] Havu, P., Torsti, T., Puska, M. J., and Nieminen, R. M. 2002. Conductance oscillations in metallic nanocontacts. Phys. Rev. B, 66(7), 075401.
[130] Hawrylak, Pawel 1993. Single-electron capacitance spectroscopy of few-electron artificial atoms in a magnetic field: theory and experiment. Phys. Rev. Lett., 71(20), 3347–3350.
[131] Hawrylak, Pawel, and Pfannkuche, Daniela 1993. Magnetoluminescence from correlated electrons in quantum dots. Phys. Rev. Lett., 70(4), 485–488.
[132] Hazi, Andrew, U., and Taylor, Howard, S. 1970. Stabilization method of calculating resonance energies: model problem. Phys. Rev. A, 1(4), 1109–1120.
[133] Hehre, W. J., Stewart, R. F., and Pople, J. A. 1969. Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys., 51(6), 2657–2664.
[134] Heiskanen, M., Torsti, T., Puska, M. J., and Nieminen, R. M. 2001. Multigrid method for electronic structure calculations. Phys. Rev. B, 63(24), 245 106.
[135] Heller, Eric, J. 1975. Time-dependent approach to semiclassical dynamics. J. Chem. Phys., 62(4), 1544–1555.
[136] Hine, N. D. M., Haynes, P. D., Mostofi, A. A., Skylaris, C.-K., and Payne, M. C. 2009. Linear-scaling density-functional theory with tens of thousands of atoms: expanding the scope and scale of calculations with ONETEP. Comp. Phys. Commun., 180(7), 1041–1053.
[137] Hirata, So, and Head-Gordon, Martin 1999. Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett., 314(3–4), 291–299.
[138] Hirose, K., Ono, T., Fujimoto, Y., and Tsukamoto, S. 2005. First-Principles Calculations in Real-Space Formalism. Imperial College Press.
[139] Hirose, Kenji, and Wingreen, Ned, S. 1999. Spin-density-functional theory of circular and elliptical quantum dots. Phys. Rev. B, 59(7), 4604–4607.
[140] Hirsch, J. E. 1983. Discrete Hubbard–Stratonovich transformation for fermion lattice models. Phys. Rev. B, 28(7), 4059–4061.
[141] Hirsch, J. E. 1985. Two-dimensional Hubbard model: numerical simulation study. Phys. Rev. B, 31(7), 4403–4419.
[142] Ho, Kai-Ming, Ihm, J., and Joannopoulos, J. D. 1982. Dielectric matrix scheme for fast convergence in self-consistent electronic-structure calculations. Phys. Rev. B, 25(6), 4260–4262.
[143] Ho, Y. K. 1993. Variational calculation of ground-state energy of positronium negative ions. Phys. Rev. A, 48(6), 4780–4783.
[144] Hodgson, P. E. 1963. The Optical Model of Elastic Scattering. Clarendon Press.
[145] Hoffman, D. K., Huang, Y., Zhu, W., and Kouri, D. J. 1994. Further analysis of solutions to the time-independent wave packet equations for quantum dynamics: general initial wave packets. J. Chem. Phys., 101, 1242.
[146] Hoffmann, Roald 1963. An extended Hückel theory. I. Hydrocarbons. J. Chem. Phys., 39(6), 1397–1412.
[147] Hoffmann, Roald, and Lipscomb, William, N. 1962a. Boron hydrides: LCAO–MO and resonance studies. J. Chem. Phys., 37(12), 2872–2883.
[148] Hoffmann, Roald, and Lipscomb, William, N. 1962b. Theory of polyhedral molecules. I. Physical factorizations of the secular equation. J. Chem. Phys., 36(8), 2179–2189.
[149] Hohenberg, P., and Kohn, W. 1964. Inhomogeneous electron gas. Phys. Rev., 136(3B), B864–B871.
[150] Hoover, William, G. 1985. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A, 31(3), 1695–1697.
[151] Hoston, William, and You, L. 1996. Interference of two condensates. Phys. Rev. A, 53(6), 4254–4256.
[152] Hu, Chunping, Hirai, Hirotoshi, and Sugino, Osamu 2007. Nonadiabatic couplings from time-dependent density functional theory: formulation in the Casida formalism and practical scheme within modified linear response. J. Chem. Phys., 127(6), 064 103.
[153] Ihm, J., Zunger, A., and Cohen, M. L. 1979. Momentum-space formalism for the total energy of solids. J. Phys. C: Solid State Physics, 12(21), 4409.
[154] Iwata, J.-I., Yabana, K., and Bertsch, G. F. 2001. Real-space computation of dynamic hyperpolarizabilities. J. Chem. Phys., 115(19), 8773–8783.
[155] Jäckle, A., and Meyer, H.-D. 1996. Time-dependent calculation of reactive flux employing complex absorbing potentials: general aspects and application within the multiconfiguration time-dependent Hartree wave approach. J. Chem. Phys., 105(16), 6778–6786.
[156] Jamorski, Christine, Casida, Mark, E., and Salahub, Dennis, R. 1996. Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study. J. Chem. Phys., 104(13), 5134–5147.
[157] Jang, J. I., and Wolfe, J. P. 2005. Biexcitons in the semiconductor Cu2O: an explanation of the rapid decay of excitons. Phys. Rev. B, 72(24), 241 201.
