Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T21:59:00.635Z Has data issue: false hasContentIssue false

13 - HPA axis and cognitive dysfunction in mood disorders

from Part II - Underlying biological substrates associated with cognitive dysfunction in major depressive disorder

Published online by Cambridge University Press:  05 March 2016

Roger S. McIntyre
Affiliation:
University of Toronto
Danielle S. Cha
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Cognitive Impairment in Major Depressive Disorder
Clinical Relevance, Biological Substrates, and Treatment Opportunities
, pp. 179 - 193
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anacker, C., Zunszain, P. A., Cattaneo, A., Carvalho, L. A., Garabedian, M. J., Thuret, S., … Pariante, C. M. (2011). Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Molecular Psychiatry, 16: 738750.Google Scholar
Anaya, C., Martinez Aran, A., Ayuso-Mateos, J. L., Wykes, T., Vieta, E., & Scott, J. (2012). A systematic review of cognitive remediation for schizo-affective and affective disorders. Journal of Affective Disorders, 142: 1321.Google Scholar
Anisman, H., Ravindran, A. V., Griffiths, J., & Merali, Z. (1999). Endocrine and cytokine correlates of major depression and dysthymia with typical or atypical features. Molecular Psychiatry, 4: 182188.Google Scholar
Binder, E. B., Salyakina, D., Lichtner, P., Wochnik, G. M., Ising, M., Pütz, B., … Muller-Myhsok, B. (2004). Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nature Genetics, 36: 13191325.Google Scholar
Bond, D. & Young, A. (2007). The hypothalamic–pituitary–adrenal axis in bipolar disorder. In Soares, J. C. & Young, A. H. (eds.), Bipolar Disorder: Basic Mechanisms and Therapeutic Implications, 2nd edn. (pp. 145160). New York: Taylor & Francis.Google Scholar
Brunner, R., Schaefer, D., Hess, K., Parzer, P., Resch, F., & Schwab, S. (2005). Effect of corticosteroids on short-term and long-term memory. Neurology, 64(2): 335337.CrossRefGoogle ScholarPubMed
Buchanan, T. W. & Lovallo, W. R. (2001). Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology, 26(3): 307317.CrossRefGoogle ScholarPubMed
Carroll, B. J., Cassidy, F., Naftolowitz, D., Tatham, N. E., Wilson, W. H., Iranmanesh, A., … Veldhuis, J. D. (2007). Pathophysiology of hypercortisolism in depression. Acta Psychiatrica Scandinavica Supplementum, 433: 90103.Google Scholar
Cattaneo, A., Gennarelli, M., Uher, R., Breen, G., Farmer, A., Aitchison, K. J., … Paiante, C. M. (2013). Candidate genes expression profile associated with antidepressants response in the GENDEP Study: Differentiating between baseline “predictors” and longitudinal “targets.” Neuropsychopharmacology, 38(3): 377385.CrossRefGoogle ScholarPubMed
Cleare, A. J. & Wessely, S. C. (1996). Chronic fatigue syndrome: A stress disorder? Hospital Medicine, 55(9): 571574.Google Scholar
Cole, J., Toga, A. W., Hojatkashani, C., Thompson, P., Costafreda, S. G., Cleare, A. J., … Fu, C. H. Y. (2010). Subregional hippocampal deformations in major depressive disorder. Journal of Affective Disorders, 126(1–2): 272277.CrossRefGoogle ScholarPubMed
Coluccia, D., Wolf, O. T., Kollias, S., Roozendaal, B., Forster, A., & De Quervain, D. J.-F. (2008). Glucocorticoid therapy-induced memory deficits: Acute versus chronic effects. Journal of Neuroscience, 28(13): 34743478.Google Scholar
