Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T11:10:16.422Z Has data issue: false hasContentIssue false

6 - Fundamentals of Thermophysical Properties

Published online by Cambridge University Press:  29 June 2023

Yong Du
Affiliation:
Central South University, China
Rainer Schmid-Fetzer
Affiliation:
Clausthal University of Technology, Germany
Jincheng Wang
Affiliation:
Northwestern Polytechnical University, China
Shuhong Liu
Affiliation:
Central South University, China
Jianchuan Wang
Affiliation:
Central South University, China
Zhanpeng Jin
Affiliation:
Central South University, China
Get access

Summary

Chapter 6 starts with a definition of thermophysical properties, followed by detailed descriptions of important terms and equations in diffusion, including Fick’s laws on diffusion; four types of diffusion coefficients (self-diffusion, impurity diffusion, intrinsic diffusion, and interdiffusion); atomic mechanisms of diffusion; diffusion equations in binary, ternary, and multicomponent phases; as well as phases with narrow homogeneity range. Short-circuit diffusion is also briefly mentioned. Subsequently, several computational methods, including first-principles calculations, MD simulation, semi-empirical approaches, and DICTRA software, are presented to calculate or estimate diffusivity and atomic mobilities from which various diffusivities can be computed. Modeling of selected important thermophysical properties, including interfacial energy, viscosity, volume, and thermal conductivity, is briefly introduced. A procedure to establish thermophysical databases is described from a materials design point of view. A case study for simulating age hardening in AA6005 Al alloys is demonstrated mainly using thermophysical properties as input to show their importance for materials design.

Type
Chapter
Information
Computational Design of Engineering Materials
Fundamentals and Case Studies
, pp. 198 - 263
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allnatt, A. R. (1982) Einstein and linear response formulas for the phenomenological coefficients for isothermal matter transport in solids. Journal of the Physics and Chemistry of Solids, 15, 56055613.Google Scholar
Andersen, S., Zandbergen, H., Jansen, J., Traeholt, C., Tundal, U., and Reiso, O. (1998) The crystal structure of the β″ phase in Al–Mg–Si alloys. Acta Materialia, 46(9), 32833298.CrossRefGoogle Scholar
Andersson, J.-O., and Agren, J. (1992) Models for numerical treatment of multicomponent diffusion in simple phases. Journal of Applied Physics, 72(4), 13501355.CrossRefGoogle Scholar
Andriy, Y., Yuriy, P., Stepan, M., Jürgen, B., Hidekazu, K., and Herbert, I. (2014) Viscosity of liquid Co–Sn alloys: thermodynamic evaluation and experiment. Physics and Chemistry of Liquids, 52(4), 562570.Google Scholar
Arrhenius, S. (1899) Chemical reaction velocities. Zeitschrift f?r Physikalische Chemie, 28, 317335.CrossRefGoogle Scholar
Bauer, A., Neumeier, S., Pyczak, F., Singer, R. F., and Göken, M. (2012) Creep properties of different -strengthened Co-base superalloys. Materials and Science Engineering A, 550, 333341.CrossRefGoogle Scholar
Boltzmann, L. (1894) Zur integration der diffusionsgleichung bei variabeln diffusions coefficienten. Annals of Physics, 289, 959964.CrossRefGoogle Scholar
Borgenstam, A., Engstrom, A., Hoglund, L., and Agren, J. (2000) DICTRA, a tool for simulation of diffusional transformations in alloys. Journal of Phase Equilibria and Diffusion, 21(3), 269280.CrossRefGoogle Scholar