[158] Jansen, Robert, W., and Sankey, Otto, F. 1987. Ab initio linear combination of pseudoatomic-orbital scheme for the electronic properties of semiconductors: results for ten materials. Phys. Rev. B, 36(12), 6520–6531.
[159] Jarillo-Herrero, P., Kong, J., van der Zant, H. S. J., Dekker, C., Kouwenhoven, L. P., and De Franceschi, S. 2005. Electronic transport spectroscopy of carbon nanotubes in a magnetic field. Phys. Rev. Lett., 94(15), 156 802.
[160] Jing, X., Troullier, N., Dean, D., et al. 1994. Ab initio molecular-dynamics simulation of Si clusters using the higher-order finite-difference-pseudopotential method. Phys. Rev. B, 50(16), 12 234–12 237.
[161] Johnsson, P., López-Martens, R., Kazamias, S., et al. 2005. Attosecond electron wave packet dynamics in strong laser fields. Phys. Rev. Lett., 95(1), 013 001.
[162] Jolicard, Georges, and Austin, Elizabeth, J. 1985. Optical potential stabilisation method for predicting resonance levels. Chem. Phys. Lett., 121(1–2), 106–110.
[163] Jones, R. O., and Gunnarsson, O. 1989. The density functional formalism, its applications and prospects. Rev. Mod. Phys., 61(3), 689–746.
[164] Jorio, A., Saito, R., Hafner, J. H., et al. 2001. Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett., 86(6), 1118–1121.
[165] Joubert, D. P. (ed.) 1998. Density Functionals: Theory and Applications. Lecture Notes in Physics, vol. 500. Springer-Verlag.
[166] Junquera, J., Paz, Ó., Sánchez-Portal, D., and Artacho, E. 2001. Numerical atomic orbitals for linear-scaling calculations. Phys. Rev. B, 64(23), 235 111.
[167] Kanwal, R. P. 1997. Linear Integral Equations. Birkhauser.
[168] Kawashita, Y., Nakatsukasa, T., and Yabana, K. 2009. Time-dependent densityfunctional theory simulation for electron–ion dynamics in molecules under intense laser pulses. J. Phys.: Condensed Matter, 21(6), 064 222.
[169] Ke, San-Huang, Baranger, Harold, U., and Yang, Weitao 2004. Electron transport through molecules: self-consistent and non-self-consistent approaches. Phys. Rev. B, 70(8), 085 410.
[170] Kemp, M., Mujica, V., and Ratner, M. A. 1994. Molecular electronics: disordered molecular wires. J. Chem. Phys., 101(6), 5172–5178.
[171] Kendall, R. A., Apra, E., Bernholdt, D. E., et al. 2000. High performance computational chemistry: an overview of NWChem, a distributed parallel application. Comp. Phys. Commun., 128(1–2), 260–283.
[172] Kent, P. R. C. 1999. Techniques and applications of quantum Monte Carlo. Ph.D. thesis, Cambridge University.
[173] Kent, P. R. C., Needs, R. J., and Rajagopal, G. 1999. Monte Carlo energy and varianceminimization techniques for optimizing many-body wave functions. Phys. Rev. B, 59(19), 12 344–12 351.
[174] Kerker, G. P. 1981. Efficient iteration scheme for self-consistent pseudopotential calculations. Phys. Rev. B, 23(6), 3082–3084.
[175] Khomyakov, P. A., and Brocks, G. 2004. Real-space finite-difference method for conductance calculations. Phys. Rev. B, 70(19), 195 402.
[176] King-Smith, R. D., Payne, M. C., and Lin, J. S. 1991. Real-space implementation of nonlocal pseudopotentials for first-principles total-energy calculations. Phys. Rev. B, 44(23), 13 063–13 066.
[177] Kleinman, Leonard, and Bylander, D. M. 1982. Efficacious form for model pseudopotentials. Phys. Rev. Lett., 48(20), 1425–1428.
[178] Knyazev, A. V. 2002. Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Scientific Comput., 23(2), 517–541.
[179] Kobayashi, Nobuhiko, Brandbyge, Mads, and Tsukada, Masaru 2000. First-principles study of electron transport through monatomic Al and Na wires. Phys. Rev. B, 62(12), 8430–8437.
[180] Kohn, W. 1948. Variational methods in nuclear collision problems. Phys. Rev., 74(12), 1763–1772.
[181] Kohn, W., and Sham, L. J. 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140(4A), A1133–A1138.
[182] Komzsik, L. 2003. The Lanczos Method: Evolution and Application. Society for Industrial Mathematics.
[183] Kootstra, F., de Boeij, P. L., and Snijders, J. G. 2000. Efficient real-space approach to time-dependent density functional theory for the dielectric response of nonmetallic crystals. J. Chem. Phys., 112(15), 6517–6531.
[184] Koskinen, M., Manninen, M., and Reimann, S. M. 1997. Hund's rules and spin density waves in quantum dots. Phys. Rev. Lett., 79(7), 1389–1392.
[185] Kosloff, D., and Kosloff, R. 1983. A Fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics. J. Comp. Phys., 52(1), 35–53.
