Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T09:18:24.987Z Has data issue: false hasContentIssue false

Section 2 - Progress with Clinical Staging

Published online by Cambridge University Press:  08 August 2019

Patrick D. McGorry
Affiliation:
University of Melbourne
Ian B. Hickie
Affiliation:
University of Sydney
Get access

Summary

For over a decade a transdiagnostic clinical staging framework for youth with anxiety, mood and psychotic disorders (linked with measurement of multidimensional outcomes), has been utilised in over 8,000 young people presenting to the enhanced primary (headspace) and secondary care clinics of the Brain and Mind Centre of the University of Sydney. This framework has been evaluated alongside a broad range of other clinical, neurobiological, neuropsychological, brain imaging, circadian, metabolic, longitudinal cohort and controlled intervention studies. This has led to specific tests of its concurrent, discriminant and predictive validity. These extensive data provide strong preliminary evidence that: i) varying stages of illness are associated with predicted differences in a range of independent and objectively measured neuropsychological and other biomarkers (both cross-sectionally and longitudinally); and, ii) that earlier stages of illness progress at variable rates to later and more severe or persistent disorders. Importantly, approximately 15-20% of those young people classed as stage 1b or ‘attenuated’ syndromes at presentation progress to more severe or persistent disorders. Consequently, this cohort should be the focus of active secondary prevention trials. In clinical practice, we are moving to combine the staging framework with likely pathophysiological paths (e.g. neurodevelopmental-psychotic, anxiety-depression, circadian-bipolar) to underpin enhanced treatment selection.

Type
Chapter
Information
Clinical Staging in Psychiatry
Making Diagnosis Work for Research and Treatment
, pp. 81 - 220
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Benca, R. M., Obermeyer, W. H., Thisted, R. A., & Gillin, J. C. (1992). Sleep and psychiatric disorders: a meta-analysis. Archives of General Psychiatry, 49(8), 651668.Google Scholar
Bloom, D., Cafiero, E., Jane-Llopis, E., Abrahams-Gessel, S., Bloom, L., Fathima, S., … Weiss, J. (2012). The global economic burden of non-communicable diseases. Geneva: World Economic Forum.Google Scholar
Buckholtz, J. W., & Meyer-Lindenberg, A. (2012). Psychopathology and the human connectome: toward a transdiagnostic model of risk for mental illness. Neuron, 74(6), 9901004.Google Scholar
Carpenter, J. S., Abelmann, A. C., Hatton, S. N., Robillard, R., Hermens, D. F., Bennett, M. R., … Hickie, I. B. (2017a). Pineal volume and evening melatonin in young people with affective disorders. Brain Imaging and Behavior, 11(6), 17411750.Google Scholar
Carpenter, J. S., Robillard, R., Hermens, D. F., Naismith, S. L., Gordon, C., Scott, E. M., & Hickie, I. B. (2017b). Sleep–wake profiles and circadian rhythms of core temperature and melatonin in young people with affective disorders. Journal of Psychiatric Research, 94, 131138.Google Scholar
Carpenter, J. S., Robillard, R., & Hickie, I. B. (2015a). Variations in the sleep–wake cycle from childhood to adulthood: chronobiological perspectives. ChronoPhysiology and Therapy, 5, 3749.Google Scholar
Carpenter, J. S., Robillard, R., Lee, R. S., Hermens, D. F., Naismith, S. L., White, D., … Hickie, I. B. (2015b). The relationship between sleep–wake cycle and cognitive functioning in young people with affective disorders. PLoS One, 10(4), e0124710.Google Scholar
Casey, B. J., Craddock, N., Cuthbert, B. N., Hyman, S. E., Lee, F. S., & Ressler, K. J. (2013). DSM-5 and RDoC: progress in psychiatry research? Nature Reviews Neuroscience, 14(11), 810814.Google Scholar
Copeland, W. E., Adair, C. E., Smetanin, P., Stiff, D., Briante, C., Colman, I., … Angold, A. (2013). Diagnostic transitions from childhood to adolescence to early adulthood. Journal of Child Psychology and Psychiatry, 54(7), 791799.Google Scholar
Cross, S. P., Hermens, D. F., & Hickie, I. B. (2016). Treatment patterns and short-term outcomes in an early intervention youth mental health service. Early Intervention in Psychiatry, 10(1), 8897.Google Scholar
Cross, S. P. M., Hermens, D. F., Scott, J., Salvador-Carulla, L., & Hickie, I. B. (2017a). Differential impact of current diagnosis and clinical stage on attendance at a youth mental health service. Early Intervention in Psychiatry, 11(3), 255262.Google Scholar
Cross, S. P., Scott, J. L., Hermens, D. F., & Hickie, I. B. (2018). Variability in clinical outcomes for youths treated for subthreshold severe mental disorders at an early intervention service. Psychiatric Services, 69(5), 555561.Google Scholar
Cross, S. P. M., Scott, J., & Hickie, I. B. (2017b). Predicting early transition from sub-syndromal presentations to major mental disorders. British Journal of Psychiatry Open, 3(5), 223227.Google Scholar
Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Medicine, 11, 126.Google Scholar
Dolsen, M. R., Asarnow, L. D., & Harvey, A. G. (2014). Insomnia as a transdiagnostic process in psychiatric disorders. Current Psychiatry Reports, 16(9), 471.Google Scholar
Erskine, H. E., Moffitt, T. E., Copeland, W. E., Costello, E. J., Ferrari, A. J., Patton, G., … Scott, J. G. (2015). A heavy burden on young minds: the global burden of mental and substance use disorders in children and youth. Psychological Medicine, 45(7), 15111563.Google Scholar
Fusar-Poli, P., Byrne, M., Valmaggia, L., Day, F., Tabraham, P., Johns, L., … Team, O. (2010). Social dysfunction predicts two years clinical outcome in people at ultra high risk for psychosis. Journal of Psychiatric Research, 44(5), 294301.Google Scholar
Gore, F. M., Bloem, P. J. N., Patton, G. C., Ferguson, J., Joseph, V., Coffey, C., … Mathers, C. D. (2011). Global burden of disease in young people aged 10–24 years: a systematic analysis. Lancet, 377(9783), 20932102.Google Scholar
Gradisar, M., Gardner, G., & Dohnt, H. (2011). Recent worldwide sleep patterns and problems during adolescence: a review and meta-analysis of age, region, and sleep. Sleep Medicine, 12(2), 110118.Google Scholar
Gustavsson, A., Svensson, M., Jacobi, F., Allgulander, C., Alonso, J., & Beghi, E.; CDBE 2010 Study Group (2011). Cost of disorders of the brain in Europe 2010. European Neuropsychopharmacology, 21(10), 718779.Google Scholar
Hafner, H., an der Heiden, W., & Maurer, K. (2008). Evidence for separate diseases? Stages of one disease or different combinations of symptom dimensions? European Archives of Psychiatry and Clinical Neuroscience, 258(Suppl. 2), 8596.Google Scholar
Hamilton, B. A., Naismith, S. L., Scott, E. M., Purcell, S., & Hickie, I. B. (2011). Disability is already pronounced in young people with early stages of affective disorders: data from an early intervention service. Journal of Affective Disorders, 131(1–3), 8491.Google Scholar
Harvey, A. G., Murray, G., Chandler, R. A., & Soehner, A. (2011). Sleep disturbance as transdiagnostic: consideration of neurobiological mechanisms. Clinical Psychology Review, 31(2), 225235.Google Scholar
Hermens, D. F., Naismith, S. L., Lagopoulos, J., Lee, R. S. C., Guastella, A. J., Scott, E. M., & Hickie, I. B. (2013). Neuropsychological profile according to the clinical stage of young persons presenting for mental health care. BMC Psychology, 1, 8.Google Scholar
Hickie, I. B., Hermens, D. F., Naismith, S. L., Guastella, A. J., Glozier, N., Scott, J., & Scott, E. M. (2013a). Evaluating differential developmental trajectories to adolescent-onset mood and psychotic disorders. BMC Psychiatry, 13, 303.Google Scholar
Hickie, I. B., Naismith, S. L., Robillard, R., Scott, E. M., & Hermens, D. F. (2013b). Manipulating the sleep–wake cycle and circadian rhythms to improve clinical management of major depression. BMC Medicine, 11, 79.Google Scholar
Hickie, I. B., Scott, E. M., Hermens, D. F., Naismith, S. L., Guastella, A. J., Kaur, M., … McGorry, P. D. (2013c). Applying clinical staging to young people who present for mental health care. Early Intervention in Psychiatry, 7(1), 3143.Google Scholar
Hickie, I. B., Scott, J., Hermens, D. F., Scott, E. M., Naismith, S. L., Guastella, A. J., … McGorry, P. D. (2013d). Clinical classification in mental health at the cross-roads: which direction next? BMC Medicine, 11, 125.Google Scholar
Hickie, I. B., Scott, J., & McGorry, P. D. (2013e). Clinical staging for mental disorders: a new development in diagnostic practice in mental health. Medical Journal of Australia, 198(9), 461462.Google Scholar
Insel, T. R. (2007). The arrival of preemptive psychiatry. Early Intervention in Psychiatry, 1(1), 56.Google Scholar
Insel, T. R. (2009). Translating scientific opportunity into public health impact: a strategic plan for research on mental illness. Archives of General Psychiatry, 66(2), 128133.Google Scholar
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research Domain Criteria (RDoC): toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748751.Google Scholar
Jones, S. G., & Benca, R. M. (2015). Circadian disruption in psychiatric disorders. Sleep Medicine Clinics, 10(4), 481493.Google Scholar
Karatsoreos, I. N. (2014). Links between circadian rhythms and psychiatric disease. Frontiers in Behavioral Neuroscience, 8, 162.Google Scholar
Kelleher, I., Keeley, H., Corcoran, P., Lynch, F., Fitzpatrick, C., Devlin, N., … Cannon, M. (2012). Clinicopathological significance of psychotic experiences in non-psychotic young people: evidence from four population-based studies. British Journal of Psychiatry, 201(1), 2632.Google Scholar
Kim-Cohen, J., Caspi, A., Moffitt, T. E., Harrington, H., Milne, B. J., & Poulton, R. (2003). Prior juvenile diagnoses in adults with mental disorder: developmental follow-back of a prospective-longitudinal cohort. Archives of General Psychiatry, 60(7), 709717.Google Scholar
Kozak, M. J., & Cuthbert, B. N. (2016). The NIMH Research Domain Criteria Initiative: background, issues, and pragmatics. Psychophysiology, 53(3), 286297.Google Scholar
Lagopoulos, J., Hermens, D. F., Hatton, S. N., Battisti, R. A., Tobias-Webb, J., White, D., … Hickie, I. B. (2013). Microstructural white matter changes are correlated with the stage of psychiatric illness. Translational Psychiatry, 3, e248.Google Scholar
Lagopoulos, J., Hermens, D. F., Naismith, S. L., Scott, E. M., & Hickie, I. B. (2012). Frontal lobe changes occur early in the course of affective disorders in young people. BMC Psychiatry, 12, 4.Google Scholar
Lee, R. S., Hermens, D. F., Naismith, S. L., Lagopoulos, J., Jones, A., Scott, J., … Hickie, I. B. (2015). Neuropsychological and functional outcomes in recent-onset major depression, bipolar disorder and schizophrenia-spectrum disorders: a longitudinal cohort study. Translational Psychiatry, 5, e555.Google Scholar
Lee, R. S., Hermens, D. F., Redoblado-Hodge, M. A., Naismith, S. L., Porter, M. A., Kaur, M., … Hickie, I. B. (2013). Neuropsychological and socio-occupational functioning in young psychiatric outpatients: a longitudinal investigation. PLoS One, 8(3), e58176.Google Scholar
Lee, R. S., Hermens, D. F., Scott, J., Redoblado-Hodge, M. A., Naismith, S. L., Lagopoulos, J., … Hickie, I. B. (2014). A meta-analysis of neuropsychological functioning in first-episode bipolar disorders. Journal of Psychiatric Research, 57C, 111.Google Scholar
Lichtenstein, P., Yip, B. H., Björk, C., Pawitan, Y., Cannon, T. D., Sullivan, P. F., & Hultman, C. M. (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet, 373, 234239.Google Scholar
Lin, A., Yung, A. R., Nelson, B., Brewer, W. J., Riley, R., Simmons, M., … Wood, S. J. (2013). Neurocognitive predictors of transition to psychosis: medium- to long-term findings from a sample at ultra-high risk for psychosis. Psychological Medicine, 43(11), 23492360.Google Scholar
Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T., & Murray, C. J. L. (2006). Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet, 367(9524), 17471757.Google Scholar
Maziade, M., Rouleau, N., Merette, C., Cellard, C., Battaglia, M., Marino, C., … Roy, M. A. (2011). Verbal and visual memory impairments among young offspring and healthy adult relatives of patients with schizophrenia and bipolar disorder: selective generational patterns indicate different developmental trajectories. Schizophrenia Bulletin, 37(6), 12181228.Google Scholar
McGorry, P. (2007). Issues for DSM-V: clinical staging – a heuristic pathway to valid nosology and safer, more effective treatment in psychiatry. American Journal of Psychiatry, 164(6), 859860.Google Scholar
McGorry, P. D. (2010). Risk syndromes, clinical staging and DSM V: new diagnostic infrastructure for early intervention in psychiatry. Schizophrenia Research, 120(1–3), 4953.Google Scholar
McGorry, P. D., Goldstone, S. D., Parker, A. G., Rickwood, D. J., & Hickie, I. B. (2014). Cultures for mental health care of young people: an Australian blueprint for reform. Lancet Psychiatry, 1(7), 559568.Google Scholar
McGorry, P. D., Hickie, I. B., Yung, A. R., Pantelis, C., & Jackson, H. J. (2006). Clinical staging of psychiatric disorders: a heuristic framework for choosing earlier, safer and more effective interventions. Australian and New Zealand Journal of Psychiatry, 40, 616622.Google Scholar
McGorry, P. D., Purcell, R., Hickie, I. B., Yung, A. R., Pantelis, C., & Jackson, H. J. (2007). Clinical staging: a heuristic model for psychiatry and youth mental health. Medical Journal of Australia, 187, S40S42.Google Scholar
McGorry, P. D., Yung, A. R., Bechdolf, A., & Amminger, P. (2008). Back to the future: predicting and reshaping the course of psychotic disorder. Archives of General Psychiatry, 65(1), 2526.Google Scholar