Bouchet, R., and Mevrel, R. (2003) Calculating the composition-dependent diffusivity matrix along a diffusion path in ternary systems. CALPHAD, 27(3), 295303.CrossRefGoogle Scholar
Brillo, J., Chathoth, S. M., Koza, M. M., and Meyer, A. (2008) Liquid Al80Cu20: atomic diffusion and viscosity. Applied Physics Letters, 93(12), 121905.CrossRefGoogle Scholar
Brillo, J., and Schmid-Fetzer, R. (2014) A model for the prediction of liquid–liquid interfacial energies. Journal of Materials Science, 49(10), 36743680.CrossRefGoogle Scholar
Broeder, F. J. A. D. (1969) A general simplification and improvement of the Matano–Boltzmann method in the determination of the interdiffusion coefficients in binary systems. Scripta Metallurgica, 3, 321325.CrossRefGoogle Scholar
Brown, A. M., and Ashby, M. F. (1980) Correlations for diffusion constants. Acta Metallurgica, 28, 10851101.CrossRefGoogle Scholar
Bueche, F. (1959) Mobility of molecules in liquids near the glass temperature. Journal of Chemical Physics, 30, 748752.CrossRefGoogle Scholar
Butler, J. A. V. (1932) Thermodynamics of the surfaces of solutions. Proceedings of the Royal Society of London, Series A, 135, 348375.Google Scholar
Cahn, J. W., and Larche, F. C. (1983) An invariant formulation of multicomponent diffusion in crystals. Scripta Metallurgica, 27, 927932.CrossRefGoogle Scholar
Cahoon, J. R. (1997) A modified hole theory for solute impurity diffusion in liquid metals. Metallurgical and Materials Transactions A, 28, 583593.CrossRefGoogle Scholar
Campbell, C. E. (2008) Assessment of the diffusion mobilities in the gamma and B2 phases in the Ni–Al–Cr system. Acta Materialia, 56, 42774290.CrossRefGoogle Scholar
Campbell, C. E., Kattner, U. R., and Liu, Z. K. (2014) The development of phase-based property data using the CALPHAD method and infrastructure needs. International Journal of Materials and Manufacturing, 3, 158180.Google Scholar
Cao, W., Chen, S.-L., Zhang, F., et al. (2009) PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. CALPHAD, 33(2), 328342.CrossRefGoogle Scholar
Cao, W., Zhang, F., Chen, S.-L., et al. (2016) Precipitation modeling of multi-component nickel-based alloys. Journal of Phase Equilibria and Diffusion, 37(4), 491502.CrossRefGoogle Scholar
Cao, W., Zhang, F., Chen, S.-L., Zhang, C., and Chang, Y. (2011) An integrated computational tool for precipitation simulation. JOM, 63(7), 2934.CrossRefGoogle Scholar
Cermak, J., and Rothova, V. (2003) Concentration dependence of ternary interdiffusion coefficients in Ni3Al/Ni3Al–X couples with X=Cr, Fe, Nb and Ti. Acta Materialia, 51(15), 44114421.CrossRefGoogle Scholar
Chase, M. W. (1998) NIST-JANAF Thermochemical Tables, fourth edition. College Park: American Institute of Physics.Google Scholar
Choi, J., Park, S. K., Hwang, H. Y., and Huh, J. Y. (2015) A comparative study of dendritic growth by using the extended Cahn–Hilliard model and the conventional phase-field model. Acta Materialia, 84, 5564.CrossRefGoogle Scholar
Christensen, M., and Wahnström, G. (2003) Co-phase penetration of WC(10-10)/WC(101-0) grain boundaries from first principles. Physical Review B, 67(11), 045408.CrossRefGoogle Scholar
Darken, L. S. (1948) Diffusion, mobility and their interrelation through free energy in binary metallic systems. Transactions of AIME, 175, 184194.Google Scholar
Darken, L. S. (1949) Diffusion of carbon in austenite with a discontinuity in composition. Transactions of AIME, 180, 430438.Google Scholar
Das, S. K., Horbach, J., and Voigtmann, T. (2008) Structural relaxation in a binary metallic melt: molecular dynamics computer simulation of undercooled Al80Ni20. Physical Review B, 78(6), 064208.CrossRefGoogle Scholar