[186] Kosloff, R. 1988. Time-dependent quantum-mechanical methods for molecular dynamics. J. Phys. Chem., 92(8), 2087–2100.
[187] Kosloff, R. 1994. Propagation methods for quantum molecular dynamics. Ann. Rev. Phys. Chem., 45(1), 145–178.
[188] Kosloff, R., and Kosloff, D. 1986. Absorbing boundaries for wave propagation problems. J. Comp. Phys., 63(2), 363–376.
[189] Kreller, F., Lowisch, M., Puls, J., and Henneberger, F. 1995. Role of biexcitons in the stimulated emission of wide-Gap II–VI quantum wells. Phys. Rev. Lett., 75(12), 2420–2423.
[190] Kresse, G., and Furthmüller, J. 1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54(16), 11 169–11 186.
[191] Kresse, G., and Hafner, J. 1993. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47(1), 558–561.
[192] Kronig, R. L., and Penney, W. G. 1931. Quantum mechanics of electrons in crystal lattices. Proc. Roy. Soc. London, Series A, 130(814), 499–513.
[193] Kruppa, A. T., and Nazarewicz, W. 2004. Gamow and R-matrix approach to proton emitting nuclei. Phys. Rev. C, 69(5), 054 311.
[194] Kurth, S., Stefanucci, G., Almbladh, C.-O., Rubio, A., and Gross, E. K. U. 2005. Time-dependent quantum transport: a practical scheme using density functional theory. Phys. Rev. B, 72(3), 035 308.
[195] Langhoff, P. W., Epstein, S. T., and Karplus, M. 1972. Aspects of time-dependent perturbation theory. Rev. Mod. Phys., 44(3), 602–644.
[196] Le Rouzo, Hervé 2003. Variational R-matrix method for quantum tunneling problems. Amer. J. Physics, 71(3), 273–278.
[197] Le Rouzo, H., and Raseev, G. 1984. Finite-volume variational method: first application to direct molecular photoionization. Phys. Rev. A, 29(3), 1214–1223.
[198] Légaré, F., Litvinyuk, I. V., Dooley, P. W., et al. 2003. Time-resolved double ionization with few cycle laser pulses. Phys. Rev. Lett., 91(9), 093 002.
[199] Léger, Y., Besombes, L., Fernández-Rossier, J., Maingault, L., and Mariette, H. 2006. Electrical control of a single Mn atom in a quantum dot. Phys. Rev. Lett., 97(10), 107 401.
[200] Li, X.-P., Nunes, R. W., and Vanderbilt, David 1993. Density-matrix electronic-structure method with linear system-size scaling. Phys. Rev. B, 47(16), 10891–10894.
[201] Lide, D. R. (ed.) 2009. CRC Handbook of Chemistry and Physics Ninetieth Edition. CRC Press.
[202] Liu, Yi, Yarne Dawn, A., and Tuckerman Mark, E. 2003. Ab initio molecular dynamics calculations with simple, localized, orthonormal real-space basis sets. Phys. Rev. B., 68(12), 125110.
[203] Macías, D., Brouard, S., and Muga, J. G. 1994. Optimization of absorbing potentials. Chem. Phys. Lett., 228(6), 672–677.
[204] Maitra, Neepa, T., Zhang, Fan, Cave, Robert, J., and Burke, Kieron 2004. Double excitations within time-dependent density functional theory linear response. J. Chem. Phys., 120(13), 5932–5937.
[205] Maksym, P. A., and Chakraborty, Tapash 1990. Quantum dots in a magnetic field: role of electron–electron interactions. Phys. Rev. Lett., 65(1), 108–111.
[206] Manolopoulos, D. E. 2002. Derivation and reflection properties of a transmission-free absorbing potential. J. Chem. Phys., 117, 9552.
[207] Maragakis, P., Soler, José, and Kaxiras, Efthimios 2001. Variational finite-difference representation of the kinetic energy operator. Phys. Rev. B, 64(19), 193101.
[208] Marini, Andrea, Del Sole, Rodolfo, and Rubio, Angel 2003. Bound excitons in time-dependent density-functional theory: optical and energy-loss spectra. Phys. Rev. Lett., 91(25), 256 402.
[209] Marques, M. A. L., Castro, A., Bertsch, G. F., and Rubio, A. 2003. Octopus: a first-principles tool for excited electron-ion dynamics. Comp. Phys. Commun., 151(1), 60–78.
[210] Marston, C. C., and Balint-Kurti, G. G. 1989. The Fourier grid Hamiltonian method for bound state eigenvalues and eigenfunctions. J. Chem. Phys., 91(6), 3571–3576.
[211] Martikainen, J.-P., Suominen, K.-A., Santos, L., Schulte, T., and Sanpera, A. 2001. Generation and evolution of vortex–antivortex pairs in Bose–Einstein condensates. Phys. Rev. A, 64(6), 063 602.
[212] Martyna, Glenn, J., and Tuckerman, Mark, E. 1999. A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters. J. Chem. Phys., 110(6), 2810–2821.
[213] Marx, D., and Hutter, J. 2009. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge University Press.
[214] Matthews, M. R., Anderson, B. P., Haljan, P. C., et al. 1999. Watching a superfluid untwist itself: recurrence of Rabi oscillations in a Bose–Einstein condensate. Phys. Rev. Lett., 83(17), 3358–3361.
