Book contents
- Frontmatter
- Contents
- INTRODUCTION
- PROJECTIVE VARIETIES
- VECTOR BUNDLES AND SPECIAL PROJECTIVE EMBEDDINGS
- LIST OF PARTICIPANTS
- Speciality one rational surfaces in P4
- Bounding sections of bundles on curves
- The smooth surfaces of degree 9 in P4
- Compactifying the space of elliptic quartic curves
- Threefolds of degree 11 in P5
- Complete extensions and their map to moduli space
- On the Betti numbers of the moduli space of stable bundles of rank two on a curve
- Gaussian maps for certain families of canonical curves
- Geometry of the Horrocks bundle on P3
- Stability and restrictions of Picard bundles, with an application to the normal bundles of elliptic curves
- Sections planes et majoration du genre des courbes gauches
- A tribute to Corrado Segre
- Un aperçu des travaux mathématiques de G.H. Halphen (1844–1889)
- The source double-point cycle of a finite map of codimension one
- Fibré déterminant et courbes de saut sur les surfaces algébriques
- Courbes minimales dans les classes de biliaison
- Fano 3-folds
- Polarized K3 surfaces of genus 18 and 20
- Protective compactifications of complex afflne varieties
- On generalized Laudal's lemma
- Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes
- Introduction to Gaussian maps on an algebraic curve
- Some examples of obstructed curves in P3
Speciality one rational surfaces in P4
Published online by Cambridge University Press: 06 July 2010
- Frontmatter
- Contents
- INTRODUCTION
- PROJECTIVE VARIETIES
- VECTOR BUNDLES AND SPECIAL PROJECTIVE EMBEDDINGS
- LIST OF PARTICIPANTS
- Speciality one rational surfaces in P4
- Bounding sections of bundles on curves
- The smooth surfaces of degree 9 in P4
- Compactifying the space of elliptic quartic curves
- Threefolds of degree 11 in P5
- Complete extensions and their map to moduli space
- On the Betti numbers of the moduli space of stable bundles of rank two on a curve
- Gaussian maps for certain families of canonical curves
- Geometry of the Horrocks bundle on P3
- Stability and restrictions of Picard bundles, with an application to the normal bundles of elliptic curves
- Sections planes et majoration du genre des courbes gauches
- A tribute to Corrado Segre
- Un aperçu des travaux mathématiques de G.H. Halphen (1844–1889)
- The source double-point cycle of a finite map of codimension one
- Fibré déterminant et courbes de saut sur les surfaces algébriques
- Courbes minimales dans les classes de biliaison
- Fano 3-folds
- Polarized K3 surfaces of genus 18 and 20
- Protective compactifications of complex afflne varieties
- On generalized Laudal's lemma
- Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes
- Introduction to Gaussian maps on an algebraic curve
- Some examples of obstructed curves in P3
Summary
Introduction: We work over an algebraically closed field k of characteristic zero, except in section (3) where the characteristic is arbitry. By a surface we will mean a smooth projective surface and a curve will be any effective divisor on a surface. We recall that in [A], the speciality of a rational surface X in ℙn is defined to be the number q(1)=h1(O×(H)), where H is a hyperplane section of X. We say that X is special or non-special in accordance with q(1)>0 or q(1)=0.
In [A], a complete classification of non-special rational surfaces in ℙ4 was given, showing that the linearly normal ones form, for each degree 3≤d≤9, a single irreducible family. Recently in [E-P] it was shown that there are only a finite number of irreducible components of the Hilbert scheme of ℙ4 containing rational surfaces; in particular the degrees of such surfaces is bounded. The results which we present here are a contribution to the eventual determination of all such components and contributes to the classification of surfaces in ℙ4 of small degree [A], [A-R], [R], [Ro], and varieties with small invariants [l1, l2, l3].
We will be concerned with rational surfaces of speciality one in ℙ4. By [O1, O2, O3] these have degree eight or more and a simple argument shows that their degree is at most eleven (prop.(1.1)).
- Type
- Chapter
- Information
- Complex Projective GeometrySelected Papers, pp. 1 - 23Publisher: Cambridge University PressPrint publication year: 1992
- 4
- Cited by