Book contents
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Selected Basic Flows and Forces
- Part I Collision of Liquid Jets and Drops with a Dry Solid Wall
- Part II Drop Impacts onto Liquid Surfaces
- Part III Spray Formation and Impact onto Surfaces
- 7 Drop and Spray Diagnostics
- 8 Atomization and Spray Formation
- 9 Spray Impact
- Part IV Collisions of Solid Bodies with Liquid
- Part V Solid–Solid Collisions
- Index
- References
8 - Atomization and Spray Formation
from Part III - Spray Formation and Impact onto Surfaces
Published online by Cambridge University Press: 13 July 2017
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Selected Basic Flows and Forces
- Part I Collision of Liquid Jets and Drops with a Dry Solid Wall
- Part II Drop Impacts onto Liquid Surfaces
- Part III Spray Formation and Impact onto Surfaces
- 7 Drop and Spray Diagnostics
- 8 Atomization and Spray Formation
- 9 Spray Impact
- Part IV Collisions of Solid Bodies with Liquid
- Part V Solid–Solid Collisions
- Index
- References
Summary
The process of atomization involves the generation of drops from bulk fluid, achieved using a wide variety of atomization concepts, depending on the desired local drop number, size and velocity flux densities, as well as on the bulk fluid and its properties, e.g. pure liquids, dispersions, suspensions, emulsions, etc. In the context of collision phenomena, atomization plays a key role in applications such as spray cooling, touchless cleaning and spray coating, whereby the latter can be understood in a very broad sense, encompassing applications such as spray painting, crop spraying, spray based encapsulation, domestic sprays (e.g. hair sprays, polishes) or even inhalators. Indeed, a majority of liquid collision phenomena involve atomization for the generation of individual drops and this fact motivates the present examination of the atomization process in more detail, with the aim of establishing an understanding between the atomization conditions and the resulting properties of the spray.
This chapter divides the atomization process into primary atomization (Section 8.1), i.e. overcoming the consolidating influence of surface tension by the action of internal and external forces (Lefebvre 1989), secondary atomization, and binary drop collisions in a spray, whereby several special modes of secondary atomization are treated in the final four sections. The causes of secondary atomization are manifold and can significantly alter the size distribution in a spray and are therefore important to consider. Typical causes of secondary atomization include aerodynamic forces whenever a drop is exposed to a relative air flow; covered in Section 8.2. Binary drop collisions can also lead to secondary atomization, as they occur in dense sprays, interacting sprays or when spray drops impinging onto a surface interact with drops ejected from the surface. Binary drop collisions are discussed in Section 8.3. Another cause of secondary atomization is when a drop impinges onto or is forced off a filament, for instance in a filter. This atomization scenario is the topic of Section 8.4. Finally, secondary atomization can also be electrically driven. In this case, evaporation in flight of electrified drops issued from electrostatic atomizers diminishes the drop surface area, while the electric charges they carry remain the same. As a result, the shrinking drop size can reach the so-called Rayleigh limit.
- Type
- Chapter
- Information
- Collision Phenomena in Liquids and Solids , pp. 354 - 411Publisher: Cambridge University PressPrint publication year: 2017