Merikangas, K. R., Cui, L., Kattan, G., Carlson, G. A., Youngstrom, E. A., & Angst, J. (2012). Mania with and without depression in a community sample of US adolescents. Archives of General Psychiatry, 69(9), 943951.Google Scholar
Merikangas, K. R., He, J.-P., Burstein, M., Swanson, S. A., Avenevoli, S., Cui, L., … Swendsen, J. (2010). Lifetime prevalence of mental disorders in U.S. adolescents: results from the National Comorbidity Survey Replication – Adolescent Supplement (NCS-A). Journal of the American Academy of Child and Adolescent Psychiatry, 49(10), 980989.Google Scholar
Merikangas, K. R., Herrell, R., Swendsen, J., Rossler, W., Ajdacic-Gross, V., & Angst, J. (2008). Specificity of bipolar spectrum conditions in the comorbidity of mood and substance use disorders: results from the Zurich Cohort Study. Archives of General Psychiatry, 65(1), 4752.Google Scholar
Murray, G. K., & Jones, P. B. (2012). Psychotic symptoms in young people without psychotic illness: mechanisms and meaning. British Journal of Psychiatry, 201(1), 46.Google Scholar
Naismith, S. L., Hermens, D. F., Ip, T. K., Bolitho, S., Scott, E., Rogers, N. L., & Hickie, I. B. (2012). Circadian profiles in young people during the early stages of affective disorder. Translational Psychiatry, 2(5), e123.Google Scholar
Naismith, S. L., Lagopoulos, J., Hermens, D. F., White, D., Duffy, S. L., Robillard, R., … Hickie, I. B. (2014). Delayed circadian phase is linked to glutamatergic functions in young people with affective disorders: a proton magnetic resonance spectroscopy study. BMC Psychiatry, 14, 345.Google Scholar
Ormel, J., Raven, D., van Oort, F., Hartman, C. A., Reijneveld, S. A., Veenstra, R., … Oldehinkel, A. J. (2015). Mental health in Dutch adolescents: a TRAILS report on prevalence, severity, age of onset, continuity and co-morbidity of DSM disorders. Psychological Medicine, 45(2), 345360.Google Scholar
Paus, T., Keshavan, M., & Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? Nature Reviews Neuroscience, 9(12), 947957.Google Scholar
Purcell, R., Jorm, A. F., Hickie, I. B., Yung, A. R., Pantelis, C., Amminger, G. P., … McGorry, P. D. (2015). Demographic and clinical characteristics of young people seeking help at youth mental health services: baseline findings of the Transitions Study. Early Intervention in Psychiatry, 9(6), 487497.Google Scholar
Robillard, R., Hermens, D. F., Lee, R. S., Jones, A., Carpenter, J. S., White, D., … Hickie, I. B. (2016). Sleep–wake profiles predict longitudinal changes in manic symptoms and memory in young people with mood disorders. Journal of Sleep Research, 25(5), 549555.Google Scholar
Robillard, R., Hermens, D. F., Naismith, S. L., White, D., Rogers, N. L., Ip, T. K., … Hickie, I. B. (2015). Ambulatory sleep–wake patterns and variability in young people with emerging mental disorders. Journal of Psychiatry and Neuroscience, 40(1), 2837.Google Scholar
Robillard, R., Lagopoulos, J., Hermens, D. F., Naismith, S. L., Rogers, N. L., White, D., … Hickie, I. B. (2017). Lower in vivo myo-inositol in the anterior cingulate cortex correlates with delayed melatonin rhythms in young persons with depression. Frontiers in Neuroscience, 11, 336.Google Scholar
Robillard, R., Naismith, S. L., Rogers, N. L., Ip, T. K., Hermens, D. F., Scott, E. M., & Hickie, I. B. (2013a). Delayed sleep phase in young people with unipolar or bipolar affective disorders. Journal of Affective Disorders, 145(2), 260263.Google Scholar
Robillard, R., Naismith, S. L., Rogers, N. L., Scott, E. M., Ip, T. K., Hermens, D. F., & Hickie, I. B. (2013b). Sleep–wake cycle and melatonin rhythms in adolescents and young adults with mood disorders: comparison of unipolar and bipolar phenotypes. European Psychiatry, 28(7), 412416.Google Scholar
Robillard, R., Naismith, S. L., Smith, K. L., Rogers, N. L., White, D., Terpening, Z., … Hickie, I. B. (2014). Sleep–wake cycle in young and older persons with a lifetime history of mood disorders. PLoS One, 9(2), e87763.Google Scholar
Scott, E. M., Hermens, D. F., Glozier, N., Naismith, S. L., Guastella, A. J., & Hickie, I. B. (2012). Targeted primary care-based mental health services for young Australians. Medical Journal of Australia, 196(2), 136140.Google Scholar
Scott, E. M., Hermens, D. F., Naismith, S. L., Guastella, A. J., De Regt, T., White, D., … Hickie, I. B. (2013a). Distinguishing young people with emerging bipolar disorders from those with unipolar depression. Journal of Affective Disorders, 144(3), 208215.Google Scholar
Scott, E. M., Hermens, D. F., Naismith, S. L., Guastella, A. J., White, D., Whitwell, B. G., … Hickie, I. B. (2013b). Distress and disability in young adults presenting to clinical services with mood disorders. International Journal of Bipolar Disorders, 1, 23.Google Scholar
Scott, E. M., Robillard, R., Hermens, D. F., Naismith, S. L., Rogers, N. L., Ip, T. K., … Hickie, I. B. (2016). Dysregulated sleep–wake cycles in young people are associated with emerging stages of major mental disorders. Early Intervention in Psychiatry, 10(1), 6370.Google Scholar
Scott, J. (2011). Bipolar disorder: from early identification to personalized treatment. Early Intervention in Psychiatry, 5(2), 8990.Google Scholar
Scott, J., Paykel, E., Morriss, R., Bentall, R., Kinderman, P., Johnson, T., … Hayhurst, H. (2006). Cognitive-behavioural therapy for severe and recurrent bipolar disorders: randomised controlled trial. British Journal of Psychiatry, 188, 313320.Google Scholar
Scott, J., Scott, E. M., Hermens, D. F., Naismith, S. L., Guastella, A. J., White, D., … Hickie, I. B. (2014). Functional impairment in adolescents and young adults with emerging mood disorders. British Journal of Psychiatry, 205(5), 362368.Google Scholar
Sullivan, P. F., Daly, M. J., & O’Donovan, M. (2012). Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nature Reviews Genetics, 13(8), 537551.Google Scholar
Sumiyoshi, T., Miyanishi, T., Seo, T., & Higuchi, Y. (2013). Electrophysiological and neuropsychological predictors of conversion to schizophrenia in at-risk subjects. Frontiers in Behavioral Neuroscience, 7, 148.Google Scholar
Tickell, A. M., Lee, R. S. C., Hickie, I. B., & Hermens, D. F. (in press). The course of neuropsychological functioning in young people with attenuated vs discrete mental disorders. Early Intervention in Psychiatry. DOI: 10.1111/eip.12499.Google Scholar
Valmaggia, L. R., Stahl, D., Yung, A. R., Nelson, B., Fusar-Poli, P., McGorry, P. D., & McGuire, P. K. (2013). Negative psychotic symptoms and impaired role functioning predict transition outcomes in the at-risk mental state: a latent class cluster analysis study. Psychological Medicine, 43(11), 23112325.Google Scholar
Waszczuk, M. A., Zavos, H. M., Gregory, A. M., & Eley, T. C. (2014). The phenotypic and genetic structure of depression and anxiety disorder symptoms in childhood, adolescence, and young adulthood. JAMA Psychiatry, 71(8), 905916.Google Scholar

References

Adler, C. M., DelBello, M. P., Jarvis, K., Levine, A., Adams, J., & Strakowski, S. M. (2007). Voxel-based study of structural changes in first-episode patients with bipolar disorder. Biological Psychiatry, 61(6), 776781.Google Scholar
Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 11(2), 231239.Google Scholar
Adriano, F., Caltagirone, C., & Spalletta, G. (2012). Hippocampal volume reduction in first-episode and chronic schizophrenia: a review and meta-analysis. Neuroscientist, 18(2), 180200.Google Scholar
Andreasen, N. C., Carpenter, W. T. Jr, Kane, J. M., Lasser, R. A., Marder, S. R., & Weinberger, D. R. (2005). Remission in schizophrenia: proposed criteria and rationale for consensus. American Journal of Psychiatry, 162(3), 441449.Google Scholar
Andreasen, N. C., Liu, D., Ziebell, S., Vora, A., & Ho, B. C. (2013). Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: a prospective longitudinal MRI study. American Journal of Psychiatry, 170(6), 609615.Google Scholar
Andreasen, N. C., Nopoulos, P., Magnotta, V., Pierson, R., Ziebell, S., & Ho, B. C. (2011). Progressive brain change in schizophrenia: a prospective longitudinal study of first-episode schizophrenia. Biological Psychiatry, 70(7), 672679.Google Scholar
Ansell, B. R., Dwyer, D. B., Wood, S. J., Bora, E., Brewer, W. J., Proffitt, T. M., … Pantelis, C. (2014). Divergent effects of first-generation and second-generation antipsychotics on cortical thickness in first-episode psychosis. Psychological Medicine, 45, 515527.Google Scholar
Arnone, D., Cavanagh, J., Gerber, D., Lawrie, S. M., Ebmeier, K. P., & McIntosh, A. M. (2009). Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. British Journal of Psychiatry, 195(3), 194201.Google Scholar
Atmaca, M., Ozdemir, H., & Yildirim, H. (2007). Corpus callosum areas in first-episode patients with bipolar disorder. Psychological Medicine, 37(5), 699704.Google Scholar
Bechdolf, A., Wood, S. J., Nelson, B., Velakoulis, D., Yucel, M., Takahashi, T., … McGorry, P. D. (2012). Amygdala and insula volumes prior to illness onset in bipolar disorder: a magnetic resonance imaging study. Psychiatry Research, 201(1), 3439.Google Scholar
Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561571.Google Scholar
Beyer, J. L., Young, R., Kuchibhatla, M., & Krishnan, K. R. (2009). Hyperintense MRI lesions in bipolar disorder: a meta-analysis and review. International Review of Psychiatry, 21(4), 394409.Google Scholar
Bitter, S. M., Mills, N. P., Adler, C. M., Strakowski, S. M., & DelBello, M. P. (2011). Progression of amygdala volumetric abnormalities in adolescents after their first manic episode. Journal of the American Academy of Child and Adolescent Psychiatry, 50(10), 10171026.Google Scholar
Bloemen, O. J., de Koning, M. B., Schmitz, N., Nieman, D. H., Becker, H. E., de Haan, L., … van Amelsvoort, T. A. (2010). White-matter markers for psychosis in a prospective ultra-high-risk cohort. Psychological Medicine, 40(8), 12971304.Google Scholar
Bois, C., Whalley, H. C., McIntosh, A. M., & Lawrie, S. M. (2015). Structural magnetic resonance imaging markers of susceptibility and transition to schizophrenia: a review of familial and clinical high risk population studies. Journal of Psychopharmacology, 29(2), 144154.Google Scholar
Boos, H. B., Aleman, A., Cahn, W., Hulshoff Pol, H., & Kahn, R. S. (2007). Brain volumes in relatives of patients with schizophrenia: a meta-analysis. Archives of General Psychiatry, 64(3), 297304.Google Scholar
Bora, E., Fornito, A., Yucel, M., & Pantelis, C. (2010). Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biological Psychiatry, 67(11), 10971105.Google Scholar
Bora, E., Harrison, B. J., Davey, C. G., Yucel, M., & Pantelis, C. (2012). Meta-analysis of volumetric abnormalities in cortico-striatal-pallidal-thalamic circuits in major depressive disorder. Psychological Medicine, 42(4), 671681.Google Scholar
Borgwardt, S. J., Riecher-Rossler, A., Dazzan, P., Chitnis, X., Aston, J., Drewe, M., … McGuire, P. K. (2007). Regional gray matter volume abnormalities in the at risk mental state. Biological Psychiatry, 61(10), 11481156.Google Scholar
Buschlen, J., Berger, G. E., Borgwardt, S. J., Aston, J., Gschwandtner, U., Pflueger, M. O., … Riecher-Rossler, A. (2011). Pituitary volume increase during emerging psychosis. Schizophrenia Research, 125(1), 4148.Google Scholar
Campbell, S., & MacQueen, G. (2004). The role of the hippocampus in the pathophysiology of major depression. Journal of Psychiatry and Neuroscience, 29(6), 417426.Google Scholar
Cannon, T. D., Chung, Y., He, G., Sun, D., Jacobson, A., van Erp, T. G., … Heinssen, R. (2015). Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biological Psychiatry, 77(2), 147157.Google Scholar
Cardoso de Almeida, J. R., & Phillips, M. L. (2013). Distinguishing between unipolar depression and bipolar depression: current and future clinical and neuroimaging perspectives. Biological Psychiatry, 73(2), 111118.Google Scholar
Carletti, F., Woolley, J. B., Bhattacharyya, S., Perez-Iglesias, R., Fusar Poli, P., Valmaggia, L., … McGuire, P. K. (2012). Alterations in white matter evident before the onset of psychosis. Schizophrenia Bulletin, 38(6), 11701179.Google Scholar
Carpenter, W. T., Bustillo, J. R., Thaker, G. K., van Os, J., Krueger, R. F., & Green, M. J. (2009). The psychoses: cluster 3 of the proposed meta-structure for DSM-V and ICD-11. Psychological Medicine, 39(12), 20252042.Google Scholar
Chan, R. C., Di, X., McAlonan, G. M., & Gong, Q. Y. (2011). Brain anatomical abnormalities in high-risk individuals, first-episode, and chronic schizophrenia: an activation likelihood estimation meta-analysis of illness progression. Schizophrenia Bulletin, 37(1), 177188.Google Scholar
Chen, Z., Cui, L., Li, M., Jiang, L., Deng, W., Ma, X., … Li, T. (2012). Voxel based morphometric and diffusion tensor imaging analysis in male bipolar patients with first-episode mania. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 36(2), 231238.Google Scholar
Clark, S. R., Schubert, K. O., & Baune, B. T. (2015). Towards indicated prevention of psychosis: using probabilistic assessments of transition risk in psychosis prodrome. Journal of Neural Transmission, 122(1), 155169.Google Scholar
Cocchi, L., Harding, I. H., Lord, A., Pantelis, C., Yucel, M., & Zalesky, A. (2014). Disruption of structure–function coupling in the schizophrenia connectome. NeuroImage: Clinical, 4, 779787.Google Scholar
Cole, J., Costafreda, S. G., McGuffin, P., & Fu, C. H. (2011). Hippocampal atrophy in first episode depression: a meta-analysis of magnetic resonance imaging studies. Journal of Affective Disorders, 134(1–3), 483487.Google Scholar
Cooper, D., Barker, V., Radua, J., Fusar-Poli, P., & Lawrie, S. M. (2014). Multimodal voxel-based meta-analysis of structural and functional magnetic resonance imaging studies in those at elevated genetic risk of developing schizophrenia. Psychiatry Research, 221(1), 6977.Google Scholar
