Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T14:18:51.222Z Has data issue: false hasContentIssue false

Part 9 - Missing Radiographic Clues

Published online by Cambridge University Press:  03 November 2020

Keith Josephs
Affiliation:
Mayo Clinic Alzheimer’s Disease Research Center
Federico Rodriguez-Porcel
Affiliation:
Medical University of South Carolina
Rhonna Shatz
Affiliation:
University of Cincinnati
Daniel Weintraub
Affiliation:
University of Pennsylvania
Alberto Espay
Affiliation:
University of Cincinnati
Get access
Type
Chapter
Information
Common Pitfalls in Cognitive and Behavioral Neurology
A Case-Based Approach
, pp. 129 - 148
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ahmed, R. M. et al. 2014. A practical approach to diagnosing adult onset leukodystrophies. J Neurol Neurosurg Psychiatry 85(7) 770781.CrossRefGoogle ScholarPubMed
Ayrignac, X. et al. 2015. Adult-onset genetic leukoencephalopathies: a MRI pattern-based approach in a comprehensive study of 154 patients. Brain 138(Pt 2) 284292.Google Scholar
Brickman, A. M. et al. 2011. White matter hyperintensities and cognition: testing the reserve hypothesis. Neurobiol Aging 32(9) 15881598.CrossRefGoogle ScholarPubMed
Espay, A. J. et al. 2008. Lower-body parkinsonism: reconsidering the threshold for external lumbar drainage. Nat Clin Pract Neurol 4(1) 5055.Google Scholar
Gorelick, P. B. et al. 2011. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42(9) 26722713.Google Scholar
Kanekar, S. and Poot, J. D. 2014. Neuroimaging of vascular dementia. Radiol Clin North Am 52(2) 383401.CrossRefGoogle ScholarPubMed
Sarbu, N. et al. 2016. White matter diseases with radiologic-pathologic correlation. Radiographics 36(5) 14261447.Google Scholar
Skrobot, O. A. et al. 2017. The Vascular Impairment of Cognition Classification Consensus Study. Alzheimers Dement 13(6) 624633.CrossRefGoogle ScholarPubMed
Smith, E. 2016. Vascular cognitive impairment. Continuum 22(2) 490509.Google Scholar

References

Cagnin, A. et al. 2015. A simplified callosal angle measure best differentiates idiopathic-normal pressure hydrocephalus from neurodegenerative dementia. J Alzheimers Dis 46(4) 10331038.CrossRefGoogle ScholarPubMed
Greitz, D. 2004. Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27(3) 145165; discussion 166–147.CrossRefGoogle ScholarPubMed
Hashimoto, M., Ishikawa, M., Mori, E. and Kuwana, N. 2010. Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res 7 18.CrossRefGoogle ScholarPubMed
Ishii, K. et al. 2008. Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol 18(11) 26782683.Google Scholar
Kitagaki, H. et al. 1998. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol 19(7) 12771284.Google ScholarPubMed
Klassen, B. T. and Ahlskog, J. E. 2011. Normal pressure hydrocephalus: how often does the diagnosis hold water? Neurology 77(12) 11191125.Google Scholar
Lane, J. I., Luetmer, P. H. and Atkinson, J. L. 2001. Corpus callosal signal changes in patients with obstructive hydrocephalus after ventriculoperitoneal shunting. AJNR Am J Neuroradiol 22(1) 158162.Google Scholar
Lenfeldt, N. et al. 2008. Idiopathic normal pressure hydrocephalus: increased supplementary motor activity accounts for improvement after CSF drainage. Brain 131(Pt 11) 29042912.Google Scholar
Malm, J. et al. 2013. Influence of comorbidities in idiopathic normal pressure hydrocephalus – research and clinical care. A report of the ISHCSF task force on comorbidities in INPH. Fluids Barriers CNS 10(1) 22.Google Scholar
Mori, E. et al. 2012. Guidelines for management of idiopathic normal pressure hydrocephalus: second edition. Neurol Med Chir 52(11) 775809.Google Scholar
Savolainen, S. et al. 2000. MR imaging of the hippocampus in normal pressure hydrocephalus: correlations with cortical Alzheimer’s disease confirmed by pathologic analysis. AJNR Am J Neuroradiol 21(2) 409414.Google Scholar
Starr, B. W., Hagen, M. C. and Espay, A. J. 2014. Hydrocephalic Parkinsonism: lessons from normal pressure hydrocephalus mimics. J Clin Mov Disord 1 2.Google Scholar
Toma, A. K., Holl, E., Kitchen, N. D. and Watkins, L. D. 2011. Evans’ index revisited: the need for an alternative in normal pressure hydrocephalus. Neurosurgery 68(4) 939944.CrossRefGoogle ScholarPubMed
Williams, M. A. and Relkin, N. R. 2013. Diagnosis and management of idiopathic normal-pressure hydrocephalus. Neurol Clin Pract 3(5) 375385.Google Scholar