Dayananda, M. A., and Sohn, Y. H. (1999) A new analysis for the determination of ternary interdiffusion coefficients from a single diffusion couple. Metallurgical and Materials Transactions A, 30, 535543.CrossRefGoogle Scholar
Du, C. F., Zheng, Z. S., Min, Q. H., et al. (2020) A novel approach to calculate the diffusion matrix in ternary systems: application to Ag–Mg–Mn and Cu–Ni–Sn systems. CALPHAD, 68, 101708.CrossRefGoogle Scholar
Du, Y., Chang, Y. A., and Huang, B. (2003) Diffusion coefficients of some solutes in Fcc and liquid Al: Critical evaluation and correlation. Materials Science and Engineering A, 363, 140151.CrossRefGoogle Scholar
Du, Y., and Schuster, J. C. (2001) An effective approach to describe growth of binary intermediate phases with narrow ranges of homogeneity. Metallurgical and Materials Transactions A, 32, 23962400.CrossRefGoogle Scholar
Du, Y., and Sundman, B. (2017) Thermophysical properties: key input for ICME and MG. Journal of Phase Equilibria and Diffusion, 38, 601602.CrossRefGoogle Scholar
Dushman, S., and Langmuir, I. (1922) The diffusion coefficient in solids and its temperature coefficient. Proceedings of the American Physical Society, 113.Google Scholar
Eyring, H. (1935) The activated complex in chemical reactions. Journal of Chemical Physics, 3, 107115.CrossRefGoogle Scholar
Farrell, D. E., Shin, D., and Wolverton, C. (2009) First-principles molecular dynamics study of the structure and dynamic behavior of liquid Li4BN3H10. Physical Review B, 80, 224201.CrossRefGoogle Scholar
Fick, A. (1855) Ueber diffusion. Annals of Physics, 94, 5986.CrossRefGoogle Scholar
Fisher, J. C. (1951) Calculation of diffusion penetration curves for surface and grain boundary diffusion. Journal of Applied Physics, 22, 7477.CrossRefGoogle Scholar
Girifalco, L. A. (1964) Vacancy concentration and diffusion in order-disorder alloys. Physics and Chemistry of Solids, 25, 323333.CrossRefGoogle Scholar
Gorecki, T. (1990) Changes in the activation energy for self- and impurity-diffusion in metals on passing through the melting point. Journal of Materials Science Letters, 9, 167169.CrossRefGoogle Scholar
Grimvall, G. (1999) Thermophysical Properties of Materials. Amsterdam: Elsevier Science B.V.Google Scholar
Grimvall, G., and Sjodin, S. (1974) Correlation of properties of materials to Debye and melting temperatures. Physica Scripta, 10, 340352.CrossRefGoogle Scholar
Guillermet, A. F. (1987) Critical evaluation of the thermodynamic properties of cobalt Int. Journal of Thermophysics, 8, 481510.CrossRefGoogle Scholar
Harrison, L. (1961) Influence of dislocations on diffusion kinetics in solids with particular reference to the alkali halides. Transactions of the Faraday Society, 57, 11911199.CrossRefGoogle Scholar
Hart, E. W. (1957) On the role of dislocations in bulk diffusion. Acta Materialia, 5, 597597.CrossRefGoogle Scholar
Heitjans, P., and Kärger, J. (2005) Diffusion in Condensed Matter. Berlin and Heidelberg: Springer.CrossRefGoogle Scholar
Helander, T., and Ågren, J. (1999) A phenomenological treatment of diffusion in Al–Fe and Al–Ni alloys having B2-Bcc. ordered structure. Acta Materialia, 47, 11411152.CrossRefGoogle Scholar
Hillert, M., and Jarl, M. A. (1978) A model for alloying in ferromagnetic metals. CALPHAD, 2, 227238.CrossRefGoogle Scholar
Hirai, M. (1993) Estimation of viscosities of liquid alloys. Journal of the Iron and Steel Institute of Japan, 33, 251258.CrossRefGoogle Scholar