Cropley, V. L., & Pantelis, C. (2014). Using longitudinal imaging to map the ‘relapse signature’ of schizophrenia and other psychoses. Epidemiology and Psychiatric Sciences, 23(3), 219225.Google Scholar
Davidson, L. L., & Heinrichs, R. W. (2003). Quantification of frontal and temporal lobe brain-imaging findings in schizophrenia: a meta-analysis. Psychiatry Research, 122(2), 6987.Google Scholar
Dazzan, P., Soulsby, B., Mechelli, A., Wood, S. J., Velakoulis, D., Phillips, L. J., … Pantelis, C. (2012). Volumetric abnormalities predating the onset of schizophrenia and affective psychoses: an MRI study in subjects at ultrahigh risk of psychosis. Schizophrenia Bulletin, 38(5), 10831091.Google Scholar
De Peri, L., Crescini, A., Deste, G., Fusar-Poli, P., Sacchetti, E., & Vita, A. (2012). Brain structural abnormalities at the onset of schizophrenia and bipolar disorder: a meta-analysis of controlled magnetic resonance imaging studies. Current Pharmaceutical Design, 18(4), 486494.Google Scholar
Demjaha, A., Egerton, A., Murray, R. M., Kapur, S., Howes, O. D., Stone, J. M., & McGuire, P. K. (2014). Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biological Psychiatry, 75(5), e11e13.Google Scholar
Desmyter, S., van Heeringen, C., & Audenaert, K. (2011). Structural and functional neuroimaging studies of the suicidal brain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(4), 796808.Google Scholar
Di, X., Chan, R. C., & Gong, Q. Y. (2009). White matter reduction in patients with schizophrenia as revealed by voxel-based morphometry: an activation likelihood estimation meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33(8), 13901394.Google Scholar
Du, M. Y., Wu, Q. Z., Yue, Q., Li, J., Liao, Y., Kuang, W. H., … Gong, Q. Y. (2012). Voxelwise meta-analysis of gray matter reduction in major depressive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 36(1), 1116.Google Scholar
Ducharme, S., Albaugh, M. D., Hudziak, J. J., Botteron, K. N., Nguyen, T. V., Truong, C., … Karama, S. (2014). Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults. Cerebral Cortex, 24(11), 29412950.Google Scholar
Duman, R. S., Nakagawa, S., & Malberg, J. (2001). Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology, 25(6), 836844.Google Scholar
Eack, S. M., Hogarty, G. E., Cho, R. Y., Prasad, K. M., Greenwald, D. P., Hogarty, S. S., & Keshavan, M. S. (2010). Neuroprotective effects of cognitive enhancement therapy against gray matter loss in early schizophrenia: results from a 2-year randomized controlled trial. Archives of General Psychiatry, 67(7), 674682.Google Scholar
Eichenbaum, H. (2004). Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron, 44(1), 109120.Google Scholar
Ellison-Wright, I., & Bullmore, E. (2009). Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophrenia Research, 108(1–3), 310.Google Scholar
Ellison-Wright, I., & Bullmore, E. (2010). Anatomy of bipolar disorder and schizophrenia: a meta-analysis. Schizophrenia Research, 117(1), 112.Google Scholar
Ellison-Wright, I., Glahn, D. C., Laird, A. R., Thelen, S. M., & Bullmore, E. (2008). The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. American Journal of Psychiatry, 165(8), 10151023.Google Scholar
Eng, G. K., Sim, K., & Chen, S. H. (2015). Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: an integrative review. Neuroscience and Biobehavioral Reviews, 52, 233257.Google Scholar
Farrow, T. F., Whitford, T. J., Williams, L. M., Gomes, L., & Harris, A. W. (2005). Diagnosis-related regional gray matter loss over two years in first episode schizophrenia and bipolar disorder. Biological Psychiatry, 58(9), 713723.Google Scholar
Fontenelle, L. F., Oostermeijer, S., Harrison, B. J., Pantelis, C., & Yucel, M. (2011). Obsessive-compulsive disorder, impulse control disorders and drug addiction: common features and potential treatments. Drugs, 71(7), 827840.Google Scholar
Fornito, A., Yucel, M., Patti, J., Wood, S. J., & Pantelis, C. (2009). Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophrenia Research, 108(1–3), 104113.Google Scholar
Fornito, A., Yung, A. R., Wood, S. J., Phillips, L. J., Nelson, B., Cotton, S., … Yucel, M. (2008). Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals. Biological Psychiatry, 64(9), 758765.Google Scholar
Frangou, S. (2014). A systems neuroscience perspective of schizophrenia and bipolar disorder. Schizophrenia Bulletin, 40(3), 523531.Google Scholar
Frank, E., Nimgaonkar, V. L., Phillips, M. L., & Kupfer, D. J. (2015). All the world’s a (clinical) stage: rethinking bipolar disorder from a longitudinal perspective. Molecular Psychiatry, 20(1), 2331.Google Scholar
Fu, C. H., Steiner, H., & Costafreda, S. G. (2013). Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiology of Disease, 52, 7583.Google Scholar
Fujino, J., Yamasaki, N., Miyata, J., Sasaki, H., Matsukawa, N., Takemura, A., … Murai, T. (2015). Anterior cingulate volume predicts response to cognitive behavioral therapy in major depressive disorder. Journal of Affective Disorders, 174, 397399.Google Scholar
Fung, G., Cheung, C., Chen, E., Lam, C., Chiu, C., Law, C. W., … Chua, S. E. (2014). MRI predicts remission at 1 year in first-episode schizophrenia in females with larger striato-thalamic volumes. Neuropsychobiology, 69(4), 243248.Google Scholar
Fusar-Poli, P., Crossley, N., Woolley, J., Carletti, F., Perez-Iglesias, R., Broome, M., … McGuire, P. (2011). White matter alterations related to P300 abnormalities in individuals at high risk for psychosis: an MRI-EEG study. Journal of Psychiatry and Neuroscience, 36(4), 239248.Google Scholar
Fusar-Poli, P., Howes, O., Bechdolf, A., & Borgwardt, S. (2012a). Mapping vulnerability to bipolar disorder: a systematic review and meta-analysis of neuroimaging studies. Journal of Psychiatry and Neuroscience, 37(3), 170184.Google Scholar
Fusar-Poli, P., Radua, J., McGuire, P., & Borgwardt, S. (2012b). Neuroanatomical maps of psychosis onset: voxel-wise meta-analysis of antipsychotic-naive VBM studies. Schizophrenia Bulletin, 38(6), 12971307.Google Scholar
Fusar-Poli, P., Smieskova, R., Kempton, M. J., Ho, B. C., Andreasen, N. C., & Borgwardt, S. (2013). Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies. Neuroscience and Biobehavioral Reviews, 37(8), 16801691.Google Scholar
Fusar-Poli, P., Smieskova, R., Serafini, G., Politi, P., & Borgwardt, S. (2014). Neuroanatomical markers of genetic liability to psychosis and first episode psychosis: a voxelwise meta-analytical comparison. World Journal of Biological Psychiatry, 15(3), 219228.Google Scholar
Garner, B., Pariante, C. M., Wood, S. J., Velakoulis, D., Phillips, L., Soulsby, B., … Pantelis, C. (2005). Pituitary volume predicts future transition to psychosis in individuals at ultra-high risk of developing psychosis. Biological Psychiatry, 58(5), 417423.Google Scholar
Gogtay, N., Vyas, N. S., Testa, R., Wood, S. J., & Pantelis, C. (2011). Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophrenia Bulletin, 37(3), 504513.Google Scholar
Gupta, C. N., Calhoun, V. D., Rachakonda, S., Chen, J., Patel, V., Liu, J., … Turner, J. A. (2015). Patterns of gray matter abnormalities in schizophrenia based on an international mega-analysis. Schizophrenia Bulletin, 41(5), 11331142.Google Scholar
Hahn, C., Lim, H. K., & Lee, C. U. (2014). Neuroimaging findings in late-onset schizophrenia and bipolar disorder. Journal of Geriatric Psychiatry and Neurology, 27(1), 5662.Google Scholar
Haijma, S. V., Van Haren, N., Cahn, W., Koolschijn, P. C., Hulshoff Pol, H. E., & Kahn, R. S. (2013). Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophrenia Bulletin, 39(5), 11291138.Google Scholar
Hajek, T., Kopecek, M., Hoschl, C., & Alda, M. (2012). Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis. Journal of Psychiatry and Neuroscience, 37(5), 333343.Google Scholar
Hajek, T., Kopecek, M., Kozeny, J., Gunde, E., Alda, M., & Hoschl, C. (2009). Amygdala volumes in mood disorders: meta-analysis of magnetic resonance volumetry studies. Journal of Affective Disorders, 115(3), 395410.Google Scholar
Han, K. M., Choi, S., Jung, J., Na, K. S., Yoon, H. K., Lee, M. S., & Ham, B. J. (2014). Cortical thickness, cortical and subcortical volume, and white matter integrity in patients with their first episode of major depression. Journal of Affective Disorders, 155, 4248.Google Scholar
Heinze, K., Reniers, R. L., Nelson, B., Yung, A. R., Lin, A., Harrison, B. J., … Wood, S. J. (2015). Discrete alterations of brain network structural covariance in individuals at ultra-high risk for psychosis. Biological Psychiatry, 77(11), 989996.Google Scholar
Hibar, D. P., Westlye, L. T., van Erp, T. G., Rasmussen, J., Leonardo, C. D., Faskowitz, J., … Andreassen, O. A. (2016). Subcortical volumetric abnormalities in bipolar disorder. Molecular Psychiatry, 21(12), 17101716.Google Scholar
Hickie, I. B., Scott, E. M., Hermens, D. F., Naismith, S. L., Guastella, A. J., Kaur, M., … McGorry, P. D. (2013). Applying clinical staging to young people who present for mental health care. Early Intervention in Psychiatry, 7(1), 3143.Google Scholar
Hikosaka, O. (2010). The habenula: from stress evasion to value-based decision-making. Nature Reviews Neuroscience, 11(7), 503513.Google Scholar
Hirschfeld, R. M., Lewis, L., & Vornik, L. A. (2003). Perceptions and impact of bipolar disorder: how far have we really come? Results of the national depressive and manic-depressive association 2000 survey of individuals with bipolar disorder. Journal of Clinical Psychiatry, 64(2), 161174.Google Scholar
Ho, B. C., Andreasen, N. C., Ziebell, S., Pierson, R., & Magnotta, V. (2011). Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Archives of General Psychiatry, 68(2), 128137.Google Scholar
Houenou, J., Frommberger, J., Carde, S., Glasbrenner, M., Diener, C., Leboyer, M., & Wessa, M. (2011). Neuroimaging-based markers of bipolar disorder: evidence from two meta-analyses. Journal of Affective Disorders, 132(3), 344355.Google Scholar
Hulshoff Pol, H., & Bullmore, E. (2013). Neural networks in psychiatry. European Neuropsychopharmacology, 23(1), 16.Google Scholar
Ide, S., Kakeda, S., Watanabe, K., Yoshimura, R., Abe, O., Hayashi, K., … Korogi, Y. (2015). Relationship between a BDNF gene polymorphism and the brain volume in treatment-naive patients with major depressive disorder: a VBM analysis of brain MRI. Psychiatry Research, 233(2), 120124.Google Scholar
Ivleva, E. I., Morris, D. W., Moates, A. F., Suppes, T., Thaker, G. K., & Tamminga, C. A. (2010). Genetics and intermediate phenotypes of the schizophrenia–bipolar disorder boundary. Neuroscience and Biobehavioral Reviews, 34(6), 897921.Google Scholar
Jenkins, L. M., Barba, A., Campbell, M., Lamar, M., Shankman, S. A., Leow, A. D., … Langenecker, S. A. (2016). Shared white matter alterations across emotional disorders: a voxel-based meta-analysis of fractional anisotropy. NeuroImage: Clinical, 12, 10221034.Google Scholar
Jiang, J., Zhao, Y. J., Hu, X. Y., Du, M. Y., Chen, Z. Q., Wu, M., … Gong, Q. Y. (2017). Microstructural brain abnormalities in medication-free patients with major depressive disorder: a systematic review and meta-analysis of diffusion tensor imaging. Journal of Psychiatry and Neuroscience, 42(3), 150163.Google Scholar
Johnstone, E. C., Crow, T. J., Frith, C. D., Husband, J., & Kreel, L. (1976). Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet, 2(7992), 924926.Google Scholar
Judd, L. L., Akiskal, H. S., Schettler, P. J., Coryell, W., Endicott, J., Maser, J. D., … Keller, M. B. (2003). A prospective investigation of the natural history of the long-term weekly symptomatic status of bipolar II disorder. Archives of General Psychiatry, 60(3), 261269.Google Scholar
Judd, L. L., Akiskal, H. S., Schettler, P. J., Endicott, J., Maser, J., Solomon, D. A., … Keller, M. B. (2002). The long-term natural history of the weekly symptomatic status of bipolar I disorder. Archives of General Psychiatry, 59(6), 530537.Google Scholar
Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science (4th ed.). New York: McGraw-Hill Health Professions Division.Google Scholar
Kasai, K., Shenton, M. E., Salisbury, D. F., Hirayasu, Y., Lee, C. U., Ciszewski, A. A., … McCarley, R. W. (2003). Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. American Journal of Psychiatry, 160(1), 156164.Google Scholar
Katagiri, N., Pantelis, C., Nemoto, T., Zalesky, A., Hori, M., Shimoji, K., … Mizuno, M. (2015). A longitudinal study investigating sub-threshold symptoms and white matter changes in individuals with an ‘at risk mental state’ (ARMS). Schizophrenia Research, 162(1–3), 713.Google Scholar
Kelly, P. A., Viding, E., Wallace, G. L., Schaer, M., De Brito, S. A., Robustelli, B., & McCrory, E. J. (2013). Cortical thickness, surface area, and gyrification abnormalities in children exposed to maltreatment: neural markers of vulnerability? Biological Psychiatry, 74(11), 845852.Google Scholar
Kempton, M. J., Geddes, J. R., Ettinger, U., Williams, S. C., & Grasby, P. M. (2008). Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Archives of General Psychiatry, 65(9), 10171032.Google Scholar
Kempton, M. J., & McGuire, P. (2015). How can neuroimaging facilitate the diagnosis and stratification of patients with psychosis? European Neuropsychopharmacology, 25(5), 725732.Google Scholar
Kempton, M. J., Salvador, Z., Munafo, M. R., Geddes, J. R., Simmons, A., Frangou, S., & Williams, S. C. (2011). Structural neuroimaging studies in major depressive disorder: meta-analysis and comparison with bipolar disorder. Archives of General Psychiatry, 68(7), 675690.Google Scholar
Kempton, M. J., Stahl, D., Williams, S. C., & DeLisi, L. E. (2010). Progressive lateral ventricular enlargement in schizophrenia: a meta-analysis of longitudinal MRI studies. Schizophrenia Research, 120(1–3), 5462.Google Scholar
