Published online by Cambridge University Press: 05 May 2013
Advances in mathematics occur in one of two ways.
The first occurs by the solution of some outstanding problem, such as the Bieberbach conjecture or Fermat's conjecture. Such solutions are justly acclaimed by the mathematical community. The solution of every famous mathematical problem is the result of joint effort of a great many mathematicians. It always comes as an unexpected application of theories that were previously developed without a specific purpose, theories whose effectiveness was at first thought to be highly questionable.
Mathematicians realized long ago that it is hopeless to get the lay public to understand the miracle of unexpected effectiveness of theory. The public, misled by two hundred years of Romantic fantasies, clamors for some “genius” whose brain power cracks open the secrets of nature. It is therefore a common public relations gimmick to give the entire credit for the solution of famous problems to the one mathematician who is responsible for the last step.
It would probably be counterproductive to let it be known that behind every “genius” there lurks a beehive of research mathematicians who gradually built up to the “final” step in seemingly pointless research papers. And it would be fatal to let it be known that the showcase problems of mathematics are of little or no interest for the progress of mathematics. We all know that they are dead ends, curiosities, good only as confirmation of the effectiveness of theory. What mathematicians privately celebrate when one of their showcase problems is solved is Polya's adage: “no problem is ever solved directly.”
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.