Huang, D., Liu, S., Du, Y., and Sundman, B. (2015) Modeling of the molar volume of the solution phases in the Al–Cu–Mg system. CALPHAD, 51, 261271.CrossRefGoogle Scholar
Huang, S., Worthington, D. L., Asta, M., Ozolins, V., Ghosh, G., and Peter, K. L. (2010) Calculation of impurity diffusivities in a-Fe using first-principles methods. Acta Materialia, 58, 19821993.CrossRefGoogle Scholar
Huber, L., Elfimov, I., Rottler, J., and Militzer, M. (2012) Ab initio calculations of rare-earth diffusion in magnesium. Physical Review B, 85, 144301.CrossRefGoogle Scholar
Jacobs, M. H., Schmid-Fetzer, R., and van den Berg, A. P. (2017) Phase diagrams, thermodynamic properties and sound velocities derived from a multiple Einstein method using vibrational densities of states: an application to MgO–SiO2. Physics and Chemistry of Minerals, 44(1), 4362.CrossRefGoogle Scholar
Jacobs, M. H., Schmid-Fetzer, R., and van den Berg, A. P. (2019) Thermophysical properties and phase diagrams in the system MgO–SiO2–FeO at upper mantle and transition zone conditions derived from a multiple-Einstein method. Physics and Chemistry of Minerals, 46(5), 513534.CrossRefGoogle Scholar
Jang, J., Kwon, J., and Lee, B. (2010) Effect of stress on self-diffusion in Bcc Fe: an atomistic simulation study. Scripta Materialia, 63, 3942.CrossRefGoogle Scholar
Johansson, S. A. E., and Wahnström, G. (2010) Theory of ultrathin films at metal-ceramic interfaces. Philosophical Magazine Letters, 90(8), 599609.CrossRefGoogle Scholar
Johansson, S. A. E., and Wahnström, G. (2012) First-principles study of an interfacial phase diagram in the V-doped WC–Co system. Physical Review B, 86(3), 035403.CrossRefGoogle Scholar
Jönsson, B. (1994) Assessment of the mobility of carbon in Fcc C–Cr–Fe–Ni alloys. Z. Metallkd., 85, 502509.Google Scholar
Jost, W. (1969) Diffusion in Solids, Liquids and Gases, second edition. New York: Academic Press.Google Scholar
Kaptay, G. (2003) Proceedings of MicroCAD 2003 International Section Metallurgy. Hungary: University of Miskolc.Google Scholar
Kaptay, G. (2012) On the interfacial energy of coherent interfaces. Acta Materialia, 60, 68046813.CrossRefGoogle Scholar
Kaschnitz, E., and Ebner, R. (2007) Thermal diffusivity of the aluminum alloy Al–17Si–4Cu (A390) in the solid and liquid states. International Journal of Thermophysics, 28, 711722.CrossRefGoogle Scholar
Kaur, I., Mishin, Y., and Gust, W. (1995) Fundamentals of Grain and Interphase Boundary Diffusion. Chichester: John Wiley.Google Scholar
King, D. A., and Woodruff, D. P. (1993) The Chemical Physics of Solid Surfaces Distributors for the U.S. and Canada. Amsterdam: Elsevier North-Holland.Google Scholar
Kirkaldy, J., Weichert, D., and Haq, Z. (1963) Diffusion in multicomponent metallic systems: VI. Some thermodynamic properties of the D matrix and the corresponding solutions of the diffusion equations. Canadian Journal of Physics, 41, 21662173.CrossRefGoogle Scholar
Kirkaldy, J. S., and Young, D. J. (1987) Diffusion in the Condensed State. London: Institute of Metals.Google Scholar
Kozlov, L., Romanov, L. M., and Petrov, N. N. (1983) Prediction of multicomponent metallic melt viscosity. Izv. Vuzov Chernaya Metall., 3, 711.Google Scholar
Kucharski, M. (1986) The viscosity of multicomponent systems. Z. Metallkd., 77, 393396.Google Scholar
LeClaire, A. D. (1978) Solute diffusion in dilute alloys. Journal of Nuclear Materials, 70, 7096.CrossRefGoogle Scholar
Li, D., Fürtauer, S., Flandorfer, H., and Cupid, D. M. (2014) Thermodynamic assessment and experimental investigation of the Li–Sn system. CALPHAD, 47, 181195.CrossRefGoogle Scholar