Keshavan, M. S., Eack, S. M., Wojtalik, J. A., Prasad, K. M., Francis, A. N., Bhojraj, T. S., … Hogarty, S. S. (2011). A broad cortical reserve accelerates response to cognitive enhancement therapy in early course schizophrenia. Schizophrenia Research, 130(1–3), 123129.Google Scholar
Klauser, P., Zhou, J., Lim, J. K., Poh, J. S., Zheng, H., Tng, H. Y., … Chee, M. W. (2015). Lack of evidence for regional brain volume or cortical thickness abnormalities in youths at clinical high risk for psychosis: findings from the Longitudinal Youth at Risk Study. Schizophrenia Bulletin, 41, 12851293.Google Scholar
Kloppel, S., Abdulkadir, A., Jack, C. R. Jr, Koutsouleris, N., Mourao-Miranda, J., & Vemuri, P. (2012). Diagnostic neuroimaging across diseases. NeuroImage, 61(2), 457463.Google Scholar
Koo, M. S., Levitt, J. J., Salisbury, D. F., Nakamura, M., Shenton, M. E., & McCarley, R. W. (2008). A cross-sectional and longitudinal magnetic resonance imaging study of cingulate gyrus gray matter volume abnormalities in first-episode schizophrenia and first-episode affective psychosis. Archives of General Psychiatry, 65(7), 746760.Google Scholar
Koolschijn, P. C., van Haren, N. E., Lensvelt-Mulders, G. J., Hulshoff Pol, H. E., & Kahn, R. S. (2009). Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Human Brain Mapping, 30(11), 37193735.Google Scholar
Koutsouleris, N., Meisenzahl, E. M., Davatzikos, C., Bottlender, R., Frodl, T., Scheuerecker, J., … Gaser, C. (2009). Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Archives of General Psychiatry, 66(7), 700712.Google Scholar
Kozicky, J. M., Ha, T. H., Torres, I. J., Bond, D. J., Honer, W. G., Lam, R. W., & Yatham, L. N. (2013). Relationship between frontostriatal morphology and executive function deficits in bipolar I disorder following a first manic episode: data from the Systematic Treatment Optimization Program for Early Mania (STOP-EM). Bipolar Disorders, 15(6), 657668.Google Scholar
Lagopoulos, J., Hermens, D. F., Hatton, S. N., Battisti, R. A., Tobias-Webb, J., White, D., … Hickie, I. B. (2013). Microstructural white matter changes are correlated with the stage of psychiatric illness. Translational Psychiatry, 3, e248.Google Scholar
Lagopoulos, J., Hermens, D. F., Naismith, S. L., Scott, E. M., & Hickie, I. B. (2012). Frontal lobe changes occur early in the course of affective disorders in young people. BMC Psychiatry, 12, 4.Google Scholar
Lai, C. H. (2013). Gray matter volume in major depressive disorder: a meta-analysis of voxel-based morphometry studies. Psychiatry Research, 211(1), 3746.Google Scholar
Lai, C. H., & Wu, Y. T. (2015). The gray matter alterations in major depressive disorder and panic disorder: putative differences in the pathogenesis. Journal of Affective Disorders, 186, 16.Google Scholar
Lesh, T. A., Tanase, C., Geib, B. R., Niendam, T. A., Yoon, J. H., Minzenberg, M. J., … Carter, C. S. (2015). A multimodal analysis of antipsychotic effects on brain structure and function in first-episode schizophrenia. JAMA Psychiatry, 72(3), 226234.Google Scholar
Liao, Y., Huang, X., Wu, Q., Yang, C., Kuang, W., Du, M., … Gong, Q. (2013). Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. Journal of Psychiatry and Neuroscience, 38(1), 4956.Google Scholar
Lim, C. S., Baldessarini, R. J., Vieta, E., Yucel, M., Bora, E., & Sim, K. (2013). Longitudinal neuroimaging and neuropsychological changes in bipolar disorder patients: review of the evidence. Neuroscience and Biobehavioral Reviews, 37(3), 418435.Google Scholar
Lin, A., Reniers, R. L., & Wood, S. J. (2013). Clinical staging in severe mental disorder: evidence from neurocognition and neuroimaging. British Journal of Psychiatry Supplement, 54, s11s17.Google Scholar
Long, Z., Duan, X., Wang, Y., Liu, F., Zeng, L., Zhao, J. P., & Chen, H. (2015). Disrupted structural connectivity network in treatment-naive depressionProgress in Neuro-Psychopharmacology and Biological Psychiatry56, 1826.Google Scholar
Lorenzetti, V., Solowij, N., Whittle, S., Fornito, A., Lubman, D. I., Pantelis, C., & Yucel, M. (2015). Gross morphological brain changes with chronic, heavy cannabis use. British Journal of Psychiatry, 206(1), 7778.Google Scholar
Lyoo, I. K., Lee, H. K., Jung, J. H., Noam, G. G., & Renshaw, P. F. (2002). White matter hyperintensities on magnetic resonance imaging of the brain in children with psychiatric disorders. Comprehensive Psychiatry, 43(5), 361368.Google Scholar
McDonald, C., Zanelli, J., Rabe-Hesketh, S., Ellison-Wright, I., Sham, P., Kalidindi, S., … Kennedy, N. (2004). Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder. Biological Psychiatry, 56(6), 411417.Google Scholar
McGorry, P. D. (2014). Beyond psychosis risk: early clinical phenotypes in mental disorder and the subthreshold pathway to safe, timely and effective care. Psychopathology, 47(5), 285286.Google Scholar
McGorry, P., Keshavan, M., Goldstone, S., Amminger, P., Allott, K., Berk, M., … Hickie, I. (2014). Biomarkers and clinical staging in psychiatry. World Psychiatry, 13(3), 211223.Google Scholar
McGorry, P. D., Purcell, R., Hickie, I. B., Yung, A. R., Pantelis, C., & Jackson, H. J. (2007). Clinical staging: a heuristic model for psychiatry and youth mental health. Medical Journal of Australia, 187(7 Suppl.), S40S42.Google Scholar
McIntosh, A. M., Owens, D. C., Moorhead, W. J., Whalley, H. C., Stanfield, A. C., Hall, J., … Lawrie, S. M. (2011). Longitudinal volume reductions in people at high genetic risk of schizophrenia as they develop psychosis. Biological Psychiatry, 69(10), 953958.Google Scholar
Mills, N. P., Delbello, M. P., Adler, C. M., & Strakowski, S. M. (2005). MRI analysis of cerebellar vermal abnormalities in bipolar disorder. American Journal of Psychiatry, 162(8), 15301532.CrossRefGoogle ScholarPubMed
Mittal, V. A., Dean, D. J., Bernard, J. A., Orr, J. M., Pelletier-Baldelli, A., Carol, E. E., … Millman, Z. B. (2014). Neurological soft signs predict abnormal cerebellar-thalamic tract development and negative symptoms in adolescents at high risk for psychosis: a longitudinal perspective. Schizophrenia Bulletin, 40(6), 12041215.CrossRefGoogle ScholarPubMed
Moore, G. J., Bebchuk, J. M., Wilds, I. B., Chen, G., & Menji, H. K. (2000). Lithium-induced increase in human brain grey matter. Lancet356(9237), 12411242.Google Scholar
Moore, M. T., Nathan, D., Elliott, A. R., & Laubach, C. (1935). Encephalographic studies in mental disease: an analysis of 152 cases. American Journal of Psychiatry, 92, 4367.Google Scholar
Mueser, K. T., & McGurk, S. R. (2004). Schizophrenia. Lancet, 363(9426), 20632072.Google Scholar
Munn, M. A., Alexopoulos, J., Nishino, T., Babb, C. M., Flake, L. A., Singer, T., … Botteron, K. N. (2007). Amygdala volume analysis in female twins with major depression. Biological Psychiatry, 62(5), 415422.Google Scholar
Nakamura, M., Salisbury, D. F., Hirayasu, Y., Bouix, S., Pohl, K. M., Yoshida, T., … McCarley, R. W. (2007). Neocortical gray matter volume in first-episode schizophrenia and first-episode affective psychosis: a cross-sectional and longitudinal MRI study. Biological Psychiatry, 62(7), 773783.Google Scholar
Nelson, B., Yuen, H. P., Wood, S. J., Lin, A., Spiliotacopoulos, D., Bruxner, A., … Yung, A. R. (2013). Long-term follow-up of a group at ultra high risk (‘prodromal’) for psychosis: the PACE 400 study. JAMA Psychiatry, 70(8), 793802.Google Scholar
Nelson, M. D., Saykin, A. J., Flashman, L. A., & Riordan, H. J. (1998). Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Archives of General Psychiatry, 55(5), 433440.Google Scholar
Nordholm, D., Krogh, J., Mondelli, V., Dazzan, P., Pariante, C., & Nordentoft, M. (2013). Pituitary gland volume in patients with schizophrenia, subjects at ultra high-risk of developing psychosis and healthy controls: a systematic review and meta-analysis. Psychoneuroendocrinology, 38(11), 23942404.Google Scholar
Olabi, B., Ellison-Wright, I., McIntosh, A. M., Wood, S. J., Bullmore, E., & Lawrie, S. M. (2011). Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biological Psychiatry, 70(1), 8896.Google Scholar
Orru, G., Pettersson-Yeo, W., Marquand, A. F., Sartori, G., & Mechelli, A. (2012). Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neuroscience and Biobehavioral Reviews, 36(4), 11401152.Google Scholar
Paillere Martinot, M. L., Lemaitre, H., Artiges, E., Miranda, R., Goodman, R., Penttila, J., … Martinot, J. L. (2014). White-matter microstructure and gray-matter volumes in adolescents with subthreshold bipolar symptoms. Molecular Psychiatry, 19(4), 462470.Google Scholar
Pajonk, F. G., Wobrock, T., Gruber, O., Scherk, H., Berner, D., Kaizl, I., … Falkai, P. (2010). Hippocampal plasticity in response to exercise in schizophrenia. Archives of General Psychiatry, 67(2), 133143.Google Scholar
Palaniyappan, L., Marques, T. R., Taylor, H., Handley, R., Mondelli, V., Bonaccorso, S., … Dazzan, P. (2013). Cortical folding defects as markers of poor treatment response in first-episode psychosis. JAMA Psychiatry, 70(10), 10311040.Google Scholar
Pantelis, C., Velakoulis, D., McGorry, P. D., Wood, S. J., Suckling, J., Phillips, L. J., … McGuire, P. K. (2003). Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet, 361(9354), 281288.CrossRefGoogle ScholarPubMed
Pantelis, C., Wannan, C., Bartholomeusz, C. F., Allott, K., & McGorry, P. (2015). Cognitive intervention in early psychosis: preserving abilities versus remediating deficits. Current Opinion in Behavioral Sciences, 4, 6372.Google Scholar
Pantelis, C., Yucel, M., Bora, E., Fornito, A., Testa, R., Brewer, W. J., … Wood, S. J. (2009). Neurobiological markers of illness onset in psychosis and schizophrenia: the search for a moving target. Neuropsychology Review, 19(3), 385398.Google Scholar
Pantelis, C., Yucel, M., Wood, S. J., Brewer, W. J., Fornito, A., Berger, G., … Velakoulis, D. (2008). Neurobiological endophenotypes of psychosis and schizophrenia: are there biological markers of illness onset? In Jackson, H. J. & McGorry, P. (Eds), Recognition and management of early psychosis: a preventative approach (2nd ed.). Cambridge: Cambridge University Press pp. 6180.Google Scholar
Pantelis, C., Yucel, M., Wood, S. J., Velakoulis, D., Sun, D., Berger, G., … McGorry, P. D. (2005). Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophrenia Bulletin, 31(3), 672696.Google Scholar
Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9(2), 6068.Google Scholar
Peterson, B. S., Warner, V., Bansal, R., Zhu, H., Hao, X., Liu, J., … Weissman, M. M. (2009). Cortical thinning in persons at increased familial risk for major depression. Proceedings of the National Academy of Sciences of the United States of America, 106(15), 62736278.Google Scholar
Pfeifer, J. C., Welge, J., Strakowski, S. M., Adler, C. M., & DelBello, M. P. (2008). Meta-analysis of amygdala volumes in children and adolescents with bipolar disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 47(11), 12891298.Google Scholar
Phillips, L. J., Velakoulis, D., Pantelis, C., Wood, S., Yuen, H. P., Yung, A. R., … McGorry, P. D. (2002). Non-reduction in hippocampal volume is associated with higher risk of psychosis. Schizophrenia Research, 58(2–3), 145158.Google Scholar
Qiu, L., Lui, S., Kuang, W., Huang, X., Li, J., Li, J., … Gong, Q. (2014). Regional increases of cortical thickness in untreated, first-episode major depressive disorder. Translational Psychiatry, 4, e378.CrossRefGoogle ScholarPubMed
Radua, J., Borgwardt, S., Crescini, A., Mataix-Cols, D., Meyer-Lindenberg, A., McGuire, P. K., & Fusar-Poli, P. (2012). Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication. Neuroscience and Biobehavioral Reviews, 36(10), 23252333.Google Scholar
Radua, J., & Mataix-Cols, D. (2009). Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. British Journal of Psychiatry, 195(5), 393402.Google Scholar
Rao, U., Chen, L. A., Bidesi, A. S., Shad, M. U., Thomas, M. A., & Hammen, C. L. (2010). Hippocampal changes associated with early-life adversity and vulnerability to depression. Biological Psychiatry, 67(4), 357364.Google Scholar
Rasetti, R., & Weinberger, D. R. (2011). Intermediate phenotypes in psychiatric disorders. Current Opinion in Genetics and Development, 21(3), 340348.Google Scholar
Rosso, I. M., Killgore, W. D., Cintron, C. M., Gruber, S. A., Tohen, M., & Yurgelun-Todd, D. A. (2007). Reduced amygdala volumes in first-episode bipolar disorder and correlation with cerebral white matter. Biological Psychiatry, 61(6), 743749.Google Scholar
Sachdev, P., Wen, W., Chen, X., & Brodaty, H. (2007). Progression of white matter hyperintensities in elderly individuals over 3 years. Neurology, 68(3), 214222.CrossRefGoogle ScholarPubMed
Sacher, J., Neumann, J., Funfstuck, T., Soliman, A., Villringer, A., & Schroeter, M. L. (2012). Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. Journal of Affective Disorders, 140(2), 142148.Google Scholar
Scarr, E., Cowie, T. F., Kanellakis, S., Sundram, S., Pantelis, C., & Dean, B. (2009). Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia. Molecular Psychiatry, 14(11), 10171023.CrossRefGoogle ScholarPubMed
Schmaal, L., Hibar, D. P., Samann, P. G., Hall, G. B., Baune, B. T., Jahanshad, N., … Veltman, D. J. (2017). Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Molecular Psychiatry, 22, 900909.Google Scholar
Schmaal, L., Veltman, D. J., van Erp, T. G., Samann, P. G., Frodl, T., Jahanshad, N., … Hibar, D. P. (2016). Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Molecular Psychiatry, 21, 806812.Google Scholar
Schnack, H. G., Nieuwenhuis, M., van Haren, N. E., Abramovic, L., Scheewe, T. W., Brouwer, R. M., … Kahn, R. S. (2014). Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. NeuroImage, 84, 299306.Google Scholar