Daban, C., Vieta, E., Mackin, P., & Young, A. H. (2005). Hypothalamic–pituitary–adrenal axis and bipolar disorder. Psychiatric Clinics of North America, 28(2): 469480.Google Scholar
Feldman, S., Conforti, N., & Weidenfeld, J. (1995). Limbic pathways and hypothalamic neurotransmitters mediating adrenocortical responses to neural stimuli. Neuroscience and Biobehavioral Reviews, 19(2): 235240.CrossRefGoogle ScholarPubMed
Finsterwald, C. & Alberini, C. M. (2014). Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: From adaptive responses to psychopathologies. Neurobiology of Learning and Memory, 112: 1729.Google Scholar
Gallagher, P., Malik, N., Newham, J., Young, A. H., Ferrier, I. N., & Mackin, P. (2008). Antiglucocorticoid treatments for mood disorders. Cochrane Database of Systematic Reviews, 1: CD005168.Google Scholar
Gallagher, P., Watson, S., Smith, M. S., Young, A. H., & Ferrier, I. N. (2007). Plasma cortisol-dehydroepiandrosterone (DHEA) ratios in schizophrenia and bipolar disorder. Schizophrenia Research, 90(1–3): 258265.Google Scholar
Hashimoto, K., Shimizu, E., & Iyo, M. (2004). Critical role of brain-derived neurotrophic factor in mood disorders. Brain Research Reviews, 45(2): 104114.Google Scholar
Hellemans, K. G. C., Verma, P., Yoon, E., Yu, W. K., Young, A. H., & Weinberg, J. (2010). Prenatal alcohol exposure and chronic mild stress differentially alter depressive- and anxiety-like behaviors in male and female offspring. Alcoholism: Clinical and Experimental Research, 34(4): 633645.Google Scholar
Hemmeter, U., Heimberg, D. R., Naber, G., Hobi, V., & Holsboer-Trachsler, E. (2000). Contingent negative variation and Dex-CRH test in patients with major depression. Journal of Psychiatric Research, 34(4–5): 365367.CrossRefGoogle ScholarPubMed
Herane Vives, A., De Angel, V., Papadopoulos, A., Strawbridge, R., Wise, T., Young, A. H., … Cleare, A. (2015). The relationship between cortisol, stress and psychiatric illness: new insights using hair analysis. Journal of Psychiatric Research, 70: 3849. doi: 10.1016/j.jpsychires.2015.08.007.CrossRefGoogle ScholarPubMed
Heuser, I. J., Gotthardt, U., Schweiger, U., Schmider, J., Lammers, C.-H., Dettling, M., & Holsboer, F. (1994). Age-associated changes of pituitary-adrenocortical hormone regulation in humans: Importance of gender. Neurobiology of Aging, 15(2): 227231.Google Scholar
Hinkelmann, K., Moritz, S., Botzenhardt, J., Riedesel, K., Wiedemann, K., Kellner, M., & Otte, C. (2009). Cognitive impairment in major depression: Association with salivary cortisol. Biological Psychiatry, 66(9): 879885.Google Scholar
Hughes, J. H., Gallagher, P., Stewart, M. E., Matthews, D., Kelly, T.P., & Young, A. H. (2003). The effects of acute tryptophan depletion on neuropsychological function. Journal of Psychopharmacology, 17(3): 300309.Google Scholar
Juruena, M. F., Cleare, A. J., Papadopoulos, A. S., Poon, L., Lightman, S., & Pariante, P. M. (2010). The prednisolone suppression test in depression: Dose-response and changes with antidepressant treatment. Psychoneuroendocrinology, 35(10): 14861491.Google Scholar
Juruena, M. F., Pariante, C. M., Papadopoulos, A. S., Poon, L., Lightman, S., & Cleare, A. J. (2009). Prednisolone suppression test in depression: Prospective study of the role of HPA axis dysfunction in treatment resistance. British Journal of Psychiatry, 194(4): 342349.Google Scholar
