Skip to main content Accessibility help
×
  • Cited by 21
Publisher:
Cambridge University Press
Online publication date:
April 2013
Print publication year:
2013
Online ISBN:
9781139542333

Book description

Dimension three is an important test-bed for hypotheses in higher category theory and occupies something of a unique position in the categorical landscape. At the heart of matters is the coherence theorem, of which this book provides a definitive treatment, as well as covering related results. Along the way the author treats such material as the Gray tensor product and gives a construction of the fundamental 3-groupoid of a space. The book serves as a comprehensive introduction, covering essential material for any student of coherence and assuming only a basic understanding of higher category theory. It is also a reference point for many key concepts in the field and therefore a vital resource for researchers wishing to apply higher categories or coherence results in fields such as algebraic topology or theoretical computer science.

Reviews

'Despite the complexity of the issue, the detailed treatment of the subject, fairly typical of the author, leaves no room for ambiguity, and the text can be followed very well by any attentive reader.'

Josep Elgueta Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
Bibliography
Baez, J. and J., Dolan, Higher-dimensional algebra and topological quantum field theory, J. Math. Phys. 36 (1995), no. 11, 6073–6105.
Baez, J. and M., Neuchl, Higher-dimensional algebra. I. Braided monoidal 2-categories, Adv. Math. 121 (1996), no. 2, 196–244.
Batanin, M.Monoidal globular categories as a natural environment for the theory of weak n-categories, Adv. Math. 136 (1998a), no. 1, 39–103.
Batanin, M.The Eckmann-Hilton argument, higher operads, and En-spaces, E-print math.CT/0207281.
Batanin, M.Computads for finitary monads on globular sets, in Higher Category Theory, Contemp. Math. 230, Amer. Math. Soc., Providence, RI, 1998b, 37–57.
Batanin, M. D.-C. Cisinski, and M., Weber, Algebras of higher operads as enriched categories II, E-print arXiv:0909.4715.
Bénabou, J.Introduction to bicategories, in Reports of the Midwest Category Seminar, Lecture Notes in Math. 47, Springer-Verlag, Berlin, 1967, 1–77.
Berger, C.A cellular nerve for higher categories, Adv. Math. 169 (2002), no. 1, 118–175.
Berger, C.Double loop spaces, braided monoidal categories and algebraic 3-types of space, in Higher Homotopy Structures in Topology and Mathematical Physics, Contemp. Math. 227, Amer. Math. Soc., Providence, RI, 1999, 49–66.
Betti, R., A., Carboni, R., Street, and R., Walters, Enrichment through variation, J. Pure Appl. Algebra 29 (1983), 109–127.
Blackwell, R., G. M., Kelly, and A. J., Power, Two-dimensional monad theory, J. Pure Appl. Algebra 59 (1989), 1–41.
Carrasco, P., A. M., Cegarra, A. R., Garzón, Classifying spaces for braided monoidal categories and lax diagrams of bicategories, Adv. Math. 226 (2011), no. 1, 419–483.
Cheng, E. and N., Gurski, The periodic table of n-categories for low-dimensions I: degenerate categories and degenerate bicategories, in Categories in Algebra, Geometry and Mathematical Physics, Contemp. Math. 431, Amer. Math. Soc., Providence, RI, 2007, 143–164.
Cheng, E. and N., Gurski, The periodic table of n-categories for low-dimensions II: degenerate tricategories, Cahiers Topologie Géom. Différentielle Catég. 52 (2011), no 2, 82–125.
Crans, S.A tensor product for Gray-categories, Theory Appl. Categ. 5 (1999), 12–69.
Crans, S.On braidings, syllepses, and symmetries, Cahiers Topologie Géom. Différentielle Catég. 41 (2000), 2–74.
Day, B. and R., Street, Monoidal bicategories and Hopf algebroids, Adv. Math. 129 (1997), no. 1, 99–157.
Eilenberg, S. and G. M., Kelly, Closed Categories, Proceedings of the Conference on Categorical Algebra (La Jolla, 1965), Springer-Verlag, Berlin, 1966, 421–526.
Garner, R.Homomorphisms of higher categories, Adv. Math. 224 (2010), no. 6, 2269–2311.
Garner, R. and N., Gurski, The low-dimensional structures formed by tricategories, Math. Proc. Cam. Phil. Soc. 146 (2009), no. 3, 551–589.
Gordon, R. and A. J., Power, Enrichment through variation, J. Pure Appl. Algebra 120 (1997), no. 2, 167–185.
Gordon, R., A. J., Power, and R., Street, Coherence for Tricategories, Mem. Amer. Math. Soc. 117 (1995), no. 558.
Gray, J. W.Formal category theory: Adjointness for 2-categories, Lecture Notes in Math. 391, Springer-Verlag, Berlin, 1974.
Gray, J. W.Coherence for the tensor product of 2-categories, and braid groups, in Algebra, Topology, and Category Theory (a collection in honor of Samuel Eilenberg), Academic Press, New York, 1976, 63–76.
Grothendieck, A.Pursuing Stacks, Letter to Quillen, 1983.
Gurski, N.An algebraic theory of tricategories, Ph.D. Thesis, University of Chicago, 2006.
Gurski, N.Loop spaces, and coherence for monoidal and braided monoidal bicategories, Adv. Math. 226 (2011), no. 5, 4225–4265.