Selvaraj, S., Arnone, D., Job, D., Stanfield, A., Farrow, T. F., Nugent, A. C., … McIntosh, A. M. (2012). Grey matter differences in bipolar disorder: a meta-analysis of voxel-based morphometry studies. Bipolar Disorders, 14(2), 135145.Google Scholar
Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., … Wise, S. P. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28(14), 35863594.Google Scholar
Shenton, M. E., Dickey, C. C., Frumin, M., & McCarley, R. W. (2001). A review of MRI findings in schizophrenia. Schizophrenia Research, 49(1–2), 152.Google Scholar
Shepherd, A. M., Laurens, K. R., Matheson, S. L., Carr, V. J., & Green, M. J. (2012). Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. Neuroscience and Biobehavioral Reviews, 36(4), 13421356.Google Scholar
Simon, A. E., Borgwardt, S., Riecher-Rossler, A., Velthorst, E., de Haan, L., & Fusar-Poli, P. (2013). Moving beyond transition outcomes: meta-analysis of remission rates in individuals at high clinical risk for psychosis. Psychiatry Research, 209(3), 266272.Google Scholar
Smieskova, R., Fusar-Poli, P., Allen, P., Bendfeldt, K., Stieglitz, R. D., Drewe, J., … Borgwardt, S. J. (2010). Neuroimaging predictors of transition to psychosis: a systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 34(8), 12071222.Google Scholar
Spalletta, G., Piras, F., Caltagirone, C., & Fagioli, S. (2014). Hippocampal multimodal structural changes and subclinical depression in healthy individuals. Journal of Affective Disorders, 152154, 105112.Google Scholar
Steen, R. G., Mull, C., McClure, R., Hamer, R. M., & Lieberman, J. A. (2006). Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. British Journal of Psychiatry, 188, 510518.Google Scholar
Sun, D., Phillips, L., Velakoulis, D., Yung, A., McGorry, P. D., Wood, S. J., … Pantelis, C. (2009a). Progressive brain structural changes mapped as psychosis develops in ‘at risk’ individuals. Schizophrenia Research, 108(1–3), 8592.Google Scholar
Sun, D., Stuart, G. W., Jenkinson, M., Wood, S. J., McGorry, P. D., Velakoulis, D., … Pantelis, C. (2009b). Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Molecular Psychiatry, 14(10), 976986.Google Scholar
Takahashi, T., Wood, S. J., Soulsby, B., McGorry, P. D., Tanino, R., Suzuki, M., … Pantelis, C. (2009a). Follow-up MRI study of the insular cortex in first-episode psychosis and chronic schizophrenia. Schizophrenia Research, 108(1–3), 4956.Google Scholar
Takahashi, T., Wood, S. J., Yung, A. R., Phillips, L. J., Soulsby, B., McGorry, P. D., … Pantelis, C. (2009b). Insular cortex gray matter changes in individuals at ultra-high-risk of developing psychosis. Schizophrenia Research, 111(1–3), 94102.Google Scholar
Takahashi, T., Wood, S. J., Yung, A. R., Soulsby, B., McGorry, P. D., Suzuki, M., … Pantelis, C. (2009c). Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis. Archives of General Psychiatry, 66(4), 366376.Google Scholar
Takahashi, T., Wood, S. J., Yung, A. R., Walterfang, M., Phillips, L. J., Soulsby, B., … Pantelis, C. (2010). Superior temporal gyrus volume in antipsychotic-naive people at risk of psychosis. British Journal of Psychiatry, 196(3), 206211.Google Scholar
Theodoridou, A., Heekeren, K., Dvorsky, D., Metzler, S., Franscini, M., Haker, H., … Rossler, W. (2014). Early recognition of high risk of bipolar disorder and psychosis: an overview of the ZInEP ‘early recognition’ study. Frontiers in Public Health, 2, 166.Google Scholar
van Erp, T. G., Hibar, D. P., Rasmussen, J. M., Glahn, D. C., Pearlson, G. D., Andreassen, O. A., … Turner, J. A. (2016). Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Molecular Psychiatry, 21(4), 547553.Google Scholar
Velakoulis, D., Wood, S. J., Wong, M. T., McGorry, P. D., Yung, A., Phillips, L., … Pantelis, C. (2006). Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Archives of General Psychiatry, 63(2), 139149.Google Scholar
Vita, A., & de Peri, L. (2007). Hippocampal and amygdala volume reductions in first-episode schizophrenia. British Journal of Psychiatry, 190, 271.Google Scholar
Vita, A., de Peri, L., Deste, G., & Sacchetti, E. (2012). Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Translational Psychiatry, 2, e190.Google Scholar
Vita, A., de Peri, L., & Sacchetti, E. (2009). Gray matter, white matter, brain, and intracranial volumes in first-episode bipolar disorder: a meta-analysis of magnetic resonance imaging studies. Bipolar Disorders, 11(8), 807814.Google Scholar
Vita, A., de Peri, L., Silenzi, C., & Dieci, M. (2006). Brain morphology in first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance imaging studies. Schizophrenia Research, 82(1), 7588.Google Scholar
Wall, P. M., & Messier, C. (2001). The hippocampal formation: orbitomedial prefrontal cortex circuit in the attentional control of active memory. Behavioural Brain Research, 127(1–2), 99117.Google Scholar
Walter, A., Studerus, E., Smieskova, R., Kuster, P., Aston, J., Lang, U. E., … Borgwardt, S. (2012). Hippocampal volume in subjects at high risk of psychosis: a longitudinal MRI study. Schizophrenia Research, 142(1–3), 217222.Google Scholar
Walterfang, M., McGuire, P. K., Yung, A. R., Phillips, L. J., Velakoulis, D., Wood, S. J., … Pantelis, C. (2008a). White matter volume changes in people who develop psychosis. British Journal of Psychiatry, 193(3), 210215.Google Scholar
Walterfang, M., Wood, S. J., Velakoulis, D., & Pantelis, C. (2006). Neuropathological, neurogenetic and neuroimaging evidence for white matter pathology in schizophrenia. Neuroscience and Biobehavioral Reviews, 30(7), 918948.Google Scholar
Walterfang, M., Yung, A., Wood, A. G., Reutens, D. C., Phillips, L., Wood, S. J., … Pantelis, C. (2008b). Corpus callosum shape alterations in individuals prior to the onset of psychosis. Schizophrenia Research, 103(1–3), 110.Google Scholar
Wang, Y., Xu, C., Zhang, A., Zuo, X. N., Gao, Q., Li, X., … Zhang, K. (2014). White matter abnormalities in medication-naive adult patients with major depressive disorder: tract-based spatial statistical analysis. Neuro Endocrinology Letters, 35(8), 697702.Google Scholar
Watanabe, K., Kakeda, S., Yoshimura, R., Abe, O., Ide, S., Hayashi, K., … Korogi, Y. (2015). Relationship between the catechol-O-methyl transferase Val108/158Met genotype and brain volume in treatment-naive major depressive disorder: voxel-based morphometry analysis. Psychiatry Research, 233(3), 481487.Google Scholar
Whittle, S., Lichter, R., Dennison, M., Vijayakumar, N., Schwartz, O., Byrne, M. L., … Allen, N. B. (2014). Structural brain development and depression onset during adolescence: a prospective longitudinal study. American Journal of Psychiatry, 171(5), 564571.Google Scholar
Witthaus, H., Mendes, U., Brune, M., Ozgurdal, S., Bohner, G., Gudlowski, Y., … Juckel, G. (2010). Hippocampal subdivision and amygdalar volumes in patients in an at-risk mental state for schizophrenia. Journal of Psychiatry and Neuroscience, 35(1), 3340.Google Scholar
Wood, S. J., Kennedy, D., Phillips, L. J., Seal, M. L., Yucel, M., Nelson, B., … Pantelis, C. (2010). Hippocampal pathology in individuals at ultra-high risk for psychosis: a multi-modal magnetic resonance study. NeuroImage, 52(1), 6268.Google Scholar
Wood, S. J., Yung, A. R., McGorry, P. D., & Pantelis, C. (2011). Neuroimaging and treatment evidence for clinical staging in psychotic disorders: from the at-risk mental state to chronic schizophrenia. Biological Psychiatry, 70(7), 619625.Google Scholar
World Federation for Mental Health (2012). Depression: a global crisis. Occoquan, VA: World Federation for Mental Health.Google Scholar
Wright, I. C., Rabe-Hesketh, S., Woodruff, P. W., David, A. S., Murray, R. M., & Bullmore, E. T. (2000). Meta-analysis of regional brain volumes in schizophrenia. American Journal of Psychiatry, 157(1), 1625.Google Scholar
Yao, L., Lui, S., Liao, Y., Du, M. Y., Hu, N., Thomas, J. A., & Gong, Q. Y. (2013). White matter deficits in first episode schizophrenia: an activation likelihood estimation meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 45, 100106.Google Scholar
Yatham, L. N., Lyoo, I. K., Liddle, P., Renshaw, P. F., Wan, D., Lam, R. W., & Hwang, J. (2007). A magnetic resonance imaging study of mood stabilizer- and neuroleptic-naive first-episode mania. Bipolar Disorders, 9(7), 693697.Google Scholar
Yucel, M., Solowij, N., Respondek, C., Whittle, S., Fornito, A., Pantelis, C., & Lubman, D. I. (2008). Regional brain abnormalities associated with long-term heavy cannabis use. Archives of General Psychiatry, 65(6), 694701.Google Scholar
Zakzanis, K. K., Poulin, P., Hansen, K. T., & Jolic, D. (2000). Searching the schizophrenic brain for temporal lobe deficits: a systematic review and meta-analysis. Psychological Medicine, 30(3), 491504.Google Scholar
Zanetti, M. V., Schaufelberger, M. S., de Castro, C. C., Menezes, P. R., Scazufca, M., McGuire, P. K., … Busatto, G. F. (2008). White-matter hyperintensities in first-episode psychosis. British Journal of Psychiatry, 193(1), 2530.Google Scholar
Zhao, Y. J., Du, M. Y., Huang, X. Q., Lui, S., Chen, Z. Q., Liu, J., … Gong, Q. Y. (2014). Brain grey matter abnormalities in medication-free patients with major depressive disorder: a meta-analysis. Psychological Medicine, 44(14), 29272937.Google Scholar
Zhuo, C., Liu, M., Wang, L., Tian, H., & Tang, J. (2016). Diffusion tensor MR imaging evaluation of callosal abnormalities in schizophrenia: a meta-analysis. PLoS One, 11(8), e0161406.Google Scholar
Ziermans, T. B., Schothorst, P. F., Schnack, H. G., Koolschijn, P. C., Kahn, R. S., van Engeland, H., & Durston, S. (2012). Progressive structural brain changes during development of psychosis. Schizophrenia Bulletin, 38(3), 519530.Google Scholar
Zipursky, R. B., Reilly, T. J., & Murray, R. M. (2013). The myth of schizophrenia as a progressive brain disease. Schizophrenia Bulletin, 39(6), 13631372.Google Scholar

References

Abramovitch, A., Abramowitz, J. S., & Mittelman, A. (2013). The neuropsychology of adult obsessive-compulsive disorder: a meta-analysis. Clinical Psychology Review, 33(8), 11631171.Google Scholar
Adolphs, R. (2009). The social brain: neural basis of social knowledge. Annual Review of Psychology, 60, 693716.Google Scholar
Airaksinen, E., Larsson, M., & Forsell, Y. (2005). Neuropsychological functions in anxiety disorders in population-based samples: evidence of episodic memory dysfunction. Journal of Psychiatric Research, 39(2), 207214.Google Scholar
Allen, K. L., Byrne, S. M., Hii, H., van Eekelen, A., Mattes, E., & Foster, J. K. (2013). Neurocognitive functioning in adolescents with eating disorders: a population-based study. Cognitive Neuropsychiatry, 18(5), 355375.Google Scholar
Allott, K., Fisher, C. A., Amminger, G. P., Goodall, J., & Hetrick, S. (2016). Characterizing neurocognitive impairment in young people with major depression: state, trait, or scar? Brain and Behavior, 6(10), e00527.Google Scholar
Allott, K., Proffitt, T.-M., McGorry, P. D., Pantelis, C., Wood, S. J., Cumner, M., & Brewer, W. J. (2013). Clinical neuropsychology within adolescent and young-adult psychiatry: conceptualizing theory and practice. Applied Neuropsychology: Child, 2(1), 4763.Google Scholar
Allott, K., Schafer, M. R., Thompson, A., Nelson, B., Bendall, S., Bartholomeusz, C. F., … Amminger, G. P. (2014). Emotion recognition as a predictor of transition to a psychotic disorder in ultra-high risk participants. Schizophrenia Research, 153(1–3), 2531.Google Scholar
Alves, M. R. P., Pereira, V. M., Machado, S., Nardi, A. E., & Silva, A. (2013). Cognitive functions in patients with panic disorder: a literature review. Revista Brasileira De Psiquiatria, 35(2), 193200.Google Scholar
Amminger, G. P., Schafer, M. R., Papageorgiou, K., Klier, C. M., Schlogelhofer, M., Mossaheb, N., … McGorry, P. D. (2012). Emotion recognition in individuals at clinical high-risk for schizophrenia. Schizophrenia Bulletin, 38(5), 10301039.Google Scholar
Andreou, C., & Bozikas, V. P. (2013). The predictive significance of neurocognitive factors for functional outcome in bipolar disorder. Current Opinion in Psychiatry, 26(1), 5459.Google Scholar
Arango, C., Fraguas, D., & Parellada, M. (2014). Differential neurodevelopmental trajectories in patients with early-onset bipolar and schizophrenia disorders. Schizophrenia Bulletin, 40(Suppl. 2), S138S146.Google Scholar
Arts, B., Jabben, N., Krabbendam, L., & van Os, J. (2008). Meta-analyses of cognitive functioning in euthymic bipolar patients and their first-degree relatives. Psychological Medicine, 38(6), 771785.Google Scholar
Austin, M. P., Mitchell, P., & Goodwin, G. M. (2001). Cognitive deficits in depression: possible implications for functional neuropathology. British Journal of Psychiatry, 178, 200206.Google Scholar
Balanza-Martinez, V., Rubio, C., Selva-Vera, G., Martinez-Aran, A., Sanchez-Moreno, J., Salazar-Fraile, J., … Tabares-Seisdedos, R. (2008). Neurocognitive endophenotypes (endophenocognitypes) from studies of relatives of bipolar disorder subjects: a systematic review. Neuroscience and Biobehavioral Reviews, 32(8), 14261438.CrossRefGoogle ScholarPubMed
Barder, H. E., Sundet, K., Rund, B. R., Evensen, J., Haahr, U., Hegelstad, W. T., … Friis, S. (2013). Neurocognitive development in first episode psychosis 5 years follow-up: associations between illness severity and cognitive course. Schizophrenia Research, 149(1–3), 6369.Google Scholar
Batty, G. D., Mortensen, E. L., & Osler, M. (2005). Childhood IQ in relation to later psychiatric disorder: evidence from a Danish birth cohort study. British Journal of Psychiatry, 187, 180181.Google Scholar
Baune, B. T., Fuhr, M., Air, T., & Hering, C. (2014). Neuropsychological functioning in adolescents and young adults with major depressive disorder: a review. Psychiatry Research, 218, 261271.Google Scholar