Klok, M. D., Giltay, E. J., Van Der Does, A. J., Geleijnse, J. M., Antypa, N., Penninx, B. W. J. H., … DeRijk, R. H. (2011). A common and functional mineralocorticoid receptor haplotype enhances optimism and protects against depression in females. Translational Psychiatry, 1(12): e62.Google Scholar
Knorr, U., Vinberg, M., Kessing, L. V., & Wetterslev, J. (2010). Salivary cortisol in depressed patients versus control persons: A systematic review and meta-analysis. Psychoneuroendocrinology, 35(9): 12751286.CrossRefGoogle Scholar
Kuningas, M., De Rijk, R. H., Westendorp, R. G., Jolles, J., Slagboom, P. E., & Van Heemst, D. (2007). Mental performance in old age dependent on cortisol and genetic variance in the mineralocorticoid and glucocorticoid receptors. Neuropsychopharmacology, 32(6): 12951301.Google Scholar
Liu, Z., Zhu, F., Wang, G., Xiao, Z., Tang, J., Liu, W., … Li, W. (2007). Association study of corticotropin-releasing hormone receptor1 gene polymorphisms and antidepressant response in major depressive disorders. Neuroscience Letters, 414(2): 155158.CrossRefGoogle ScholarPubMed
Lupien, S. J., Fiocco, A., Wan, N., Maheu, F., Lord, C., Schramek, T., & Tu, M. T. (2005). Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology, 30(3): 225242.Google Scholar
Maripuu, M., Wikgren, M., Karling, P., Adolfsson, R., & Norrback, K.-F. (2014). Relative hypo- and hypercortisolism are both associated with depression and lower quality of life in bipolar disorder: A cross-sectional study. PLoS One, 9: e98682.CrossRefGoogle ScholarPubMed
Markopoulou, K., Papadopoulos, A., Juruena, M. F., Poon, L., Pariante, C. M., & Cleare, A. J. (2009). The ratio of cortisol/DHEA in treatment resistant depression. Psychoneuroendocrinology, 34(1): 1926.Google Scholar
McQuade, R. & Young, A. H. (2000). Future therapeutic targets in mood disorders: The glucocorticoid receptor. British Journal of Psychiatry, 177(5): 390395.CrossRefGoogle ScholarPubMed
Musselman, D. L. & Nemeroff, C. B. (1996). Depression and endocrine disorders: Focus on the thyroid and adrenal system. British Journal of Psychiatry Supplement 7, 168(30): 123128.Google Scholar
Pariante, C. M. (2006). The glucocorticoid receptor: Part of the solution or part of the problem? Journal of Psychopharmacology, 20(4): 7984.Google Scholar
Perroud, N., Dayer, A., Piguet, C., Nallet, A., Favre, S., Malafosse, A., & Aubry, J.-M. (2014). Childhood maltreatment and methylation of the glucocorticoid receptor gene NR3C1 in bipolar disorder. British Journal of Psychiatry, 204(1): 3035.Google Scholar
Prickaerts, J. & Steckler, T. (2005). Effects of glucocorticoids on emotion and cognitive processes in animals. In: Steckler, T. & Reul, J. (eds.), Techniques in the Behavioral and Neural Sciences (pp. 359385). Amsterdam: Elsevier.Google Scholar
Reus, V. I. & Wolkowitz, O. M. (2001). Antiglucocorticoid drugs in the treatment of depression. Expert Opinion on Investigational Drugs, 10(10): 17891796.Google Scholar
Roberts, A. D. L., Charler, M. L., Papadopoulos, A., Wessely, S., Chalder, T., & Cleare, A. J. (2010). Does hypocortisolism predict a poor response to cognitive behavioural therapy in chronic fatigue syndrome? Psychological Medicine, 40(3): 515522.Google Scholar
Robinson, L. J., Thompson, J. M., Gallagher, P., Goswami, U., Young, A. H., Ferrier, N., & Moore, P. B. (2006). A meta-analysis of cognitive deficits in euthymic patients with bipolar disorder. Journal of Affective Disorders, 93(1–3): 105115.Google Scholar
