Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T14:33:15.261Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 April 2013

Nick Gurski
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baez, J. and J., Dolan, Higher-dimensional algebra and topological quantum field theory, J. Math. Phys. 36 (1995), no. 11, 6073–6105.Google Scholar
Baez, J. and M., Neuchl, Higher-dimensional algebra. I. Braided monoidal 2-categories, Adv. Math. 121 (1996), no. 2, 196–244.Google Scholar
Batanin, M.Monoidal globular categories as a natural environment for the theory of weak n-categories, Adv. Math. 136 (1998a), no. 1, 39–103.Google Scholar
Batanin, M.The Eckmann-Hilton argument, higher operads, and En-spaces, E-print math.CT/0207281.
Batanin, M.Computads for finitary monads on globular sets, in Higher Category Theory, Contemp. Math. 230, Amer. Math. Soc., Providence, RI, 1998b, 37–57.
Batanin, M. D.-C. Cisinski, and M., Weber, Algebras of higher operads as enriched categories II, E-print arXiv:0909.4715.
Bénabou, J.Introduction to bicategories, in Reports of the Midwest Category Seminar, Lecture Notes in Math. 47, Springer-Verlag, Berlin, 1967, 1–77.
Berger, C.A cellular nerve for higher categories, Adv. Math. 169 (2002), no. 1, 118–175.Google Scholar
Berger, C.Double loop spaces, braided monoidal categories and algebraic 3-types of space, in Higher Homotopy Structures in Topology and Mathematical Physics, Contemp. Math. 227, Amer. Math. Soc., Providence, RI, 1999, 49–66.
Betti, R., A., Carboni, R., Street, and R., Walters, Enrichment through variation, J. Pure Appl. Algebra 29 (1983), 109–127.Google Scholar
Blackwell, R., G. M., Kelly, and A. J., Power, Two-dimensional monad theory, J. Pure Appl. Algebra 59 (1989), 1–41.Google Scholar
Carrasco, P., A. M., Cegarra, A. R., Garzón, Classifying spaces for braided monoidal categories and lax diagrams of bicategories, Adv. Math. 226 (2011), no. 1, 419–483.Google Scholar
Cheng, E. and N., Gurski, The periodic table of n-categories for low-dimensions I: degenerate categories and degenerate bicategories, in Categories in Algebra, Geometry and Mathematical Physics, Contemp. Math. 431, Amer. Math. Soc., Providence, RI, 2007, 143–164.
Cheng, E. and N., Gurski, The periodic table of n-categories for low-dimensions II: degenerate tricategories, Cahiers Topologie Géom. Différentielle Catég. 52 (2011), no 2, 82–125.Google Scholar
Crans, S.A tensor product for Gray-categories, Theory Appl. Categ. 5 (1999), 12–69.Google Scholar
Crans, S.On braidings, syllepses, and symmetries, Cahiers Topologie Géom. Différentielle Catég. 41 (2000), 2–74.Google Scholar
Day, B. and R., Street, Monoidal bicategories and Hopf algebroids, Adv. Math. 129 (1997), no. 1, 99–157.Google Scholar
Eilenberg, S. and G. M., Kelly, Closed Categories, Proceedings of the Conference on Categorical Algebra (La Jolla, 1965), Springer-Verlag, Berlin, 1966, 421–526.
Garner, R.Homomorphisms of higher categories, Adv. Math. 224 (2010), no. 6, 2269–2311.Google Scholar
Garner, R. and N., Gurski, The low-dimensional structures formed by tricategories, Math. Proc. Cam. Phil. Soc. 146 (2009), no. 3, 551–589.Google Scholar
Gordon, R. and A. J., Power, Enrichment through variation, J. Pure Appl. Algebra 120 (1997), no. 2, 167–185.Google Scholar
Gordon, R., A. J., Power, and R., Street, Coherence for Tricategories, Mem. Amer. Math. Soc. 117 (1995), no. 558.Google Scholar
Gray, J. W.Formal category theory: Adjointness for 2-categories, Lecture Notes in Math. 391, Springer-Verlag, Berlin, 1974.
Gray, J. W.Coherence for the tensor product of 2-categories, and braid groups, in Algebra, Topology, and Category Theory (a collection in honor of Samuel Eilenberg), Academic Press, New York, 1976, 63–76.
Grothendieck, A.Pursuing Stacks, Letter to Quillen, 1983.
Gurski, N.An algebraic theory of tricategories, Ph.D. Thesis, University of Chicago, 2006.
Gurski, N.Loop spaces, and coherence for monoidal and braided monoidal bicategories, Adv. Math. 226 (2011), no. 5, 4225–4265.Google Scholar
Gurski, N.Biequivalences in tricategories, Theory Appl. Categories 26 (2012), 349–384.Google Scholar
Gurski, N.The Monoidal Structure of Strictification, Theory Appl. Categ. 28 (2013), 1–23.Google Scholar
Hermida, C.Representable multicategories, Adv. Math. 151 (2000), no. 2, 164–225.Google Scholar
Hovey, M.Model Categories, Mathematical Surveys and Monographs 63. American Mathematical Society, Providence, RI, 1999.
Joyal, A. and J., Kock, Weak units and homotopy 3-types, in Categories in Algebra, Geometry and Mathematical Physics, Contemp. Math. 431, Amer. Math. Soc., Providence, RI, 2007, 257–276.