[215] Mauri, Francesco, and Galli, Giulia 1994. Electronic-structure calculations and molecular-dynamics simulations with linear system-size scaling. Phys. Rev. B, 50(7), 4316–4326.
[216] Mayer, A. 2006. Finite-difference calculation of the Green's function of a one-dimensional crystal: application to the Krönig–Penney potential. Phys. Rev. E, 74(4), 046 708.
[217] McCullough, Edward, A., and Wyatt, Robert, E. 1969. Quantum dynamics of the collinear (H, H2) reaction. J. Chem. Phys., 51(3), 1253–1254.
[218] Messiah, Albert 1999. Quantum Mechanics. Dover Publications.
[219] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys., 21(6), 1087–1092.
[220] Meurant, G. A. 2006. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations. Society for Industrial Mathematics.
[221] Meyer, H. D., and Walter, O. 1982. On the calculation of S-matrix poles using the Siegert method. J. Phys. B: Atomic and Molecular Physics, 15, 3647–3668.
[222] Miller, W. H. 1993. Beyond transition-state theory: a rigorous quantum theory of chemical reaction rates. Acc. Chem. Res., 26(4), 174–181.
[223] Modine, N. A., Zumbach, Gil, and Kaxiras, Efthimios 1997. Adaptive-coordinate real-space electronic-structure calculations for atoms, molecules, and solids. Phys. Rev. B, 55(16), 10 289–10 301.
[224] Modugno, M., Dalfovo, F., Fort, C., Maddaloni, P., and Minardi, F. 2000. Dynamics of two colliding Bose–Einstein condensates in an elongated magnetostatic trap. Phys. Rev. A, 62(6), 063 607.
[225] Moiseyev, N., Certain, P. R., and Weinhold, F. 1978. Resonance properties of complex-rotated hamiltonians. Molecular Phys., 36(6), 1613–1630.
[226] Morgan, R. B. 1990. Davidson's method and preconditioning for generalized eigenvalue problems. J. Comp. Phys., 89(1), 245.
[227] Morse, Philip, M. 1929. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev., 34(1), 57–64.
[228] Morse, P. M., and Feshbach, H. 1953. Methods of Theoretical Physics. McGraw-Hill.
[229] Muckerman, James, T. 1990. Some useful discrete variable representations for problems in time-dependent and time-independent quantum mechanics. Chem. Phys. Lett., 173(2–3), 200–205.
[230] Mujica, V., Kemp, M., and Ratner, M. A. 1994a. Electron conduction in molecular wires. I. A scattering formalism. J. Chem. Phys., 101(8), 6849–6855.
[231] Mujica, V., Kemp, M., and Ratner, M. A. 1994b. Electron conduction in molecular wires. II. Application to scanning tunneling microscopy. J. Chem. Phys., 101(8), 6856–6864.
[232] Mujica, V., Kemp, M., Roitberg, A., and Ratner, M. 1996. Current–voltage characteristics of molecular wires: eigenvalue staircase, Coulomb blockade, and rectification. J. Chem. Phys., 104(18), 7296–7305.
[233] Müller, H.-M., and Koonin, S. E. 1996. Phase transitions in quantum dots. Phys. Rev. B, 54(20), 14532–14539.
[234] Nakatsukasa, Takashi, and Yabana, Kazuhiro 2001. Photoabsorption spectra in the continuum of molecules and atomic clusters. J. Chem. Phys., 114(6), 2550–2561.
[235] Nardelli, Marco, Fattebert, J.-L., and Bernholc, J. 2001. O(N) real-space method for ab initio quantum transport calculations: application to carbon nanotube–metal contacts. Phys. Rev. B, 64(24), 245 423.
[236] Neuhauser, Daniel, and Baer, Michael 1989a. J. Chem. Phys., 90(8), 4351–4355.
[237] Neuhauser, Daniel, and Baer, Michael 1989b. The application of wave packets to reactive atom–diatom systems: a new approach. J. Chem. Phys., 91(8), 4651–4657.
[238] Neuhauser, Daniel, and Baer, M. 1990a. A new time-independent approach to the study of atom–diatom reactive collisions: theory and application. J. Phys. Chem., 94(1), 185–189.
[239] Neuhauser, Daniel, and Baer, Michael 1990b. A new accurate (time-independent) method for treating three-dimensional reactive collisions: the application of optical potentials and projection operators. J. Chem. Phys., 92(6), 3419–3426.
[240] Neuhauser, D., Baer, M., Judson, R. S., and Kouri, D. J. 1991. The application of time-dependent wavepacket methods to reactive scattering. Comp. Phys. Commun., 63(1–3), 460–481.
[241] Nosé, Shuichi 1984. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81(1), 511–519.
[242] Odom, T. W., Huang, J. L., Kim, P., and Lieber, C. M. 2000. Structure and electronic properties of carbon nanotubes. J. Phys. Chem. B, 104(13), 2794–2809.
[243] Ohta, K., and Ishida, H. 1988. Comparison among several numerical integration methods for Kramers–Kronig transformation. Applied Spectroscopy, 42(6), 952–957.