Roozendaal, B. (2000). Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology, 25(3): 213238.CrossRefGoogle ScholarPubMed
Rubinow, D. R., Post, R. M., Savard, R., & Gold, P. W. (1984). Cortisol hypersecretion and cognitive impairment in depression. Archives of General Psychiatry, 41: 279283.Google Scholar
Schlosser, N., Wolf, O. T., Fernando, S. C., Terfehr, K., Otte, C., Spitzer, C., & Wingenfeld, K. (2013). Effects of acute cortisol administration on response inhibition in patients with major depression and healthy controls. Psychiatry Research, 209(3): 439446.Google Scholar
Slattery, M. J., Grieve, A. J., Ames, M. E., Armstrong, J. M., & Essex, M. J. (2013). Neurocognitive function and state cognitive stress appraisal predict cortisol reactivity to an acute psychosocial stressor in adolescents. Psychoneuroendocrinology, 38(8): 13181327.CrossRefGoogle Scholar
Spijker, A. T. & Van Rossum, E. F. (2012). Glucocorticoid sensitivity in mood disorders. Neuroendocrinology, 95(3): 179186.CrossRefGoogle ScholarPubMed
Stanton, B. R., David, A. S., Cleare, A. J., Sierra, M., Lambert, M. V., Phillips, M. L., … Young, A. H. (2001). Basal activity of the hypothalamic–pituitary–adrenal axis in patients with depersonalization disorder. Psychiatry Research, 104(1): 8589.Google Scholar
Starkman, M. N. & Schteingart, D. E. (1981). Neuropsychiatric manifestations of patients with Cushing’s syndrome: Relationship to cortisol and adrenocorticotropic hormone levels. Archives of Internal Medicine, 141(2): 215219.Google Scholar
Strawbridge, R., Arnone, D., Danese, A., Papadopoulos, A., Herane Vives, A., & Cleare, A. J. (2015). Inflammation and clinical response to treatment in depression: A meta-analysis. European Neuropsychopharmacology, 25(10): 153243. doi: 10.1016/j.euroneuro.2015.06.007.Google Scholar
Szczepankiewicz, A., Leszczyńska-Rodziewicz, A., Pawlak, J., Rajewska-Rager, A., Dmitrzak-Weglarz, M., Wilkosc, M., … Hauser, J. (2011). Glucocorticoid receptor polymorphism is associated with major depression and predominance of depression in the course of bipolar disorder. Journal of Affective Disorders, 134(1–3): 138144.CrossRefGoogle ScholarPubMed
Tak, L. M., Cleare, A. J., Ormel, J., Manoharan, A., Kok, I. C., Wessely, S., & Rosmalen, J. G. M. (2011). Meta-analysis and meta-regression of hypothalamic–pituitary–adrenal axis activity in functional somatic disorders. Biological Psychology, 87(2): 183194.Google Scholar
Thompson, J. M., Gallagher, P., Hughes, J. H., Watson, S., Gray, J. M., Ferrier, I. N., & Young, A. H. (2005). Neurocognitive impairment in euthymic patients with bipolar affective disorder. British Journal of Psychiatry, 186: 3240.CrossRefGoogle ScholarPubMed
Van Ast, V. A., Cornelisse, S., Meeter, M., & Kindt, M. (2014). Cortisol mediates the effects of stress on the contextual dependency of memories. Psychoneuroendocrinology, 41: 97110.Google Scholar
Van Rossum, E. F., Binder, E. B., Majer, M., Koper, J. W., Ising, M., Modell, S., … Holsboer, F. (2006). Polymorphisms of the glucocorticoid receptor gene and major depression. Biological Psychiatry, 59(8): 681688.CrossRefGoogle ScholarPubMed
Watson, S., Gallagher, P., Ferrier, I. N., & Young, A. H. (2006a). Post-dexamethasone arginine vasopressin levels in patients with severe mood disorders. Journal of Psychiatric Research, 40(4): 353359.Google Scholar