Beaudreau, S. A., & O’Hara, R. (2008). Late-life anxiety and cognitive impairment: a review. American Journal of Geriatric Psychiatry, 16(10), 790803.Google Scholar
Bechdolf, A., Ratheesh, A., Cotton, S. M., Nelson, B., Chanen, A. M., Betts, J., … McGorry, P. D. (2014). The predictive validity of bipolar at-risk (prodromal) criteria in help-seeking adolescents and young adults: a prospective study. Bipolar Disorders, 16(5), 493504.Google Scholar
Belleau, E. L., Phillips, M. L., Birmaher, B., Axelson, D. A., & Ladouceur, C. D. (2013). Aberrant executive attention in unaffected youth at familial risk for mood disorders. Journal of Affective Disorders, 147(1–3), 397400.Google Scholar
Bora, E., Harrison, B. J., Yucel, M., & Pantelis, C. (2013). Cognitive impairment in euthymic major depressive disorder: a meta-analysis. Psychological Medicine, 43(10), 20172026.Google Scholar
Bora, E., Lin, A., Wood, S. J., Yung, A. R., McGorry, P. D., & Pantelis, C. (2014). Cognitive deficits in youth with familial and clinical high risk to psychosis: a systematic review and meta-analysis. Acta Psychiatrica Scandinavica, 130(1), 115.Google Scholar
Bora, E., & Murray, R. M. (2014). Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: do the cognitive deficits progress over, or after, the onset of psychosis? Schizophrenia Bulletin, 40, 744755.Google Scholar
Bora, E., & Pantelis, C. (2013). Theory of mind impairments in first-episode psychosis, individuals at ultra-high risk for psychosis and in first-degree relatives of schizophrenia: systematic review and meta-analysis. Schizophrenia Research, 144(1–3), 3136.Google Scholar
Bora, E., & Pantelis, C. (2015). Meta-analysis of cognitive impairment in first-episode bipolar disorder: comparison with first-episode schizophrenia and healthy controls. Schizophrenia Bulletin, 41(5), 10951104.Google Scholar
Bora, E., Vahip, S., Akdeniz, F., Gonul, A. S., Eryavuz, A., Ogut, M., & Alkan, M. (2007). The effect of previous psychotic mood episodes on cognitive impairment in euthymic bipolar patients. Bipolar Disorders, 9(5), 468477.Google Scholar
Bora, E., Yucel, M., & Pantelis, C. (2009a). Cognitive endophenotypes of bipolar disorder: a meta-analysis of neuropsychological deficits in euthymic patients and their first-degree relatives. Journal of Affective Disorders, 113, 120.Google Scholar
Bora, E., Yucel, M., & Pantelis, C. (2009b). Cognitive functioning in schizophrenia, schizoaffective disorder and affective psychoses: meta-analytic study. British Journal of Psychiatry, 195(6), 475482.Google Scholar
Bora, E., Yucel, M., & Pantelis, C. (2009c). Theory of mind impairment in schizophrenia: meta-analysis. Schizophrenia Research, 109(1–3), 19.Google Scholar
Bora, E., Yucel, M., & Pantelis, C. (2010). Cognitive impairment in affective psychoses: a meta-analysis. Schizophrenia Bulletin, 36(1), 112125.Google Scholar
Bora, E., Yucel, M., Pantelis, C., & Berk, M. (2011). Meta-analytic review of neurocognition in bipolar II disorder. Acta Psychiatrica Scandinavica, 123(3), 165174.Google Scholar
Bourke, C., Douglas, K., & Porter, R. (2010). Processing of facial emotion expression in major depression: a review. Australian and New Zealand Journal of Psychiatry, 44(8), 681696.Google Scholar
Bourne, C., Aydemir, O., Balanza-Martinez, V., Bora, E., Brissos, S., Cavanagh, J. T. O., … Goodwin, G. M. (2013). Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: an individual patient data meta-analysis. Acta Psychiatrica Scandinavica, 128(3), 149162.Google Scholar
Bowie, C. R., Grossman, M., Gupta, M., Oyewumi, L. K., & Harvey, P. D. (2014). Cognitive remediation in schizophrenia: efficacy and effectiveness in patients with early versus long-term course of illness. Early Intervention in Psychiatry, 8, 3238.Google Scholar
Bozikas, V. P., & Andreou, C. (2011). Longitudinal studies of cognition in first episode psychosis: a systematic review of the literature. Australian and New Zealand Journal of Psychiatry, 45(2), 93108.Google Scholar
Brewer, W. J., Wood, S. J., Phillips, L. J., Francey, S. M., Pantelis, C., Yung, A. R., … McGorry, P. D. (2006). Generalized and specific cognitive performance in clinical high-risk cohorts: a review highlighting potential vulnerability markers for psychosis. Schizophrenia Bulletin, 32(3), 538555.Google Scholar
Brotman, M. A., Guyer, A. E., Lawson, E. S., Horsey, S. E., Rich, B. A., Dickstein, D. P., … Leibenluft, E. (2008). Facial emotion labeling deficits in children and adolescents at risk for bipolar disorder. American Journal of Psychiatry, 165(3), 385389.Google Scholar
Cannon, M., Caspi, A., Moffitt, T. E., Harrington, H., Taylor, A., Murray, R. M., & Poulton, R. (2002). Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: results from a longitudinal birth cohort. Archives of General Psychiatry, 59(5), 449456.Google Scholar
Cannon, M., Moffitt, T. E., Caspi, A., Murray, R. M., Harrington, H., & Poulton, R. (2006). Neuropsychological performance at the age of 13 years and adult schizophreniform disorder: prospective birth cohort study. British Journal of Psychiatry, 189, 463464.Google Scholar
Cannon, T. D., Huttunen, M. O., Lonnqvist, J., Tuulio-Henriksson, A., Pirkola, T., Glahn, D., … Koskenvuo, M. (2000). The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. American Journal of Human Genetics, 67, 369382.Google Scholar
Castaneda, A. E., Suvisaari, J., Marttunen, M., Perala, J., Saarni, S. I., Aalto-Setala, T., … Tuulio-Henriksson, A. (2011). Cognitive functioning in a population-based sample of young adults with anxiety disorders. European Psychiatry, 26(6), 346353.Google Scholar
Castaneda, A. E., Tuulio-Henriksson, A., Marttunen, M., Suvisaari, J., & Lonnqvist, J. (2008). A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. Journal of Affective Disorders, 106(1–2), 127.Google Scholar
Cavedini, P., Zorzi, C., Piccinni, M., Cavallini, M. C., & Bellodi, L. (2010). Executive dysfunctions in obsessive-compulsive patients and unaffected relatives: searching for a new intermediate phenotype. Biological Psychiatry, 67(12), 11781184.Google Scholar
Comparelli, A., Corigliano, V., De Carolis, A., Mancinelli, I., Trovini, G., Ottavi, G., … Girardi, P. (2013). Emotion recognition impairment is present early and is stable throughout the course of schizophrenia. Schizophrenia Research, 143(1), 6569.Google Scholar
Conus, P., Ward, J., Hallam, K. T., Lucas, N., Macneil, C., McGorry, P. D., & Berk, M. (2008). The proximal prodrome to first episode mania: a new target for early intervention. Bipolar Disorders, 10(5), 555565.Google Scholar
Cooper, S. A., Smiley, E., Morrison, J., Williamson, A., & Allan, L. (2007). Mental ill-health in adults with intellectual disabilities: prevalence and associated factors. British Journal of Psychiatry, 190, 2735.Google Scholar
Correll, C. U., Penzner, J. B., Lencz, T., Auther, A., Smith, C. W., Malhotra, A. K., … Cornblatt, B. A. (2007). Early identification and high-risk strategies for bipolar disorder. Bipolar Disorders, 9(4), 324338.CrossRefGoogle ScholarPubMed
Daban, C., Martinez-Aran, A., Torrent, C., Tabares-Seisdedos, R., Balanza-Martinez, V., Salazar-Fraile, J. S., … Vieta, E. (2006). Specificity of cognitive deficits in bipolar disorder versus schizophrenia: a systematic review. Psychotherapy and Psychosomatics, 75(2), 7284.Google Scholar
Daglas, R., Allott, K., Yucel, M., Pantelis, C., Macneil, C. A., Berk, M., & Cotton, S. M. (2016). The trajectory of cognitive functioning following first episode mania: a 12-month follow-up study. Australian and New Zealand Journal of Psychiatry, 50(12), 11861197.Google Scholar
Daglas, R., Yucel, M., Cotton, S., Allott, K., Hetrick, S., & Berk, M. (2015). Cognitive impairment in first-episode mania: a systematic review of the evidence in the acute and remission phases of the illness. International Journal of Bipolar Disorders, 3, 9.Google Scholar
Dalili, M. N., Penton-Voak, I. S., Harmer, C. J., & Munafo, M. R. (2015). Meta-analysis of emotion recognition deficits in major depressive disorder. Psychological Medicine, 45(6), 11351144.Google Scholar
Daros, A. R., Zakzanis, K. K., & Rector, N. A. (2014). A quantitative analysis of facial emotion recognition in obsessive-compulsive disorder. Psychiatry Research, 215(3), 514521.Google Scholar
David, A. S., Zammit, S., Lewis, G., Dalman, C., & Allebeck, P. (2008). Impairments in cognition across the spectrum of psychiatric disorders: evidence from a Swedish conscript cohort. Schizophrenia Bulletin, 34(6), 10351041.Google Scholar
de Garcia Dominguez, M., Viechtbauer, W., Simons, C. J. P., van Os, J., & Krabbendam, L. (2009). Are psychotic psychopathology and neurocognition orthogonal? A systematic review of their associations. Psychological Bulletin, 135(1), 157171.Google Scholar
DeJong, H., van den Eynde, F., Broadbent, H., Kenyon, M. D., Lavender, A., Startup, H., & Schmidt, U. (2013). Social cognition in bulimia nervosa: a systematic review. European Psychiatry, 28(1), 16.CrossRefGoogle ScholarPubMed
Demenescu, L. R., Kortekaas, R., den Boer, J. A., & Aleman, A. (2010). Impaired attribution of emotion to facial expressions in anxiety and major depression. PLoS One, 5(12), e15058.Google Scholar
Depp, C. A., Mausbach, B. T., Harmell, A. L., Savla, G. N., Bowie, C. R., Harvey, P. D., & Patterson, T. L. (2012). Meta-analysis of the association between cognitive abilities and everyday functioning in bipolar disorder. Bipolar Disorders, 14(3), 217226.Google Scholar
Dickinson, D., Ramsey, M. E., & Gold, J. M. (2007). Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives of General Psychiatry, 64, 532542.Google Scholar
DiGangi, J. A., Gomez, D., Mendoza, L., Jason, L. A., Keys, C. B., & Koenen, K. C. (2013). Pretrauma risk factors for posttraumatic stress disorder: a systematic review of the literature. Clinical Psychology Review, 33(6), 728744.Google Scholar
Dotson, V. M., Resnick, S. M., & Zonderman, A. B. (2008). Differential association of concurrent, baseline, and average depressive symptoms with cognitive decline in older adults. American Journal of Geriatric Psychiatry, 16(4), 318330.Google Scholar
Douglas, K. M., & Porter, R. J. (2009). Longitudinal assessment of neuropsychological function in major depression. Australian and New Zealand Journal of Psychiatry, 43(12), 11051117.Google Scholar
Edwards, J., Pattison, P. E., Jackson, H. J., & Wales, R. J. (2001). Facial affect and affective prosody recognition in first-episode schizophrenia. Schizophrenia Research, 48, 235253.Google Scholar
Elshahawi, H. H., Essawi, H., Rabie, M. A., Mansour, M., Beshry, Z. A., & Mansour, A. N. (2011). Cognitive functions among euthymic bipolar I patients after a single manic episode versus recurrent episodes. Journal of Affective Disorders, 130(1–2), 180191.Google Scholar
Faraone, S. V., Seidman, L. J., Kremen, W. S., Toomey, R., Pepple, J. R., & Tsuang, M. T. (2000). Neuropsychologic functioning among the nonpsychotic relatives of schizophrenic patients: the effect of genetic loading. Biological Psychiatry, 48, 120126.Google Scholar
Fett, A. K., Viechtbauer, W., Dominguez, M. D., Penn, D. L., van Os, J., & Krabbendam, L. (2011). The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neuroscience and Biobehavioral Reviews, 35(3), 573588.Google Scholar
Fisher, M., Loewy, R., Hardy, K., Schlosser, D., & Vinogradov, S. (2013). Cognitive interventions targeting brain plasticity in the prodromal and early phases of schizophrenia. Annual Review of Clinical Psychology, 9, 435463.Google Scholar
Fiske, S. T., & Taylor, S. E. (2013). Social cognition: from brains to culture (2nd ed.). London: Sage.Google Scholar
Fusar-Poli, P., Deste, G., Smieskova, R., Barlati, S., Yung, A. R., Howes, O., … Borgwardt, S. (2012). Cognitive functioning in prodromal psychosis: a meta-analysis. Archives of General Psychiatry, 69(6), 562571.Google Scholar
Gale, C. R., Batty, G. D., McIntosh, A. M., Porteous, D. J., Deary, I. J., & Rasmussen, F. (2013). Is bipolar disorder more common in highly intelligent people? A cohort study of a million men. Molecular Psychiatry, 18(2), 190194.Google Scholar
Gigi, K., Werbeloff, N., Goldberg, S., Portuguese, S., Reichenberg, A., Fruchter, E., & Weiser, M. (2014). Borderline intellectual functioning is associated with poor social functioning, increased rates of psychiatric diagnosis and drug use: a cross sectional population based study. European Neuropsychopharmacology, 24(11), 17931797.Google Scholar
Giuliano, A. J., Li, H. J., Mesholam-Gately, R. I., Sorenson, S. M., Woodberry, K. A., & Seidman, L. J. (2012). Neurocognition in the psychosis risk syndrome: a quantitative and qualitative review. Current Pharmaceutical Design, 18(4), 399415.Google Scholar
Glahn, D. C., Almasy, L., Barguil, M., Hare, E., Peralta, J. M., Kent, J. W., … Escamilla, M. A. (2010). Neurocognitive endophenotypes for bipolar disorder identified in multiplex multigenerational families. Archives of General Psychiatry, 67(2), 168177.Google Scholar
Goschke, T. (2014). Dysfunctions of decision-making and cognitive control as transdiagnostic mechanisms of mental disorders: advances, gaps, and needs in current research. International Journal of Methods in Psychiatric Research, 23 (Suppl. 1), 4157.Google Scholar
Green, M. F., Bearden, C. E., Cannon, T. D., Fiske, A. P., Hellemann, G. S., Horan, W. P., … Nuechterlein, K. H. (2012). Social cognition in schizophrenia, part 1: performance across phase of illness. Schizophrenia Bulletin, 38(4), 854864.Google Scholar
Harvey, P. D. (2014). What is the evidence for changes in cognition and functioning over the lifespan in patients with schizophrenia? Journal of Clinical Psychiatry, 75, 3438.Google Scholar
Hasselbalch, B. J., Knorr, U., & Kessing, L. V. (2011). Cognitive impairment in the remitted state of unipolar depressive disorder: a systematic review. Journal of Affective Disorders, 134(1–3), 2031.Google Scholar