[244] Ono, Tomoya, and Hirose, Kikuji 1999. Timesaving double-grid method for real-space electronic-structure calculations. Phys. Rev. Lett., 82(25), 5016–5019.
[245] Ono, Tomoya, and Hirose, Kikuji 2005. Real-space electronic-structure calculations with a time-saving double-grid-technique. Phys. Rev. B, 72(8), 085115.
[246] Ordejón, P., Artacho, E., and Soler, J. M. 1996. Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B, 53(16), R10441–R10444.
[247] Ortiz, G., Souza, I., and Martin, R. M. 1998. Exchange-correlation hole in polarized insulators: implications for the microscopic functional theory of dielectrics. Phys. Rev. Lett., 80(2), 353–356.
[248] Ozaki, T., and Kino, H. 2004. Numerical atomic basis orbitals from H to Kr. Phys. Rev. B, 69(19), 195 113.
[249] Palacios, J. J., Pérez-Jiménez, A. J., Louis, E., SanFabián, E., and Vergés, J. A. 2003. First-principles phase-coherent transport in metallic nanotubes with realistic contacts. Phys. Rev. Lett., 90(10), 106801.
[250] Parkins, A. S., and Walls, D. F. 1998. The physics of trapped dilute-gas Bose–Einstein condensates. Phys. Rep., 303(1), 1–80.
[251] Parlett, B. N. 1998. The Symmetric Eigenvalue Problem. Society for Industrial Mathematics.
[252] Parr, R. G., and Yang, W. 1989. Density-Functional Theory of Atoms and Molecules. Oxford University Press.
[253] Pathria, R. K. 1996. Statistical Mechanics, Second Edition. Butterworth-Heinemann.
[254] Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D. 1992. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64(4), 1045–1097.
[255] Pederiva, Francesco, Umrigar, C. J., and Lipparini, E. 2000. Diffusion Monte Carlo study of circular quantum dots. Phys. Rev. B, 62(12), 8120–8125.
[256] Pekeris, C. L. 1958. Ground state of two-electron atoms. Phys. Rev., 112(5), 1649–1658.
[257] Pérez-Jordá, José, M. 1998. Variational plane-wave calculations in adaptive coordinates. Phys. Rev. B, 58(3), 1230–1235.
[258] Pople, J. A., Head-Gordon, M., Fox, D. J., Raghavachari, K., and Curtiss, L. A. 1989. Gaussian-1 theory: a general procedure for prediction of molecular energies. J. Chem. Phys., 90(10), 5622–5629.
[259] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical Recipes in C. Cambridge University Press.
[260] Qian, X., Li., J., Lin, X., and Yip, S. 2006. Time-dependent density functional theory with ultrasoft pseudopotentials: real-time electron propagation across a molecular junction. Phys. Rev. B, 73(3), 035408.
[261] Qu, F., and Hawrylak, P. 2005. Magnetic exchange interactions in quantum dots containing electrons and magnetic ions. Phys. Rev. Lett., 95(21), 217 206.
[262] Raczkowski, D., Fong, C. Y., Schultz, P. A., Lippert, R. A., and Stechel, E. B. 2001. Unconstrained and constrained minimization, localization, and the Grassmann manifold: theory and application to electronic structure. Phys. Rev. B, 64(15), 155203.
[263] Rapaport, D. C. 2004. The Art of Molecular Dynamics Simulation. Cambridge University Press.
[264] Reed, V. C., and Burnett, K. 1990. Ionization of atoms in intense laser pulses using the Kramers–Henneberger transformation. Phys. Rev. A, 42(5), 3152–3155.
[265] Reed, V. C., and Burnett, K. 1991. Role of resonances and quantum-mechanical interference in the generation of above-threshold-ionization spectra. Phys. Rev. A, 43(11), 6217–6226.
[266] Reich, S., and Thomsen, C. 2000. Chirality dependence of the density-of-states singularities in carbon nanotubes. Phys. Rev. B, 62(7), 4273–4276.
[267] Reich, S., Maultzsch, J., Thomsen, C., and Ordejón, P. 2002. Tight-binding description of graphene. Phys. Rev. B, 66(3), 035412.
[268] Reimann, Stephanie, M., and Manninen, Matti 2002. Electronic structure of quantum dots. Rev. Mod. Phys., 74(4), 1283–1342.
[269] Resta, Raffaele 1994. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys., 66(3), 899–915.
[270] Reynolds, P. J., Ceperley, D. M., Alder, B. J., and Lester, W. A. 1982. Fixed-node quantum Monte Carlo for molecules. J. Chem. Phys., 77(11), 5593–5603.
[271] Riss, U. V., and Meyer, H. D. 1993. Calculation of resonance energies and widths using the complex absorbing potential method. J. Phys. B: Atomic, Molecular and Optical Physics, 26, 4503–4535.
[272] Riss, U. V., and Meyer, H. D. 1995. Reflection-free complex absorbing potentials. J. Phys. B: Atomic, Molecular and Optical Physics, 28, 1475–1493.
[273] Rocca, D., Gebauer, R., Saad, Y., and Baroni, S. 2008. Turbo charging time-dependent density-functional theory with Lanczos chains. J. Chem. Phys., 128(15), 154 105.