Watson, S., Gallagher, P., Porter, R. J., Smith, M. S., Herron, L. J., Bulmer, S., … Ferrier, I. N. (2012). A randomized trial to examine the effect of mifepristone on neuropsychological performance and mood in patients with bipolar depression. Biological Psychiatry, 72(11): 943949.Google Scholar
Watson, S., Gallagher, P., Ritchie, J. C., Ferrier, I. N., & Young, A. H. (2004). Hypothalamic–pituitary–adrenal axis function in patients with bipolar disorder. British Journal of Psychiatry, 184: 496502.Google Scholar
Watson, S., Thompson, J. M., Ritchie, J. C., Ferrier, I. N., & Young, A. H. (2006b). Neuropsychological impairment in bipolar disorder: The relationship with glucocorticoid receptor function. Bipolar Disorders, 8(1): 8590.Google Scholar
Webster, M. J., Knable, M. B., O’Grady, J., Orthmann, J., & Weickert, C. S. (2002). Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Molecular Psychiatry, 7(9): 985994, 924.Google Scholar
Wolkowitz, O. M., Reus, V. I., Keebler, A., Nelson, N., Friedland, M., Brizendine, L., & Roberts, E. (1999). Double-blind treatment of major depression with dehydroepiandrosterone. American Journal of Psychiatry, 156(4): 646649.CrossRefGoogle ScholarPubMed
Wolkowitz, O. M., Reus, V. I., Weingartner, H., Thompson, K., Breier, A., Doran, A., … Pickar, D. (1990). Cognitive effects of corticosteroids. American Journal of Psychiatry, 147(10): 12971303.Google Scholar
Wooderson, S. C., Fekadu, A., Markopoulou, K., Rane, L. J., Poon, L., & Juruena, M. F. (2014). Long-term symptomatic and functional outcome following an intensive inpatient multidisciplinary intervention for treatment-resistant affective disorders. Journal of Affective Disorders, 166: 334342.Google Scholar
Yehuda, R., Boisoneau, D., Mason, J. W., & Giller, E. L. (1993). Glucocorticoid receptor number and cortisol excretion in mood, anxiety, and psychotic disorders. Biological Psychiatry, 34(1–2): 1825.Google Scholar
Young, A. H. (2011). More good news about the magic ion: Lithium may prevent dementia. British Journal of Psychiatry, 198(5): 336337.CrossRefGoogle ScholarPubMed
Young, A. H., Gallagher, P., & Porter, R. J. (2002). Elevation of the cortisol-dehydroepiandrosterone ratio in drug-free depressed patients. American Journal of Psychiatry, 159(7): 12371239.Google Scholar
Young, A. H., Gallagher, P., Watson, S., Del-Estal, D., Owen, B. M., & Ferrier, I. N. (2004). Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder. Neuropsychopharmacology, 29(8): 15381545.Google Scholar
Young, A. H., Sahakian, B. J., Robbins, T. W., & Cowen, P. J. (1999). The effects of chronic administration of hydrocortisone on cognitive function in normal male volunteers. Psychopharmacology, 145(3): 260266.Google Scholar
Zobel, A., Jessen, F., Von Widdern, O., Schuhmacher, A., Höfels, S., Metten., M., … Schwab, S. G. (2008). Unipolar depression and hippocampal volume: Impact of DNA sequence variants of the glucocorticoid receptor gene. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B(6): 836843.Google Scholar
Zobel, A. W., Schulze-Rauschenbach, S., Von Widdern, O. C., Metten, M., Freymann, N., Grasmäder, K., … Maier, W. (2004). Improvement of working but not declarative memory is correlated with HPA normalization during antidepressant treatment. Journal of Psychiatric Research, 38(4): 377383.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×