Hauser, M., Zhang, J. P., Sheridan, E. M., Burdick, K. E., Mogil, R., Kane, J. M., … Correll, C. U. (2017). Neuropsychological test performance to enhance identification of subjects at clinical high risk for psychosis and to be most promising for predictive algorithms for conversion to psychosis: a meta-analysis. Journal of Clinical Psychiatry, 78(1), E28E40.Google Scholar
Hedman, A. M., van Haren, N. E. M., van Baal, C. G. M., Kahn, R. S., & Pol, H. E. H. (2013). IQ change over time in schizophrenia and healthy individuals: a meta-analysis. Schizophrenia Research, 146(1–3), 201208.Google Scholar
Heinrichs, R. W., & Zakzanis, K. K. (1998). Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology, 12(3), 426445.Google Scholar
Hermens, D. F., Naismith, S. L., Lagopoulos, J., Lee, R. S., Guastella, A. J., Scott, E. M., & Hickie, I. B. (2013). Neuropsychological profile according to the clinical stage of young persons presenting for mental health care. BMC Psychology, 1(1), 8.Google Scholar
Hetrick, S. E., Parker, A. G., Hickie, I. B., Purcell, R., Yung, A. R., & McGorry, P. D. (2008). Early identification and intervention in depressive disorders: towards a clinical staging model. Psychotherapy and Psychosomatics, 77(5), 263270.Google Scholar
Hoff, A. L., Svetina, C., Shields, G., Stewart, J., & DeLisi, L. E. (2005). Ten year longitudinal study of neuropsychological functioning subsequent to a first episode of schizophrenia. Schizophrenia Research, 78(1), 2734.Google Scholar
Holthausen, E. A., Wiersma, D., Sitskoorn, M. M., Hijman, R., Dingemans, P. M., Schene, A. H., & van den Bosch, R. J. (2002). Schizophrenic patients without neuropsychological deficits: subgroup, disease severity or cognitive compensation? Psychiatry Research, 112, 111.Google Scholar
Hughes, C., Roman, G., Hart, M. J., & Ensor, R. (2013). Does maternal depression predict young children’s executive function? A 4-year longitudinal study. Journal of Child Psychology and Psychiatry, 54(2), 169177.Google Scholar
Irani, F., Kalkstein, S., Moberg, E. A., & Moberg, P. J. (2011). Neuropsychological performance in older patients with schizophrenia: a meta-analysis of cross-sectional and longitudinal studies. Schizophrenia Bulletin, 37(6), 13181326.Google Scholar
Jarros, R. B., Salum, G. A., da Silva, C. T. B., Toazza, R., Costa, M. D., de Salles, J. F., & Manfro, G. G. (2012). Anxiety disorders in adolescence are associated with impaired facial expression recognition to negative valence. Journal of Psychiatric Research, 46(2), 147151.Google Scholar
Kanakam, N., Raoult, C., Collier, D., & Treasure, J. (2013). Set shifting and central coherence as neurocognitive endophenotypes in eating disorders: a preliminary investigation in twins. World Journal of Biological Psychiatry, 14(6), 464475.Google Scholar
Kanakam, N., & Treasure, J. (2013). A review of cognitive neuropsychiatry in the taxonomy of eating disorders: state, trait, or genetic? Cognitive Neuropsychiatry, 18(1–2), 83114.Google Scholar
Kapczinski, F., Magalhaes, P. V., Balanza-Martinez, V., Dias, V. V., Frangou, S., Gama, C. S., … Berk, M. (2014). Staging systems in bipolar disorder: an International Society for Bipolar Disorders Task Force Report. Acta Psychiatrica Scandinavica, 130(5), 354363.Google Scholar
Keefe, R. S. E. (1995). The contribution of neuropsychology to psychiatry. American Journal of Psychiatry, 152(1), 615.Google Scholar
Kendler, K. S., Ohlsson, H., Sundquist, J., & Sundquist, K. (2015). IQ and schizophrenia in a Swedish national sample: their causal relationship and the interaction of IQ with genetic risk. American Journal of Psychiatry, 172(3), 259265.Google Scholar
Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62(6), 617627.Google Scholar
Khandaker, G. M., Barnett, J. H., White, I. R., & Jones, P. B. (2011). A quantitative meta-analysis of population-based studies of premorbid intelligence and schizophrenia. Schizophrenia Research, 132(2–3), 220227.Google Scholar
Khandaker, G. M., Stochl, J., Zammit, S., Lewis, G., & Jones, P. B. (2014). A population-based longitudinal study of childhood neurodevelopmental disorders, IQ and subsequent risk of psychotic experiences in adolescence. Psychological Medicine, 44(15), 32293238.Google Scholar
Kim, H. S., Shin, N. Y., Jang, J. H., Kim, E., Shim, G., Park, H. Y., … Kwon, J. S. (2011). Social cognition and neurocognition as predictors of conversion to psychosis in individuals at ultra-high risk. Schizophrenia Research, 130(1–3), 170175.Google Scholar
Klimes-Dougan, B., Ronsaville, D., Wiggs, E. A., & Martinez, P. E. (2006). Neuropsychological functioning in adolescent children of mothers with a history of bipolar or major depressive disorders. Biological Psychiatry, 60(9), 957965.Google Scholar
Klimkeit, E. I., Tonge, B., Bradshaw, J. L., Melvin, G. A., & Gould, K. (2011). Neuropsychological deficits in adolescent unipolar depression. Archives of Clinical Neuropsychology, 26(7), 662676.Google Scholar
Koenen, K. C., Moffitt, T. E., Roberts, A. L., Martin, L. T., Kubzansky, L., Harrington, H., … Caspi, A. (2009). Childhood IQ and adult mental disorders: a test of the cognitive reserve hypothesis. American Journal of Psychiatry, 166(1), 5057.Google Scholar
Kohler, C. G., Hoffman, L. J., Eastman, L. B., Healey, K., & Moberg, P. J. (2011). Facial emotion perception in depression and bipolar disorder: a quantitative review. Psychiatry Research, 188(3), 303309.Google Scholar
Kohler, C. G., Walker, J. B., Martin, E. A., Healey, K. M., & Moberg, P. J. (2010). Facial emotion perception in schizophrenia: a meta-analytic review. Schizophrenia Bulletin, 36(5), 10091019.Google Scholar
Koutsouleris, N., Davatzikos, C., Bottlender, R., Patschurek-Kliche, K., Scheuerecker, J., Decker, P., … Meisenzahl, E. M. (2012). Early recognition and disease prediction in the at-risk mental states for psychosis using neurocognitive pattern classification. Schizophrenia Bulletin, 38(6), 12001215.Google Scholar
Kurtz, M. M., & Gerraty, R. T. (2009). A meta-analytic investigation of neurocognitive deficits in bipolar illness: profile and effects of clinical state. Neuropsychology, 23(5), 551562.Google Scholar
Kyte, Z. A., Goodyer, I. M., & Sahakian, B. J. (2005). Selected executive skills in adolescents with recent first episode major depression. Journal of Child Psychology and Psychiatry, 46(9), 9951005.Google Scholar
Lang, K., Lopez, C., Stahl, D., Tchanturia, K., & Treasure, J. (2014a). Central coherence in eating disorders: an updated systematic review and meta-analysis. World Journal of Biological Psychiatry, 15(8), 586598.Google Scholar
Lang, K., Stahl, D., Espie, J., Treasure, J., & Tchanturia, K. (2014b). Set shifting in children and adolescents with anorexia nervosa: an exploratory systematic review and meta-analysis. International Journal of Eating Disorders, 47(4), 394399.Google Scholar
Lavoie, M. A., Plana, I., Lacroix, J. B., Godmaire-Duhaime, F., Jackson, P. L., & Achim, A. M. (2013). Social cognition in first-degree relatives of people with schizophrenia: a meta-analysis. Psychiatry Research, 209(2), 129135.Google Scholar
Lee, J., Altshuler, L., Glahn, D. C., Miklowitz, D. J., Ochsner, K., & Green, M. F. (2013a). Social and nonsocial cognition in bipolar disorder and schizophrenia: relative levels of impairment. American Journal of Psychiatry, 170(3), 334341.Google Scholar
Lee, R. S., Hermens, D. F., Porter, M. A., & Redoblado-Hodge, M. A. (2012). A meta-analysis of cognitive deficits in first-episode major depressive disorder. Journal of Affective Disorders, 140(2), 113124.Google Scholar
Lee, R. S., Hermens, D. F., Redoblado-Hodge, M. A., Naismith, S. L., Porter, M. A., Kaur, M., … Hickie, I. B. (2013b). Neuropsychological and socio-occupational functioning in young psychiatric outpatients: a longitudinal investigation. PLoS One, 8(3), e58176.Google Scholar
Lee, R. S., Hermens, D. F., Scott, J., Redoblado-Hodge, M. A., Naismith, S. L., Lagopoulos, J., … Hickie, I. B. (2014). A meta-analysis of neuropsychological functioning in first-episode bipolar disorders. Journal of Psychiatric Research, 57, 111.Google Scholar
Lee, T. Y., Hong, S. B., Shin, N. Y., & Kwon, J. S. (2015). Social cognitive functioning in prodromal psychosis: a meta-analysis. Schizophrenia Research, 164(1–3), 2834.Google Scholar
Leopold, R., & Backenstrass, M. (2015). Neuropsychological differences between obsessive-compulsive washers and checkers: a systematic review and meta-analysis. Journal of Anxiety Disorders, 30, 4858.Google Scholar
Lewin, A. B., Larson, M. J., Park, J. M., McGuire, J. F., Murphy, T. K., & Storch, E. A. (2014). Neuropsychological functioning in youth with obsessive compulsive disorder: an examination of executive function and memory impairment. Psychiatry Research, 216(1), 108115.Google Scholar
Lezak, M. D., Howieson, D. B., & Loring, D. W. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.Google Scholar
Lim, J., Rekhi, G., Rapisarda, A., Lam, M., Kraus, M., Keefe, R. S., & Lee, J. (2015). Impact of psychiatric comorbidity in individuals at ultra high risk of psychosis: findings from the Longitudinal Youth at Risk Study (LYRIKS). Schizophrenia Research, 164, 814.Google Scholar
Lin, A., Reniers, R. L. E. P., & Wood, S. J. (2013). Clinical staging in severe mental disorder: evidence from neurocognition and neuroimaging. British Journal of Psychiatry, 202(Suppl. 54), s11s17.Google Scholar
Lin, A., Wood, S. J., Nelson, B., Brewer, W. J., Spiliotacopoulos, D., Bruxner, A., … Yung, A. R. (2011). Neurocognitive predictors of functional outcome two to 13 years after identification as ultra-high risk for psychosis. Schizophrenia Research, 132, 17.Google Scholar
Lopez, C., Stahl, D., & Tchanturia, K. (2010). Estimated intelligence quotient in anorexia nervosa: a systematic review and meta-analysis of the literature. Annals of General Psychiatry, 9, 40.Google Scholar
Lopez-Jaramillo, C., Lopera-Vasquez, J., Gallo, A., Ospina-Duque, J., Bell, V., Torrent, C., … Vieta, E. (2010). Effects of recurrence on the cognitive performance of patients with bipolar I disorder: implications for relapse prevention and treatment adherence. Bipolar Disorders, 12(5), 557567.Google Scholar
Maalouf, F. T., Brent, D., Clark, L., Tavitian, L., McHugh, R. M., Sahakian, B. J., & Phillips, M. L. (2011). Neurocognitive impairment in adolescent major depressive disorder: state vs. trait illness markers. Journal of Affective Disorders, 133(3), 625632.Google Scholar
MacCabe, J. H., Lambe, M. P., Cnattingius, S., Sham, P. C., David, A. S., Reichenberg, A., … Hultman, C. M. (2010). Excellent school performance at age 16 and risk of adult bipolar disorder: national cohort study. British Journal of Psychiatry, 196, 109115.Google Scholar
MacCabe, J. H., Wicks, S., Lofving, S., David, A. S., Berndtsson, A., Gustafsson, J. E., … Dalman, C. (2013). Decline in cognitive performance between ages 13 and 18 years and the risk for psychosis in adulthood: a Swedish longitudinal cohort study in males. JAMA Psychiatry, 70(3), 261270.Google Scholar
Mann-Wrobel, M. C., Carreno, J. T., & Dickinson, D. (2011). Meta-analysis of neuropsychological functioning in euthymic bipolar disorder: an update and investigation of moderator variables. Bipolar Disorders, 13(4), 334342.Google Scholar
Martinez-Aran, A., Vieta, E., Reinares, M., Colom, F., Torrent, C., Sanchez-Moreno, J., … Salamero, M. (2004). Cognitive function across manic or hypomanic, depressed, and euthymic states in bipolar disorder. American Journal of Psychiatry, 161, 262270.Google Scholar
Martino, D. J., Samame, C., Ibanez, A., & Strejilevich, S. A. (2015). Neurocognitive functioning in the premorbid stage and in the first episode of bipolar disorder: a systematic review. Psychiatry Research, 226(1), 2330.Google Scholar
Mathews, A., & MacLeod, C. (2005). Cognitive vulnerability to emotional disorders. Annual Review in Clinical Psychology, 1, 167195.Google Scholar
McClintock, S. A., Husain, M. M., Greer, T. L., & Cullum, C. M. (2010). Association between depression severity and neurocognitive function in major depressive disorder: a review and synthesis. Neuropsychology, 24(1), 934.Google Scholar
McDermott, L. M., & Ebmeier, K. P. (2009). A meta-analysis of depression severity and cognitive function. Journal of Affective Disorders, 119(1–3), 18.Google Scholar
McGorry, P. D., Keshavan, M., Goldstone, S., Amminger, P., Allott, K., Berk, M., … Hickie, I. (2014). Biomarkers and clinical staging in psychiatry. World Psychiatry, 13, 211223.Google Scholar
Mesholam-Gately, R., Giuliano, A. J., Faraone, S. V., Goff, K. P., & Seidman, L. J. (2009). Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology, 23(3), 315336.Google Scholar
Metzler, S., Dvorsky, D., Wyss, C., Muller, M., Gerstenberg, M., Traber-Walker, N., … Heekeren, K. (2015). Changes in neurocognitive functioning during transition to manifest disease: comparison of individuals at risk for schizophrenic and bipolar affective psychoses. Psychological Medicine, 45(10), 21232134.Google Scholar
Meyer, S. E., Carlson, G. A., Wiggs, E. A., Martinez, P. E., Ronsaville, D. S., Klimes-Dougan, B., … Radke-Yarrow, M. (2004). A prospective study of the association among impaired executive functioning, childhood attentional problems, and the development of bipolar disorder. Development and Psychopathology, 16(2), 461476.Google Scholar
Micco, J. A., Henin, A., Biederman, J., Rosenbaum, J. F., Petty, C., Rindlaub, L. A., … Hirshfeld-Becker, D. R. (2009). Executive functioning in offspring at risk for depression and anxiety. Depression and Anxiety, 26(9), 780790.Google Scholar
Millan, M. J., Agid, Y., Brüne, M., Bullmore, E. T., Carter, C. S., Clayton, N. S., … Young, L. J. (2012). Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nature Reviews Drug Discovery, 11, 141168.Google Scholar