[274] Röhrl, A., Naraschewski, M., Schenzle, A., and Wallis, H. 1997. Transition from phase locking to the interference of independent Bose condensates: theory versus experiment. Phys. Rev. Lett., 78(22), 4143–4146.
[275] Runge, E., and Gross, E. K. U. 1984. Density-functional theory for time-dependent systems. Phys. Rev. Lett., 52(12), 997.
[276] Saad, Y. 1992. Numerical Methods for Large Eigenvalue Problems. Manchester University Press.
[277] Saito, R., Dresselhaus, G., and Dresselhaus, M. S. 1998. Physical Properties of Carbon Nanotubes. Imperial College Press.
[278] Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S. 1992. Electronic structure of graphene tubules based on C60. Phys. Rev. B, 46(3), 1804–1811.
[279] Sancho, M. P. L., Sancho, J. M. L., and Rubio, J. 1985. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F: Metal Physics, 15(4), 851.
[280] Sankey, Otto, F., and Niklewski, David, J. 1989. Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. Phys. Rev. B, 40(6), 3979–3995.
[281] Sanvito, S., Lambert, C. J., Jefferson, J. H., and Bratkovsky, A. M. 1999. General Green's-function formalism for transport calculations with spd Hamiltonians and giant magnetoresistance in Co- and Ni-based magnetic multilayers. Phys. Rev. B, 59(18), 11 936–11 948.
[282] Saugout, S., Charron, E., and Cornaggia, C. 2008. H2 double ionization with few-cycle laser pulses. Phys. Rev. A, 77(2), 023 404.
[283] Seideman, T., and Miller, W. H. 1992a. Calculation of the cumulative reaction probability via a discrete variable representation with absorbing boundary conditions. J. Chem. Phys., 96(6), 4412–4422.
[284] Seideman, T., and Miller, W. H. 1992b. Quantum mechanical reaction probabilities via a discrete variable representation-absorbing boundary condition Green's function. J. Chem. Phys., 97(4), 2499–2514.
[285] Seminario, J. M., Lowden, P. O., and Sabin, J. R. 1998. Advances in Density Functional Theory. Academic Press.
[286] Sherman, Jack, and Morrison, Winifred, J. 1950. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Stat., 21(1), 124–127.
[287] Shirley, Jon, H. 1965. Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev., 138(4B), B979–B987.
[288] Sholl, D. S., and Steckel, J. A. 2009. Density Functional Theory: A Practical Introduction. Wiley Interscience.
[289] Shumway, J., and Ceperley, D. M. 2001. Quantum Monte Carlo treatment of elastic exciton–exciton scattering. Phys. Rev. B, 63(16), 165 209.
[290] Singh, D. J., and Nordström, L. 2006. Planewaves, Pseudopotentials, and the LAPW Method. Springer-Verlag.
[291] Skylaris, C.-K., Diéguez, O., Haynes, P. D., and Payne, M. C. 2002. Comparison of variational real-space representations of the kinetic energy operator. Phys. Rev. B, 66(7), 073 103.
[292] Slater, J. C. 1974. Quantum Theory of Molecules and Solids: The Self-Consistent Field for Molecules and Solids. McGraw-Hill.
[293] Slater, J. C., and Koster, G. F. 1954. Simplified LCAO method for the periodic potential problem. Phys. Rev., 94(6), 1498–1524.
[294] Sleijpen, G. L. G., and Van der Vorst, H. A. 2000. A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM Review, 42(2), 267–293.
[295] Soler, J. M, Artacho, E., Gale, J. D., et al. 2002. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condensed Matter, 14(11), 2745.
[296] Sørensen, H. H. B., Hansen, P. C., Petersen, D. E., Skelboe, S., and Stokbro, K. 2009. Efficient wave-function matching approach for quantum transport calculations. Phys. Rev. B, 79(20), 205 322.
[297] Soriano, D., Jacob, D., and Palacios, J. J. 2008. Localized basis sets for unbound electrons in nanoelectronics. J. Chem. Phys., 128(7), 074108.
[298] Stepanenko, D., and Bonesteel, N. E. 2004. Universal quantum computation through control of spin–orbit coupling. Phys. Rev. Lett., 93(14), 140 501.
[299] Stillinger, Frank, H., and Weber, Thomas, A. 1985. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B, 31(8), 5262–5271.
[300] Stokbro, K., Taylor, J., Brandbyge, M., Mozos, J. L., and Ordejn, P. 2003. Theoretical study of the nonlinear conductance of di-thiol benzene coupled to Au(111) surfaces via thiol and thiolate bonds. Comp. Mat. Sci., 27(1–2), 151–160.
[301] Stott, M. J., and Zaremba, E. 1980. Linear-response theory within the density-functional formalism: application to atomic polarizabilities. Phys. Rev. A, 21(1), 12–23.
[302] Strange, M., Kristensen, I. S., Thygesen, K. S., and Jacobsen, K. W. 2008. Benchmark density functional theory calculations for nanoscale conductance. J. Chem. Phys., 128(11), 114714.
[303] Stratmann, R. E., Scuseria, G. E., and Frisch, M. J. 1998. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys., 109(19), 8218–8224.
[304] Su, Q., and Eberly, J. H. 1991. Model atom for multiphoton physics. Phys. Rev. A, 44(9), 5997–6008.
