Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Introduction
- 1 Geometry of Surfaces in R3
- 2 Vector Fields
- 3 Sub-Riemannian Structures
- 4 Pontryagin Extremals: Characterization and Local Minimality
- 5 First Integrals and Integrable Systems
- 6 Chronological Calculus
- 7 Lie Groups and Left-Invariant Sub-Riemannian Structures
- 8 Endpoint Map and Exponential Map
- 9 2D Almost-Riemannian Structures
- 10 Nonholonomic Tangent Space
- 11 Regularity of the Sub-Riemannian Distance
- 12 Abnormal Extremals and Second Variation
- 13 Some Model Spaces
- 14 Curves in the Lagrange Grassmannian
- 15 Jacobi Curves
- 16 Riemannian Curvature
- 17 Curvature in 3D Contact Sub-Riemannian Geometry
- 18 Integrability of the Sub-Riemannian Geodesic Flow on 3D Lie Groups
- 19 Asymptotic Expansion of the 3D Contact Exponential Map
- 20 Volumes in Sub-Riemannian Geometry
- 21 The Sub-Riemannian Heat Equation
- Appendix Geometry of Parametrized Curves in Lagrangian Grassmannians Igor Zelenko
- References
- Index
15 - Jacobi Curves
Published online by Cambridge University Press: 28 October 2019
- Frontmatter
- Dedication
- Contents
- Preface
- Introduction
- 1 Geometry of Surfaces in R3
- 2 Vector Fields
- 3 Sub-Riemannian Structures
- 4 Pontryagin Extremals: Characterization and Local Minimality
- 5 First Integrals and Integrable Systems
- 6 Chronological Calculus
- 7 Lie Groups and Left-Invariant Sub-Riemannian Structures
- 8 Endpoint Map and Exponential Map
- 9 2D Almost-Riemannian Structures
- 10 Nonholonomic Tangent Space
- 11 Regularity of the Sub-Riemannian Distance
- 12 Abnormal Extremals and Second Variation
- 13 Some Model Spaces
- 14 Curves in the Lagrange Grassmannian
- 15 Jacobi Curves
- 16 Riemannian Curvature
- 17 Curvature in 3D Contact Sub-Riemannian Geometry
- 18 Integrability of the Sub-Riemannian Geodesic Flow on 3D Lie Groups
- 19 Asymptotic Expansion of the 3D Contact Exponential Map
- 20 Volumes in Sub-Riemannian Geometry
- 21 The Sub-Riemannian Heat Equation
- Appendix Geometry of Parametrized Curves in Lagrangian Grassmannians Igor Zelenko
- References
- Index
Summary
We introduce the Jacobi curve associated with a normalextremal. Heuristically, we would like to extractgeometric properties of the sub-Riemannian structureby studying the symplectic invariants of itsgeodesic flow. The simplest idea is to look forinvariants in its linearization. This subject isnaturally related to geodesic variations andgeneralizes the notion of Jacobi fields inRiemannian geometry to more general geometricstructures.
Keywords
- Type
- Chapter
- Information
- A Comprehensive Introduction to Sub-Riemannian Geometry , pp. 542 - 550Publisher: Cambridge University PressPrint publication year: 2019