Lippmann, S., Jung, I.-H., Paliwal, M., and Rettenmayr, M. (2016) Modelling temperature and concentration dependent solid/liquid interfacial energies. Philosophical Magazine, 96, 114.CrossRefGoogle Scholar
Liu, Y., Liu, S., Du, Y., Peng, Y., Zhang, C., and Yao, S. (2019) A general model to calculate coherent solid/solid and immiscible liquid/liquid interfacial energies. CALPHAD, 65, 225231.CrossRefGoogle Scholar
Liu, Y., Long, Z., and Wang, H. (2006) A predictive equation for solute diffusivity in liquid metals. Scripta Materialia, 55, 367370.CrossRefGoogle Scholar
Liu, Y. L., Zhang, C., Du, C. F., et al. (2020) CALTPP: a general program to calculate thermophysical properties. Journal of Materials Science and Technology, 42, 229240.Google Scholar
Long, J., Zhang, W., Wang, Y., et al. (2017) A new type of WC–Co–Ni–Al cemented carbide: grain size and morphology of -strengthened composite binder phase. Scripta Materialia, 126, 3336.CrossRefGoogle Scholar
Lu, X. G., Selleby, M., and Sundman, B. (2005a) Assessments of molar volume and thermal expansion for selected Bcc, Fcc and Hcp metallic elements. CALPHAD, 29(1), 6889.CrossRefGoogle Scholar
Lu, X. G., Selleby, M., and Sundman, B. (2005b) Implementation of a new model for pressure dependence of condensed phases in Thermo-Calc. CALPHAD, 29, 4955.CrossRefGoogle Scholar
Luo, A. A., Zhao, J.-C., Riggi, A., and Joost, W. (2017) High-throughput study of diffusion and phase transformation kinetics of magnesium-based systems for automotive cast magnesium alloys. Project final report. Ohio State University, CompuTherm LLC (Madison, WI). Contract No.: DE-EE0006450.CrossRefGoogle Scholar
Manning, J. R. (1964) Correlation factors for impurity diffusion. Bcc, diamond, and Fcc structures. Physical Review, 136, A1758.CrossRefGoogle Scholar
Mantina, M., Wang, Y., Chen, L. Q., Liu, Z. K., and Wolverton, C. (2009) First principles impurity diffusion coefficients. Acta Materialia, 57(14), 41024108.CrossRefGoogle Scholar
Marino, K. A., and Carter, E. A. (2008) First-principles characterization of Ni diffusion kinetics in β-NiAl. Physical Review B: Condensed Matter and Materials Physics, 78(18), 184105/1–184105/11.CrossRefGoogle Scholar
Matano, C. (1933) The relation between the diffusion coefficients and concentrations of solid metals (the nickel-copper system). Japanese Journal of Physics, 8, 109113.Google Scholar
Mehrer, H. (1990) Numerical Data and Functional Relationships in Science and Technology: Diffusion in Solid Metals and Alloys. Germany: Landolt-Börnstein Springer-Verlag.Google Scholar
Mehrer, H. (2005) Diffusion: introduction and case studies in metals and binary alloys, in Heitjans, P., and Kärger, J. (eds), Diffusion in Condensed Matter: Methods, Materials, Models. Berlin, Heidelberg: Springer Berlin Heidelberg, 363.CrossRefGoogle Scholar
Mehrer, H. (2007) Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes. Berlin, Heidelberg: Springer Berlin Heidelberg.CrossRefGoogle Scholar
Miao, W., and Laughlin, D. (1999) Precipitation hardening in aluminum alloy 6022. Scripta Materialia, 40(7), 873878.CrossRefGoogle Scholar
Moelwyn-Hughes, E. A. (1961) Physical Chemistry. Oxford: Pergamon Press.Google Scholar
Myhr, O., Grong, Ø., and Andersen, S. (2001) Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Materialia, 49(1), 6575.CrossRefGoogle Scholar
Nowick, A. S., and Burton, J. J. (1975) Diffusion in Solids. London: Academic Press.Google Scholar
Olson, G. B., and Kuehmann, C. (2014) Materials genomics: from CALPHAD to flight. Scripta Materialia, 70, 2530.CrossRefGoogle Scholar