[305] Sundaram, Bala, and Milonni, Peter, W. 1990. High-order harmonic generation: simplified model and relevance of single-atom theories to experiment. Phys. Rev. A, 41(11), 6571–6573.
[306] Suzuki, Masuo 1991. General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys., 32(2), 400–407.
[307] Suzuki, Y., and Varga, K. 1998. Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems. Lecture Notes in Physics, vol. m 54. Springer.
[308] Szafran, B., Adamowski, J., and Bednarek, S. 1999. Ground and excited states of few electron systems in spherical quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 4(1), 1–10.
[309] Szalay, Viktor 1996. The generalized discrete variable representation. An optimal design. J. Chem. Phys., 105(16), 6940–6956.
[310] Szego, Gabor 1939. Orthogonal Polynomials, Fourth Edition. American Mathematical Society.
[311] Takimoto, Y., Vila, F. D., and Rehr, J. J. 2007. Real-time time-dependent density functional theory approach for frequency-dependent nonlinear optical response in photonic molecules. J. Chem. Phys., 127(15), 154 114.
[312] Tal-Ezer, H., and Kosloff, R. 1984. An accurate and efficient scheme for propagating the time dependent Schrödinger equation. J. Chem. Phys., 81, 3967.
[313] Tannor, D. J. 2007. Introduction to Quantum Mechanics. University Science Books.
[314] Tannor, David, J., and Weeks, David, E. 1993. Wave packet correlation function formulation of scattering theory: the quantum analog of classical S-matrix theory. J. Chem. Phys., 98(5), 3884–3893.
[315] Tarucha, S., Austing, D. G., Honda, T., van der Hage, R. J., and Kouwenhoven, L. P. 1996. Shell filling and spin effects in a few electron quantum dot. Phys. Rev. Lett., 77(17), 3613–3616.
[316] Taut, M. 1993. Two electrons in an external oscillator potential: particular analytic solutions of a Coulomb correlation problem. Phys. Rev. A, 48(5), 3561–3566.
[317] Taylor, J., Guo, H., and Wang, J. 2001. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B, 63(24), 245407.
[318] Taylor, R. J. 1972. Scattering Theory: The Quantum Theory on Nonrelativistic Collisions. Wiley.
[319] T. H., Dunning Jr., 1989. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys., 90(2), 1007–1023.
[320] Thygesen, K. S., and Jacobsen, K. W. 2003. Four-atom period in the conductance of monatomic Al wires. Phys. Rev. Lett., 91(14), 146 801.
[321] Thygesen, K. S., and Jacobsen, K. W. 2005. Molecular transport calculations with Wannier functions. Chem. Phys., 319(1–3), 111–125.
[322] Tian, W., Datta, S., Hong, S., et al. 1998. Conductance spectra of molecular wires. J. Chem. Phys., 109(7), 2874–2882.
[323] Towler, M. D., Zupan, A., and Caus, M. 1996. Density functional theory in periodic systems using local Gaussian basis sets. Comp. Phys. Commun., 98(1–2), 181–205.
[324] Tsolakidis, A., Sánchez-Portal, D., and Martin, R. M. 2002. Calculation of the optical response of atomic clusters using time-dependent density functional theory and local orbitals. Phys. Rev. B, 66(23), 235416.
[325] Tsuchida, E., and Tsukada, M. 1995. Real space approach to electronic-structure calculations. Solid State Commun., 94(1), 5–8.
[326] Tsuchida, E., and Tsukada, M. 1996. Adaptive finite-element method for electronic structure calculations. Phys. Rev. B, 54(11), 7602–7605.
[327] Umrigar, C. J., Wilson, K. G., and Wilkins, J. W. 1988. Optimized trial wave functions for quantum Monte Carlo calculations. Phys. Rev. Lett., 60(17), 1719–1722.
[328] Umrigar, C. J., Nightingale, M. P., and Runge, K. J. 1993. A diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys., 99(4), 2865–2890.
[329] van Gisbergen, S. J. A., Snijders, J. G., and Baerends, E. J. 1998. Accurate density functional calculations on frequency-dependent hyperpolarizabilities of small molecules. J. Chem. Phys., 109(24), 10 657–10 668.
[330] van Gisbergen, S. J. A., Snijders, J. G., and Baerends, E. J. 1999. Implementation of time-dependent density functional response equations. Comp. Phys. Commun., 118(2–3), 119–138.
[331] van Leeuwen, Robert 1998. Causality and symmetry in time-dependent density-functional theory. Phys. Rev. Lett., 80(6), 1280–1283.
[332] Vanderbilt, David, and Louie, Steven, G. 1984. Total energies of diamond (111) surface reconstructions by a linear combination of atomic orbitals method. Phys. Rev. B, 30(10), 6118–6130.
[333] Van de Vondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T., and Hutter, J. 2005. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comp. Phys. Commun., 167(2), 103–128.
[334] Varga, K. 2009. R-matrix calculation of Bloch states for scattering and transport problems. Phys. Rev. B, 80(8), 085 102.
[335] Varga, K., and Suzuki, Y. 1995. Precise solution of few-body problems with the stochastic variational method on a correlated Gaussian basis. Phys. Rev. C., 52(6), 2885–2905.
