Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T20:49:18.705Z Has data issue: false hasContentIssue false

Preface: How to Use This Handbook and Useful Tables for Handy Reference

Published online by Cambridge University Press:  19 October 2021

Jonathan M. Meyer
Affiliation:
University of California, San Diego
Stephen M. Stahl
Affiliation:
University of California, Riverside and San Diego
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Clinical Use of Antipsychotic Plasma Levels
Stahl's Handbooks
, pp. xiii - xx
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Leucht, S., Samara, M., Heres, S., et al. (2016). Dose equivalents for antipsychotic drugs: The DDD method. Schizophr Bull, 42 Suppl 1, S9094.Google Scholar
Leucht, S., Crippa, A., Siafis, S., et al. (2020). Dose-response meta-analysis of antipsychotic drugs for acute schizophrenia. Am J Psychiatry, 177, 342353.Google Scholar
Meyer, J. M. and Stahl, S. M. (2019). The Clozapine Handbook. Cambridge: Cambridge University Press.Google Scholar
Asmal, L., Flegar, S. J., Wang, J., et al. (2013). Quetiapine versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst Rev, CD006625.Google Scholar
Vanasse, A., Blais, L., Courteau, J., et al. (2016). Comparative effectiveness and safety of antipsychotic drugs in schizophrenia treatment: A real-world observational study. Acta Psychiatr Scand, 134, 374384.Google Scholar
Meyer, J. M., Davis, V. G., Goff, D. C., et al. (2008). Change in metabolic syndrome parameters with antipsychotic treatment in the CATIE Schizophrenia Trial: Prospective data from phase 1. Schizophr Res, 101, 273286.Google Scholar
Meyer, J. M. (2010). Antipsychotics and metabolics in the post-CATIE era. Curr Top Behav Neurosci, 4, 2342.Google Scholar
Simpson, G. M., Cooper, T. B., Lee, J. H., et al. (1978). Clinical and plasma level characteristics of intramuscular and oral loxapine. Psychopharmacology (Berl), 56, 225232.Google Scholar
Zetin, M., Cramer, M., Garber, D., et al. (1985). Bioavailability of oral and intramuscular molindone hydrochloride in schizophrenic patients. Clin Ther, 7, 169175.Google Scholar
Midha, K. K., Hawes, E. M., Hubbard, J. W., et al. (1988). Variation in the single dose pharmacokinetics of fluphenazine in psychiatric patients. Psychopharmacology (Berl), 96, 206211.Google Scholar
Dahl, M. L., Ekqvist, B., Widén, J., et al. (1991). Disposition of the neuroleptic zuclopenthixol cosegregates with the polymorphic hydroxylation of debrisoquine in humans. Acta Psychiatr Scand, 84, 99102.Google Scholar
Midha, K. K., Hubbard, J. W., McKay, G., et al. (1993). The role of metabolites in a bioequivalence study I: Loxapine, 7-hydroxyloxapine and 8-hydroxyloxapine. Int J Clin Pharmacol Ther Toxicol, 31, 177183.Google Scholar
Yeung, P. K., Hubbard, J. W., Korchinski, E. D., et al. (1993). Pharmacokinetics of chlorpromazine and key metabolites. Eur J Clin Pharmacol, 45, 563569.Google Scholar
Wong, S. L. and Granneman, G. R. (1998). Modeling of sertindole pharmacokinetic disposition in healthy volunteers in short term dose-escalation studies. J Pharm Sci, 87, 16291631.Google Scholar
Kudo, S. and Ishizaki, T. (1999). Pharmacokinetics of haloperidol: An update. Clin Pharmacokinet, 37, 435456.Google Scholar
Mauri, M. C., Volonteri, L. S., Colasanti, A., et al. (2007). Clinical pharmacokinetics of atypical antipsychotics: A critical review of the relationship between plasma concentrations and clinical response. Clin Pharmacokinet, 46, 359388.Google Scholar
Meyer, J. M. (2018). Pharmacotherapy of psychosis and mania. In Brunton, L. L., Hilal-Dandan, R., and Knollmann, B. C., eds., Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 13th edn. Chicago, IL: McGraw-Hill, pp. 279302.Google Scholar
Yu, C. and Gopalakrishnan, G. (2018). In vitro pharmacological characterization of SPN-810 M (molindone). J Exp Pharmacol, 10, 6573.Google Scholar
Meyer, J. M. (2020). Lumateperone for schizophrenia. Curr Psychiatr, 19, 3339.Google Scholar
Schoretsanitis, G., Kane, J. M., Correll, C. U., et al. (2020). Blood levels to optimize antipsychotic treatment in clinical practice: A joint consensus statement of the American Society of Clinical Psychopharmacology (ASCP) and the Therapeutic Drug Monitoring (TDM) Task Force of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP). J Clin Psychiatry, 81, https://doi.org/10.4088/JCP.4019cs13169.Google Scholar
Spyker, D. A., Voloshko, P., Heyman, E. R., et al. (2014). Loxapine delivered as a thermally generated aerosol does not prolong QTc in a thorough QT/QTc study in healthy subjects. J Clin Pharmacol, 54, 665674.Google Scholar
Meyer, J. M., Loebel, A. D., and Schweizer, E. (2009). Lurasidone: A new drug in development for schizophrenia. Expert Opin Investig Drugs, 18, 17151726.Google Scholar
Larsen, N. E. and Hansen, L. B. (1989). Prediction of the optimal perphenazine decanoate dose based on blood samples drawn within the first three weeks. Ther Drug Monit, 11, 642646.Google Scholar
Altamura, A. C., Sassella, F., Santini, A., et al. (2003). Intramuscular preparations of antipsychotics: Uses and relevance in clinical practice. Drugs, 63, 493512.Google Scholar
Spanarello, S. and La Ferla, T. (2014). The pharmacokinetics of long-acting antipsychotic medications. Curr Clin Pharamacol, 9, 310317.Google Scholar
Meyer, J. M. (2020). Monitoring and improving antipsychotic adherence in outpatient forensic diversion programs. CNS Spectr, 25, 136144.Google Scholar
Hard, M. L., Mills, R. J., Sadler, B. M., et al. (2017). Aripiprazole lauroxil: Pharmacokinetic profile of this long-acting injectable antipsychotic in persons with schizophrenia. J Clin Psychopharmacol, 37, 289295.Google Scholar
Hard, M. L., Mills, R. J., Sadler, B. M., et al. (2017). Pharmacokinetic profile of a 2-month dose regimen of aripiprazole lauroxil: A phase I study and a population pharmacokinetic model. CNS Drugs, 31, 617624.Google Scholar
Gefvert, O., Eriksson, B., Persson, P., et al. (2005). Pharmacokinetics and D2 receptor occupancy of long-acting injectable risperidone (Risperdal Consta) in patients with schizophrenia. Int J Neuropsychopharmacol, 8, 2736.Google Scholar
Haddad, P., Lambert, T., and Lauriello, J., eds. (2016). Antipsychotic Long-Acting Injections, 2nd edn. New York: Oxford University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×