Onsager, L. (1931) Reciprocal relations in irreversible processes. Physical Review, 37, 405426.CrossRefGoogle Scholar
Onsager, L. (1945) Theories and problems of liquid diffusion. Annals of the New York Academy of Sciences, 46, 241265.CrossRefGoogle ScholarPubMed
Paul, A., and Divinski, S. V. (2017) Diffusion Analysis in Material Applications, Handbook of Solid State Diffusion. Oxford: Matthew Deans.Google Scholar
Paul, A., Laurila, T., Vuorinen, V., and Divinski, S. V. (2014) Thermodynamics, Diffusion and the Kirkendall Effect in Solids. Cham, Heidelberg, New York, Dordrecht, and London: Springer.CrossRefGoogle Scholar
Paul, T. A., and Gene, M. (2008) Physics for Scientists and Engineers. New York: Worth Publishers.Google Scholar
Pelleg, J. (2006) Diffusion of 60Co in vanadium single crystals. Philosophical Magazine, 32(3), 593598.CrossRefGoogle Scholar
Philibert, J. (1991) Atom Movements: Diffusion and Mass Transport in Solids. Les Ulis: Les Éditions de Physique.Google Scholar
Pilarek, B., Salamon, B., and Kapała, J. (2014) Calculation and optimization of LaBr3–MBr (Li–Cs) phase diagrams by CALPHAD method. CALPHAD, 47, 211218.CrossRefGoogle Scholar
Sauer, F., and Freise, V. (1962) Diffusion in binary mixtures showing a volume change. Z. Elektrochem. Angew. Phys. Chem., 66, 353363.CrossRefGoogle Scholar
Schmid-Fetzer, R. (2019) Recent progress in development and applications of Mg alloy thermodynamic database, in Joshi, V. V., Jordon, J. B., Orlov, D., and Neelameggham, N. R. (eds), Magnesium Technology 2019. Cham: Springer, 249255.CrossRefGoogle Scholar
Schmid-Fetzer, R., and Zhang, F. (2018) The light alloy CALPHAD databases PanAl and PanMg. CALPHAD, 61, 246263.CrossRefGoogle Scholar
Seetharaman, S., and Sichen, D. (1994) Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing. Metallurgical and Materials Transactions A, 25B, 589595.CrossRefGoogle Scholar
Sherby, O. D., and Simnad, M. T. (1961) Prediction of atomic mobility in metallic systems. ASM Transactions Quarterly, 54, 227240.Google Scholar
Smigelkas, A. D., and Kirkendall, E. O. (1947) Zinc diffusion in alpha brass. Transactions of the AIME, 171, 130142.Google Scholar
Sohn, Y. H., and Dayananda, M. A. (2002) Diffusion studies in the β (B2), β′ (Bcc), and (Fcc) Fe–Ni–Al alloys at 1000 °C. Metallurgical and Materials Transactions A, 33, 33753392.CrossRefGoogle Scholar
Su, X., Yang, S., Wang, J., et al. (2010) A new equation for temperature dependent solute impurity diffusivity in liquid metals. Journal of Phase Equilibria and Diffusions, 31, 333340.CrossRefGoogle Scholar
Sudbrack, C. K., Ziebell, T. D., Noebe, R. D., and Seidman, D. N. (2008) Effects of a tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni–Al–Cr superalloy. Acta Materialia, 56, 448463.CrossRefGoogle Scholar
Swalin, R. A. (1956) Correlation between frequency factor and activation energy for solute diffusion. Journal of Applied Physics, 27, 554555.CrossRefGoogle Scholar
Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Desai, P. D. (1975) Thermophysical properties of matter – the TPRC data series. Volume 12. Thermal expansion metallic elements and alloys. (Reannouncement). Data book. Thermal Conductivity.CrossRefGoogle Scholar
Ven, A. V. d., and Ceder, G. (2005) First principles calculation of the interdiffusion coefficient in binary alloys. Physical Review Letters, 94, 045901.Google ScholarPubMed
Vignes, A., and Birchenall, C. E. (1968) Concentration dependence of the interdiffusion coefficient in binary metallic solid solution. Acta Metallurgica, 16, 11171125.CrossRefGoogle Scholar