References

Apartis, E. et al. 2012. FXTAS: new insights and the need for revised diagnostic criteria. Neurology 79(18) 18981907.CrossRefGoogle ScholarPubMed
Brunberg, J. A. et al. 2002. Fragile X premutation carriers: characteristic MR imaging findings of adult male patients with progressive cerebellar and cognitive dysfunction. AJNR Am J Neuroradiol 23(10) 17571766.Google ScholarPubMed
Greene-Schloesser, D. et al. 2012. Radiation-induced brain injury: a review. Front Oncol 2 73.CrossRefGoogle ScholarPubMed
Grigsby, J. et al. 2014. The cognitive neuropsychological phenotype of carriers of the FMR1 premutation. J Neurodev Disord 6(1) 28.CrossRefGoogle ScholarPubMed
Hagerman, P. 2013. Fragile X–associated tremor/ataxia syndrome (FXTAS): pathology and mechanisms. Acta Neuropathol 126(1) 119.CrossRefGoogle ScholarPubMed
Hagerman, R. J. and Hagerman, P. 2016. Fragile X–associated tremor/ataxia syndrome – features, mechanisms and management. Nat Rev Neurol 12(7) 403412.CrossRefGoogle ScholarPubMed
Hagerman, R. J. et al. 2001. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57(1) 127130.CrossRefGoogle ScholarPubMed
Hall, D. A. et al. 2014. Emerging topics in FXTAS. J Neurodev Disord 6(1) 31.CrossRefGoogle ScholarPubMed
Leehey, M. A. 2009. Fragile X–associated tremor/ataxia syndrome: clinical phenotype, diagnosis, an treatment. J Investig Med 57(8) 830836.Google Scholar
Leehey, M. A. et al. 2008. FMR1 CGG repeat length predicts motor dysfunction in premutation carriers. Neurology 70(16 Pt 2) 13971402.CrossRefGoogle ScholarPubMed
Leehey, M. A. et al. 2007. Progression of tremor and ataxia in male carriers of the FMR1 premutation. Mov Disord 22(2) 203206.Google Scholar
Seltzer, M. M. et al. 2012. Prevalence of CGG expansions of the FMR1 gene in a US population-based sample. Am J Med Genet B Neuropsychiatr Genet 159b(5) 589597.CrossRefGoogle Scholar
Seritan, A., Cogswell, J. and Grigsby, J. 2013. Cognitive dysfunction in FMR1 premutation carriers. Curr Psychiatry Rev 9(1) 7884.Google ScholarPubMed
Seritan, A. L. et al. 2008. Dementia in fragile X–associated tremor/ataxia syndrome (FXTAS): comparison with Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet 147b(7) 11381144.CrossRefGoogle ScholarPubMed
Tassone, F. et al. 2012. Neuropathological, clinical and molecular pathology in female fragile X premutation carriers with and without FXTAS. Genes Brain Behav 11(5) 577585.CrossRefGoogle ScholarPubMed
Yang, J. C. et al. 2014. ERP abnormalities elicited by word repetition in fragile X–associated tremor/ataxia syndrome (FXTAS) and amnestic MCI. Neuropsychologia 63 3442.Google Scholar