[336] Varga, K., and Suzuki, Y. 1997. Solution of few-body problems with the stochastic variational method. I. Central forces with zero orbital momentum. Comp. Phys. Commun., 106(1–2), 157–168.
[337] Varga, K., Navratil, P., Usukura, J., and Suzuki, Y. 2001. Stochastic variational approach to few-electron artificial atoms. Phys. Rev. B, 63(20), 205 308.
[338] Velev, Julian, and Butler, William 2004. On the equivalence of different techniques for evaluating the Green function for a semi-infinite system using a localized basis. J. Phys.: Condensed Matter, 16(21), R637.
[339] Vibók, Á., and Balint-Kurti, G. G. 1992a. Reflection and transmission of waves by a complex potential – a semiclassical Jeffreys–Wentzel–Kramers–Brillouin treatment. J. Chem. Phys., 96(10), 7615–7622.
[340] Vibók, Á., and Balint-Kurti, G. G. 1992b. Parametrization of complex absorbing potentials for time-dependent quantum dynamics. J. Phys. Chem., 96(22), 8712–8719.
[341] Vignale, Giovanni 2004. Mapping from current densities to vector potentials in time-dependent current density functional theory. Phys. Rev. B, 70(20), 201 102.
[342] Viswanathan, R., Shi, S., Vilallonga, E., and Rabitz, H. 1989. Calculation of scattering wave functions by a numerical procedure based on the Møller wave operator. J. Chem. Phys., 91(4), 2333–2342.
[343] Voter, A. F. 2007. Introduction to the kinetic Monte Carlo method. In Radiation Effects in Solids, K. E., Sickafus, E. A., Kotomin, and B. P., Uberuaga (eds.), pp. 1–23, Springer.
[344] Wacker, O. J., Kümmel, R., and Gross, E. K. U. 1994. Time-dependent density functional theory for superconductors. Phys. Rev. Lett., 73(21), 2915–2918.
[345] Wallace, P. R. 1947. The band theory of graphite. Phys. Rev., 71(9), 622–634.
[346] Wang, Lin-Wang, and Zunger, Alex 1994. Dielectric constants of silicon quantum dots. Phys. Rev. Lett., 73(7), 1039–1042.
[347] Watanabe, Naoki, and Tsukada, Masaru 2002. Efficient method for simulating quantum electron dynamics under the time-dependent Kohn–Sham equation. Phys. Rev. E, 65(3), 036 705.
[348] Wigner, E. P., and Eisenbud, L. 1947. Higher angular momenta and long range interaction in resonance reactions. Phys. Rev., 72(1), 29–41.
[349] Wimmer, E., Krakauer, H., Weinert, M., and Freeman, A. J. 1981. Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys. Rev. B, 24(2), 864–875.
[350] Wojs, Arkadiusz, and Hawrylak, Pawel 1996. Charging and infrared spectroscopy of self-assembled quantum dots in a magnetic field. Phys. Rev. B, 53(16), 10 841–10 845.
[351] Xue, Y., Datta, S., and Ratner, M. A. 2001. Charge transfer and “band lineup” in molecular electronic devices: a chemical and numerical interpretation. J. Chem. Phys., 115(9), 4292–4299.
[352] Yabana, K., and Bertsch, G. F. 1996. Time-dependent local-density approximation in real time. Phys. Rev. B, 54(7), 4484–4487.
[353] Yabana, K., and Bertsch, G. F. 1999. Application of the time-dependent local density approximation to optical activity. Phys. Rev. A, 60(2), 1271–1279.
[354] Yaliraki, Sophia, N., and Ratner, Mark, A. 1998. Molecule–interface coupling effects on electronic transport in molecular wires. J. Chem. Phys., 109(12), 5036–5043.
[355] Yan, Z.-C., and Drake, G. W. F. 1995. Eigenvalues and expectation values for the 1s22s2 S, 1s22p2 P, and 1s23d2 D states of lithium. Phys. Rev. A, 52(5), 3711–3717.
[356] Yannouleas, Constantine, and Landman, Uzi 1999. Spontaneous symmetry breaking in single and molecular quantum dots. Phys. Rev. Lett., 82(26), 5325–5328.
[357] Yu, R., Singh, D., and Krakauer, H. 1991. All-electron and pseudopotential force calculations using the linearized-augmented-plane-wave method. Phys. Rev. B, 43(8), 6411–6422.
[358] Zhang, J. Y., Mitroy, J., and Varga, K. 2008. Development of a confined variational method for elastic scattering. Phys. Rev. A, 78(4), 042 705.
[359] Zhang, X., Fonseca, L., and Demkov, A. A. 2002. The application of density functional, local orbitals, and scattering theory to quantum transport. Phys. Stat. Sol. B, 233(1), 70–82.
[360] Zhou, X., and Lin, C. D. 2000. Linear-least-squares fitting method for the solution of the time-dependent Schrödinger equation: applications to atoms in intense laser fields. Phys. Rev. A, 61(5), 053411.
[361] Zumbach, G., Modine, N. A., and Kaxiras, E. 1996. Adaptive coordinate, realspace electronic structure calculations on parallel computers. Solid State Commun., 99(2), 57–61.