Vineyard, G. H. (1957) Frequency factors and isotope effects in solid state rate processes. Journal of the Physics and Chemistry of Solids, 3, 121127.CrossRefGoogle Scholar
Wagner, C. (1969) Evaluation of data obtained with diffusion couples of binary single-phase and multiphase systems. Acta Metallurgica, 17, 99107.CrossRefGoogle Scholar
Warren, R. (1980) Research on the wettability of ceramics films by metal and their interfaces. Journal of Materials Science, 15, 24892496.CrossRefGoogle Scholar
Warren, R., and Waldron, M. B. (1972) Surface and interfacial energies in systems of certain refractory-metal monocarbides with liquid cobalt. Nature Physical Science, 235, 7374.CrossRefGoogle Scholar
Wen, S., Du, Y., Tan, J., et al. (2022) A new model for thermal conductivity of “continuous matrix / dispersed and separated 3D-particles” type composite materials and its application to WC–M (M = Co, Ag) systems. Journal of Materials Science and Technology, 97, 123133.CrossRefGoogle Scholar
Whittle, D. P., and Green, A. (1974) The measurement of diffusion coefficients in ternary systems. Scripta Materialia, 8, 883884.CrossRefGoogle Scholar
Xin, J., Du, Y., Shang, S., et al. (2016) A new relationship among self- and impurity diffusion coefficients in binary solution phases. Metallurgical and Materials Transactions A, 47A, 32953299.CrossRefGoogle Scholar
Yakymovych, A., Plevachuk, Y., Mudry, S., Brillo, J., Kobatake, H., and Ipser, H. (2014) Viscosity of liquid Co–Sn alloys: thermodynamic evaluation and experiment. Physics and Chemistry of Liquids, 52(4), 562570.CrossRefGoogle ScholarPubMed
Zener, C. (1951) Theory of D0 for atomic diffusion in metals. Journal of Applied Physics, 22(4), 372375.CrossRefGoogle Scholar
Zhang, C., Cao, W., Chen, S.-L., et al. (2014a) Precipitation simulation of AZ91 alloy. JOM, 66(3), 389396.CrossRefGoogle Scholar
Zhang, C., and Du, Y. (2017) A novel thermodynamic model for obtaining solid–liquid interfacial energies. Metallurgical and Materials Transactions A, 48, 57665770.CrossRefGoogle Scholar
Zhang, C., Du, Y., Liu, S., Liu, Y., and Sundman, B. (2016) Thermal conductivity of Al–Cu–Mg–Si alloys: experimental measurement and CALPHAD modeling. Thermochimica Acta, 635, 816.CrossRefGoogle Scholar
Zhang, F., Cao, W., Chen, S., Zhang, C., and Zhu, J. (2013) The role of the CALPHAD approach in ICME. Proceedings of the 2nd World Congress on Integrated Computational Materials Engineering (ICME). Cham: Springer, 195200.Google Scholar
Zhang, F., Cao, W., Zhang, C., Chen, S., Zhu, J., and Lv, D. (2018) Simulation of co-precipitation kinetics of and in superalloy 718, in Ott, E., Liu, X., Andersson, J., et al. (eds), Proceedings of the 9th International Symposium on Superalloy 718 and Derivatives: Energy, Aerospace, and Industrial Applications. Cham: Springer, 147161.Google Scholar
Zhang, F., Du, Y., Liu, S., and Jie, W. (2015) Modeling of the viscosity in the AL–Cu–Mg–Si system: database construction. CALPHAD, 49, 7986.CrossRefGoogle Scholar
Zhang, F., Wen, S., Liu, Y., Du, Y., and Kaptay, G. (2019) Modelling the viscosity of liquid alloys with associates. Journal of Molecular Liquids, 291, 111345.CrossRefGoogle Scholar
Zhang, W., Zhang, L., Du, Y., Liu, S., and Tang, C. (2014b) Atomic mobilities in Fcc Cu–Mn–Ni–Zn alloys and their characterizations of uphill diffusion and zero-flux plane phenomena. International Journal of Materials Research, 105, 1331.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×