References

Chow, N. et al. 2012. Comparing hippocampal atrophy in Alzheimer’s dementia and dementia with Lewy bodies. Dement Geriatr Cogn Disord 34(1) 4450.CrossRefGoogle ScholarPubMed
Fotuhi, M., Do, D. and Jack, C. 2012. Modifiable factors that alter the size of the hippocampus with ageing. Nat Rev Neurol 8 189.Google Scholar
Jack, C. R., Jr. et al. 2016. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87(5) 539547.CrossRefGoogle ScholarPubMed
Jack, C. R., Jr. et al. 2016. Suspected non-Alzheimer disease pathophysiology: concept and controversy. Nat Rev Neurol 12(2) 117124.Google Scholar
Jack, C. R., Jr. et al. 2018. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14(4) 535562.Google Scholar
Jicha, G. A. and Nelson, P. T. 2019. Hippocampal sclerosis, argyrophilic grain disease, and primary age-related tauopathy. Continuum 25(1) 208233.Google Scholar
Josephs, K. A. et al. 2008. Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 70(19 Pt 2) 18501857.Google Scholar
Josephs, K. A. et al. 2014. TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol 127(6) 811824.CrossRefGoogle ScholarPubMed
Lu, J. Q., Steve, T. A., Wheatley, M. and Gross, D. W. 2017. Immune cell infiltrates in hippocampal sclerosis: correlation with neuronal loss. J Neuropathol Exp Neurol 76(3) 206215.CrossRefGoogle ScholarPubMed
McKhann, G. M. et al. 2011. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3) 263269.CrossRefGoogle ScholarPubMed
Smirnov, D. S. et al. 2019. Trajectories of cognitive decline differ in hippocampal sclerosis and Alzheimer’s disease. Neurobiol Aging 75 169177.CrossRefGoogle ScholarPubMed
Tai, X. Y. et al. 2018. Review: neurodegenerative processes in temporal lobe epilepsy with hippocampal sclerosis: clinical, pathological and neuroimaging evidence. Neuropathol Appl Neurobiol 44(1) 7090.Google Scholar

References

Arvanitakis, Z. et al. 2011. Cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann Neurol 69(2) 320327.CrossRefGoogle ScholarPubMed
Auriel, E. et al. 2016. Validation of clinicoradiological criteria for the diagnosis of cerebral amyloid angiopathy-related inflammation. JAMA Neurol 73(2) 197202.Google Scholar
Charidimou, A. et al. 2012. Spectrum of transient focal neurological episodes in cerebral amyloid angiopathy: multicentre magnetic resonance imaging cohort study and meta-analysis. Stroke 43(9) 23242330.CrossRefGoogle ScholarPubMed
Charidimou, A. et al. 2017. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain 140(7) 18291850.Google Scholar
Charidimou, A. et al. 2018. Cerebral amyloid angiopathy, cerebral microbleeds and implications for anticoagulation decisions: the need for a balanced approach. Int J Stroke 13(2) 117120.Google Scholar
Eng, J. A. et al. 2004. Clinical manifestations of cerebral amyloid angiopathy-related inflammation. Ann Neurol 55(2) 250256.CrossRefGoogle ScholarPubMed
Greenberg, S. M. 1998. Cerebral amyloid angiopathy: prospects for clinical diagnosis and treatment. Neurology 51(3) 690694.CrossRefGoogle ScholarPubMed
Greenberg, S. M. and Vonsattel, J. P. 1997. Diagnosis of cerebral amyloid angiopathy: sensitivity and specificity of cortical biopsy. Stroke 28(7) 14181422.CrossRefGoogle ScholarPubMed
Kinnecom, C. et al. 2007. Course of cerebral amyloid angiopathy-related inflammation. Neurology 68(17) 14111416.Google Scholar
Linn, J. et al. 2010. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 74(17) 13461350.Google Scholar
Rosand, J. et al. 2005. Spatial clustering of hemorrhages in probable cerebral amyloid angiopathy. Ann Neurol 58(3) 459462.CrossRefGoogle ScholarPubMed
Wermer, M. J. H. and Greenberg, S. M. 2018. The growing clinical spectrum of cerebral amyloid angiopathy. Curr Opin Neurol 31(1) 2835.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×