Joyal, A. and R., Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20–78.Google Scholar
Kapranov, M. M. and V. A., Voevodsky, Braided monoidal 2-categories and Manin-Schechtman higher braid groups, J. Pure Appl. Algebra 92 (1994), no. 3, 241–267.Google Scholar
Kelly, G. M.A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on, Bull. Austral. Math. Soc. 22 (1980), no. 1, 1–83.Google Scholar
Kelly, G. M.Basic Concepts of Enriched Category Theory, London Mathematical Society Lecture Note Series 64. Cambridge University Press, Cambridge, 1982.
Kelly, G. M. and R., Street, Review of the elements of 2-categories, in Category Seminar (Proceedings of the Sydney Category Theory Seminar, 19721973, G. M., Kelly, Ed.), Lecture Notes in Math. 420, Springer-Verlag, Berlin, 1974, 75–103.
Lack, S.A coherent approach to pseudomonads, Adv. Math. 152 (2000), no. 2, 179–202.Google Scholar
Lack, S.Codescent objects and coherence, Special volume celebrating the 70th birthday of Professor Max Kelly, J. Pure Appl. Algebra 175 (2002a), no. 1–3, 223–241.Google Scholar
Lack, S.A Quillen model structure for 2-categories, K-Theory 26 (2002b), no. 2, 171–205.Google Scholar
Lack, S.A Quillen model structure for bicategories, K-Theory 33 (2004), no. 3, 185–197.Google Scholar
Lack, S.Bicat is not triequivalent to Gray<, Theory Appl. Categ. 18 (2007), 1–3.Google Scholar
Lack, S.Icons, Appl. Cat. Str. 18 (2010a), no. 3, 289–307.Google Scholar
Lack, S.A 2-categories companion, in Towards Higher Categories, IMA Vol. Math. Appl. 152, Springer, New York, 2010b, 105–191.
Lack, S.A Quillen model structure for Gray-categories, J. K-Theory 8 (2011), no. 2, 183–221.Google Scholar
Lack, S. and S., Paoli, 2-nerves for bicategories, K-Theory 38 (2008), 153–175.Google Scholar
Lack, S. and R., Street, The formal theory of monads. II, Special volume celebrating the 70th birthday of Professor Max Kelly, J. Pure Appl. Algebra 175 (2002), no. 1–3, 243–265.Google Scholar
Leinster, T.A survey of definitions of n-category, Theory Appl. Categ. 10 (2002), 1–70 (electronic).Google Scholar
Leinster, T.Higher Operads, Higher Categories, London Mathematical Society Lecture Note Series 298, Cambridge University Press, Cambridge, 2004.
Lewis, G.Coherence for a closed functor, in Coherence in Categories (S. Mac, Lane, Ed.), Lecture Notes in Math. 281, Springer-Verlag, Berlin, 1972, 148–195.
Mac Lane, S.Natural associativity and commutativity, Rice University Studies 49 (1963), 28–46.Google Scholar
Mac Lane, S. and R., Paré, Coherence for bicategories and indexed categories, J. Pure Appl. Algebra 37 (1985), 59–80.Google Scholar
Power, A. J.A general coherence result, J. Pure Appl. Algebra 57 (1989), 165–173.Google Scholar
Power, A. J.Three dimensional monad theory, in Categories in Algebra, Geometry and Mathematical Physics, Contemp. Math. 431, Amer. Math. Soc., Providence, RI, 2007, 405–426.
Simpson, C.Homotopy types of strict 3-groupoids, E-print math. CT/9810059.
Street, R.The formal theory of monads, J. Pure Appl. Algebra 2 (1972), no. 2, 149–168.Google Scholar
Street, R.Fibrations and Yoneda's lemma in a 2-category, in Category Seminar (Proceedings of the Sydney Category Theory Seminar, 19721973, G. M., Kelly, Ed.), Lecture Notes in Math. 420, Springer-Verlag, Berlin, 1974, 104–133.
Street, R.Fibrations in bicategories, Cahiers Topologie Géom. Différentielle Catég. 21 (1980), 111–160.Google Scholar
Street, R.Correction to “Fibrations in bicategories”, Cahiers Topologie Géom. Différentielle Catég. 28 (1987a), 53–56.Google Scholar
Street, R.The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987b), 283–335.Google Scholar
Street, R.Gray's tensor product of 2-categories, Handwritten Notes, February 1988.
Street, R.Categorical structures, in Handbook of Algebra, Vol. 1, North-Holland, Amsterdam, 1996, 529–577.
Street, R.Weak omega-categories, in Diagrammatic Morphisms and Applications (San Francisco, CA, 2000), Contemp. Math. 318, Amer. Math. Soc., Providence, RI, 2003, 207–213.
Stasheff, J. D.Homotopy associativity of H-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275–292.Google Scholar
Tamsamani, Z.Sur des notions de n-catégorie et n-groupoïde non strictes via des ensembles multi-simpliciaux, K-Theory 16 (1999), no. 1, 51–99.Google Scholar
Trimble, T.Notes on tetracategories, available online at http://math.ucr.edu/home/baez/trimble/tetracategories.html.
Verity, D.Enriched categories, internal categories, and change of base, Ph.D. thesis, University of Cambridge, 1992. Available as Macquarie Mathematics Report 93–123.
Wolff, H.V-cat and V-graph, J. Pure Appl. Algebra 4 (1974), 123–135.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Nick Gurski, University of Sheffield
  • Book: Coherence in Three-Dimensional Category Theory
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139542333.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Nick Gurski, University of Sheffield
  • Book: Coherence in Three-Dimensional Category Theory
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139542333.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Nick Gurski, University of Sheffield
  • Book: Coherence in Three-Dimensional Category Theory
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139542333.017
Available formats
×