Gurski, N.Biequivalences in tricategories, Theory Appl. Categories 26 (2012), 349–384.
Gurski, N.The Monoidal Structure of Strictification, Theory Appl. Categ. 28 (2013), 1–23.
Hermida, C.Representable multicategories, Adv. Math. 151 (2000), no. 2, 164–225.
Hovey, M.Model Categories, Mathematical Surveys and Monographs 63. American Mathematical Society, Providence, RI, 1999.
Joyal, A. and J., Kock, Weak units and homotopy 3-types, in Categories in Algebra, Geometry and Mathematical Physics, Contemp. Math. 431, Amer. Math. Soc., Providence, RI, 2007, 257–276.
Joyal, A. and R., Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20–78.
Kapranov, M. M. and V. A., Voevodsky, Braided monoidal 2-categories and Manin-Schechtman higher braid groups, J. Pure Appl. Algebra 92 (1994), no. 3, 241–267.
Kelly, G. M.A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on, Bull. Austral. Math. Soc. 22 (1980), no. 1, 1–83.
Kelly, G. M.Basic Concepts of Enriched Category Theory, London Mathematical Society Lecture Note Series 64. Cambridge University Press, Cambridge, 1982.
Kelly, G. M. and R., Street, Review of the elements of 2-categories, in Category Seminar (Proceedings of the Sydney Category Theory Seminar, 19721973, G. M., Kelly, Ed.), Lecture Notes in Math. 420, Springer-Verlag, Berlin, 1974, 75–103.
Lack, S.A coherent approach to pseudomonads, Adv. Math. 152 (2000), no. 2, 179–202.
Lack, S.Codescent objects and coherence, Special volume celebrating the 70th birthday of Professor Max Kelly, J. Pure Appl. Algebra 175 (2002a), no. 1–3, 223–241.
Lack, S.A Quillen model structure for 2-categories, K-Theory 26 (2002b), no. 2, 171–205.
Lack, S.A Quillen model structure for bicategories, K-Theory 33 (2004), no. 3, 185–197.
Lack, S.Bicat is not triequivalent to Gray<, Theory Appl. Categ. 18 (2007), 1–3.
Lack, S.Icons, Appl. Cat. Str. 18 (2010a), no. 3, 289–307.
Lack, S.A 2-categories companion, in Towards Higher Categories, IMA Vol. Math. Appl. 152, Springer, New York, 2010b, 105–191.
Lack, S.A Quillen model structure for Gray-categories, J. K-Theory 8 (2011), no. 2, 183–221.
Lack, S. and S., Paoli, 2-nerves for bicategories, K-Theory 38 (2008), 153–175.
Lack, S. and R., Street, The formal theory of monads. II, Special volume celebrating the 70th birthday of Professor Max Kelly, J. Pure Appl. Algebra 175 (2002), no. 1–3, 243–265.
Leinster, T.A survey of definitions of n-category, Theory Appl. Categ. 10 (2002), 1–70 (electronic).
Leinster, T.Higher Operads, Higher Categories, London Mathematical Society Lecture Note Series 298, Cambridge University Press, Cambridge, 2004.
Lewis, G.Coherence for a closed functor, in Coherence in Categories (S. Mac, Lane, Ed.), Lecture Notes in Math. 281, Springer-Verlag, Berlin, 1972, 148–195.
Mac Lane, S.Natural associativity and commutativity, Rice University Studies 49 (1963), 28–46.
Mac Lane, S. and R., Paré, Coherence for bicategories and indexed categories, J. Pure Appl. Algebra 37 (1985), 59–80.
Power, A. J.A general coherence result, J. Pure Appl. Algebra 57 (1989), 165–173.
Power, A. J.Three dimensional monad theory, in Categories in Algebra, Geometry and Mathematical Physics, Contemp. Math. 431, Amer. Math. Soc., Providence, RI, 2007, 405–426.
Simpson, C.Homotopy types of strict 3-groupoids, E-print math. CT/9810059.
Street, R.The formal theory of monads, J. Pure Appl. Algebra 2 (1972), no. 2, 149–168.
Street, R.Fibrations and Yoneda's lemma in a 2-category, in Category Seminar (Proceedings of the Sydney Category Theory Seminar, 19721973, G. M., Kelly, Ed.), Lecture Notes in Math. 420, Springer-Verlag, Berlin, 1974, 104–133.
Street, R.Fibrations in bicategories, Cahiers Topologie Géom. Différentielle Catég. 21 (1980), 111–160.
Street, R.Correction to “Fibrations in bicategories”, Cahiers Topologie Géom. Différentielle Catég. 28 (1987a), 53–56.
Street, R.The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987b), 283–335.
Street, R.Gray's tensor product of 2-categories, Handwritten Notes, February 1988.
Street, R.Categorical structures, in Handbook of Algebra, Vol. 1, North-Holland, Amsterdam, 1996, 529–577.
Street, R.Weak omega-categories, in Diagrammatic Morphisms and Applications (San Francisco, CA, 2000), Contemp. Math. 318, Amer. Math. Soc., Providence, RI, 2003, 207–213.
Stasheff, J. D.Homotopy associativity of H-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275–292.
Tamsamani, Z.Sur des notions de n-catégorie et n-groupoïde non strictes via des ensembles multi-simpliciaux, K-Theory 16 (1999), no. 1, 51–99.
Trimble, T.Notes on tetracategories, available online at http://math.ucr.edu/home/baez/trimble/tetracategories.html.
Verity, D.Enriched categories, internal categories, and change of base, Ph.D. thesis, University of Cambridge, 1992. Available as Macquarie Mathematics Report 93–123.
Wolff, H.V-cat and V-graph, J. Pure Appl. Algebra 4 (1974), 123–135.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.