Morgan, V. A., Leonard, H., Bourke, J., & Jablensky, A. (2008). Intellectual disability co-occurring with schizophrenia and other psychiatric illness: population-based study. British Journal of Psychiatry, 193(5), 364372.Google Scholar
Motter, J. N., Pimontel, M. A., Rindskopf, D., Devanand, D. P., Doraiswamy, P. M., & Sneed, J. R. (2016). Computerized cognitive training and functional recovery in major depressive disorder: a meta-analysis. Journal of Affective Disorders, 189, 184191.Google Scholar
Neisser, U., Boodoo, G., Bouchard, T. J., Boykin, A. W., Brody, N., Ceci, S. J., … Urbina, S. (1996). Intelligence: knowns and unknowns. American Psychologist, 51(2), 77101.Google Scholar
Niendam, T. A., Bearden, C. E., Johnson, J. K., McKinley, M., Loewy, R., O’Brien, M., … Cannon, T. D. (2006). Neurocognitive performance and functional disability in the psychosis prodrome. Schizophrenia Research, 84(1), 100111.Google Scholar
Nolen-Hoeksema, S., & Watkins, E. R. (2011). A heuristic for developing transdiagnostic models of psychopathology: explaining multifinality and divergent trajectories. Perspectives on Psychological Science, 6(6), 589609.Google Scholar
O’Sullivan, K., & Newman, E. F. (2014). Neuropsychological impairments in panic disorder: a systematic review. Journal of Affective Disorders, 167, 268284.Google Scholar
O’Toole, M. S., & Pedersen, A. D. (2011). A systematic review of neuropsychological performance in social anxiety disorder. Nordic Journal of Psychiatry, 65(3), 147161.Google Scholar
Ohmuro, N., Matsumoto, K., Katsura, M., Obara, C., Kikuchi, T., Hamaie, Y., … Matsuoka, H. (2015). The association between cognitive deficits and depressive symptoms in at-risk mental state: a comparison with first-episode psychosis. Schizophrenia Research, 162(1–3), 6773.Google Scholar
Oldershaw, A., Hambrook, D., Stahl, D., Tchanturia, K., Treasure, J., & Schmidt, U. (2011). The socio-emotional processing stream in anorexia nervosa. Neuroscience and Biobehavioral Reviews, 35(3), 970988.Google Scholar
Olley, A., Malhi, G. S., Mitchell, P. B., Batchelor, J., Lagopoulos, J., & Austin, M. P. (2005). When euthymia is just not good enough: the neuropsychology of bipolar disorder. Journal of Nervous and Mental Disease, 193(5), 323330.Google Scholar
Olvet, D. M., Burdick, K. E., & Cornblatt, B. A. (2013). Assessing the potential to use neurocognition to predict who is at risk for developing bipolar disorder: a review of the literature. Cognitive Neuropsychiatry, 18(1–2), 129145.Google Scholar
Olvet, D. M., Stearns, W. H., McLaughlin, D., Auther, A. M., Correll, C. U., & Cornblatt, B. A. (2010). Comparing clinical and neurocognitive features of the schizophrenia prodrome to the bipolar prodrome. Schizophrenia Research, 123(1), 5963.Google Scholar
Orru, G., Pettersson-Yeo, W., Marquand, A. F., Sartori, G., & Mechelli, A. (2012). Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neuroscience and Biobehavioral Reviews, 36(4), 11401152.Google Scholar
Owen, M. J. (2012). Intellectual disability and major psychiatric disorders: a continuum of neurodevelopmental causality. British Journal of Psychiatry, 200(4), 268269.Google Scholar
Palmer, B. W., Heaton, R. K., Paulsen, J. S., Kuck, J., Braff, D., Harris, M. J., … Jeste, D. V. (1997). Is it possible to be schizophrenic yet neuropsychologically normal? Neuropsychology, 11(3), 437446.Google Scholar
Pantelis, C., Wannan, C., Bartholomeusz, C. F., Allott, K., & McGorry, P. D. (2015). Cognitive intervention in early psychosis: preserving abilities versus remediating deficits. Current Opinion in Behavioral Sciences, 4, 6372.Google Scholar
Paus, T., Keshavan, M., & Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? Nature Reviews Neuroscience, 9, 947957.Google Scholar
Pinkham, A. E., Penn, D. L., Green, M. F., Buck, B., Healey, K., & Harvey, P. D. (2014). The Social Cognition Psychometric Evaluation Study: results of the expert survey and RAND panel. Schizophrenia Bulletin, 40, 813823.Google Scholar
Plana, I., Lavoie, M. A., Battaglia, M., & Achim, A. M. (2014). A meta-analysis and scoping review of social cognition performance in social phobia, posttraumatic stress disorder and other anxiety disorders. Journal of Anxiety Disorders, 28(2), 169177.Google Scholar
Polak, A. R., Witteveen, A. B., Reitsma, J. B., & Olff, M. (2012). The role of executive function in posttraumatic stress disorder: a systematic review. Journal of Affective Disorders, 141(1), 1121.Google Scholar
Pukrop, R., & Klosterkotter, J. (2010). Neurocognitive indicators of clinical high-risk states for psychosis: a critical review of the evidence. Neurotoxicity Research, 18(3–4), 272286.Google Scholar
Rajji, T. K., Ismail, Z., & Mulsant, B. H. (2009). Age at onset and cognition in schizophrenia: meta-analysis. British Journal of Psychiatry, 195(4), 286293.Google Scholar
Rajji, T. K., & Mulsant, B. H. (2008). Nature and course of cognitive function in late-life schizophrenia: a systematic review. Schizophrenia Research, 102(1–3), 122140.Google Scholar
Ratheesh, A., Lin, A., Nelson, B., Wood, S. J., Brewer, W., Betts, J., … Bechdolf, A. (2013). Neurocognitive functioning in the prodrome of mania: an exploratory study. Journal of Affective Disorders, 147(1–3), 441445.Google Scholar
Reichenberg, A., Caspi, A., Harrington, H., Houts, R., Keefe, R. S. E., Murray, R. M., … Moffitt, T. E. (2010). Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: a 30-year study. American Journal of Psychiatry, 167(2), 160169.Google Scholar
Reichenberg, A., Harvey, P. D., Bowie, C. R., Mojtabai, R., Rabinowitz, J., Heaton, R. K., & Bromet, E. (2009). Neuropsychological function and dysfunction in schizophrenia and psychotic affective disorders. Schizophrenia Bulletin, 35(5), 10221029.Google Scholar
Reichenberg, A., Weiser, M., Rabinowitz, J., Caspi, A., Schmeidler, J., Mark, M., … Davidson, M. (2002). A population-based cohort study of premorbid intellectual, language, and behavioral functioning in patients with schizophrenia, schizoaffective disorder, and nonpsychotic bipolar disorder. American Journal of Psychiatry, 159(12), 20272035.Google Scholar
Reichenberg, A., Weiser, M., Rapp, M. A., Rabinowitz, J., Caspi, A., Schmeidler, J., … Davidson, M. (2005). Elaboration on premorbid intellectual performance in schizophrenia: premorbid intellectual decline and risk for schizophrenia. Archives of General Psychiatry, 62(12), 12971304.Google Scholar
Reinares, M., Papachristou, E., Harvey, P., Mar Bonnin, C., Sanchez-Moreno, J., Torrent, C., … Frangou, S. (2013). Towards a clinical staging for bipolar disorder: defining patient subtypes based on functional outcome. Journal of Affective Disorders, 144(1–2), 6571.Google Scholar
Robinson, L. J., & Ferrier, I. N. (2006). Evolution of cognitive impairment in bipolar disorder: a systematic review of cross-sectional evidence. Bipolar Disorders, 8(2), 103116.Google Scholar
Robinson, L. J., Thompson, J. M., Gallagher, P., Goswami, U., Young, A. H., Ferrier, I. N., & Moore, P. B. (2006). A meta-analysis of cognitive deficits in euthymic patients with bipolar disorder. Journal of Affective Disorders, 93, 105115.Google Scholar
Rock, P. L., Roiser, J. P., Riedel, W. J., & Blackwell, A. D. (2014). Cognitive impairment in depression: a systematic review and meta-analysis. Psychological Medicine, 44(10), 20292040.Google Scholar
Rosa, A. R., Magalhaes, P. V., Czepielewski, L., Sulzbach, M. V., Goi, P. D., Vieta, E., … Kapczinski, F. (2014). Clinical staging in bipolar disorder: focus on cognition and functioning. Journal of Clinical Psychiatry, 75(5), e450e456.Google Scholar
Samame, C., Martino, D. J., & Strejilevich, S. A. (2012). Social cognition in euthymic bipolar disorder: systematic review and meta-analytic approach. Acta Psychiatrica Scandinavica, 125(4), 266280.Google Scholar
Samame, C., Martino, D. J., & Strejilevich, S. A. (2013). A quantitative review of neurocognition in euthymic late-life bipolar disorder. Bipolar Disorders, 15(6), 633644.Google Scholar
Samame, C., Martino, D. J., & Strejilevich, S. A. (2014). Longitudinal course of cognitive deficits in bipolar disorder: a meta-analytic study. Journal of Affective Disorders, 164, 130138.Google Scholar
Sarapas, C., Shankman, S. A., Harrow, M., & Goldberg, J. F. (2012). Parsing trait and state effects of depression severity on neurocognition: evidence from a 26-year longitudinal study. Journal of Abnormal Psychology, 121(4), 830837.Google Scholar
Savla, G. N., Vella, L., Armstrong, C. C., Penn, D. L., & Twamley, E. W. (2013). Deficits in domains of social cognition in schizophrenia: a meta-analysis of the empirical evidence. Schizophrenia Bulletin, 39(5), 979.Google Scholar
Schmid, M., & Hammar, A. (2013). A follow-up study of first episode major depressive disorder: impairment in inhibition and semantic fluency – potential predictors for relapse? Frontiers in Psychology, 4, 633.Google Scholar
Scott, J. C., Matt, G. E., Wrocklage, K. M., Crnich, C., Jordan, J., Southwick, S. M., … Schweinsburg, B. C. (2015). A quantitative meta-analysis of neurocognitive functioning in posttraumatic stress disorder. Psychological Bulletin, 141(1), 105140.Google Scholar
Seaton, B. E., Goldstein, G., & Allen, D. N. (2001). Sources of heterogeneity in schizophrenia: the role of neuropsychological functioning. Neuropsychology Review, 11(1), 4567.Google Scholar
Shen, C., Popescu, F. C., Hahn, E., Ta, T. T., Dettling, M., & Neuhaus, A. H. (2014). Neurocognitive pattern analysis reveals classificatory hierarchy of attention deficits in schizophrenia. Schizophrenia Bulletin, 40(4), 878885.Google Scholar
Shin, N. Y., Lee, T. Y., Kim, E., & Kwon, J. S. (2014). Cognitive functioning in obsessive-compulsive disorder: a meta-analysis. Psychological Medicine, 44(6), 11211130.Google Scholar
Simonsen, C., Sundet, K., Vaskinn, A., Birkenaes, A. B., Engh, J. A., Faerden, A. … & Andreassen, O. A. (2011). Neurocognitive dysfunction in bipolar and schizophrenia spectrum disorders depends on history of psychosis rather than diagnostic group. Schizophrenia Bulletin, 37(1), 7383.Google Scholar
Sitskoorn, M. M., Aleman, A., Ebisch, S. J. H., Appels, M. C. M., & Kahn, R. S. (2004). Cognitive deficits in relatives of patients with schizophrenia: a meta-analysis. Schizophrenia Research, 71(2–3), 285295.Google Scholar
Snitz, B. E., Macdonald, A. W., 3rd, & Carter, C. S. (2006). Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. Schizophrenia Bulletin, 32(1), 179194.Google Scholar
Snyder, H. R. (2013). Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychological Bulletin, 139(1), 81132.Google Scholar
Snyder, H. R., Kaiser, R. H., Warren, S. L., & Heller, W. (2015a). Obsessive-compulsive disorder is associated with broad impairments in executive function: a meta-analysis. Clinical Psychological Science, 3(2), 301330.Google Scholar
Snyder, H. R., Miyake, A., & Hankin, B. L. (2015b). Advancing understanding of executive function impairments and psychopathology: bridging the gap between clinical and cognitive approaches. Frontiers in Psychology, 6, 24.Google Scholar
Sole, B., Martinez-Aran, A., Torrent, C., Bonnin, C. M., Reinares, M., Popovic, D., … Vieta, E. (2011). Are bipolar II patients cognitively impaired? A systematic review. Psychological Medicine, 41(9), 17911803.Google Scholar
Sprong, M., Schothorst, P., Vos, E., Hox, J., & van Engeland, H. (2007). Theory of mind in schizophrenia. British Journal of Psychiatry, 191, 513.Google Scholar
Stefanopoulou, E., Manoharan, A., Landau, S., Geddes, J. R., Goodwin, G., & Frangou, S. (2009). Cognitive functioning in patients with affective disorders and schizophrenia: a meta-analysis. International Review of Psychiatry, 21(4), 336356.Google Scholar
Strejilevich, S. A., Samame, C., & Martino, D. J. (2015). The trajectory of neuropsychological dysfunctions in bipolar disorders: a critical examination of a hypothesis. Journal of Affective Disorders, 175, 396402.Google Scholar
Sutterby, S. R., & Bedwell, J. S. (2012). Lack of neuropsychological deficits in generalized social phobia. PLoS One, 7(8), e42675.Google Scholar
Svirskis, T., Korkeila, J., Heinimaa, M., Huttunen, J., Ilonen, T., Ristkari, T., … Salokangas, R. K. R. (2005). Axis-I disorders and vulnerability to psychosis. Schizophrenia Research, 75(2–3), 439446.Google Scholar
Szoke, A., Trandafir, A., Dupont, M.-E., Meary, A., Schurhoff, F., & Leboyer, M. (2008). Longitudinal studies of cognition in schizophrenia: meta-analysis. British Journal of Psychiatry, 192, 248257.Google Scholar
Talarowska, M., Zajaczkowska, M., & Galecki, P. (2015). Cognitive functions in first-episode depression and recurrent depressive disorder. Psychiatria Danubina, 27(1), 3843.Google Scholar
Tempesta, D., Mazza, M., Serroni, N., Moschetta, F. S., Di Giannantonio, M., Ferrara, M., & De Berardis, D. (2013). Neuropsychological functioning in young subjects with generalized anxiety disorder with and without pharmacotherapy. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 45, 236241.Google Scholar
Tiihonen, J., Haukka, J., Henriksson, M., Cannon, M., Kieseppa, T., Laaksonen, I., … Lonnqvist, J. (2005). Premorbid intellectual functioning in bipolar disorder and schizophrenia: results from a cohort study of male conscripts. American Journal of Psychiatry, 162(10), 19041910.Google Scholar
Torres, I. J., Boudreau, V. G., & Yatham, L. N. (2007). Neuropsychological functioning in euthymic bipolar disorder: a meta-analysis. Acta Psychiatrica Scandinavica, 116(Suppl. 434), 1726.Google Scholar
Torres, I. J., Kozicky, J., Popuri, S., Bond, D. J., Honer, W. G., Lam, R. W., & Yatham, L. N. (2014). 12-month longitudinal cognitive functioning in patients recently diagnosed with bipolar disorder. Bipolar Disorders, 16, 159171.Google Scholar
Treasure, J., Stein, D., & Maguire, S. (2015). Has the time come for a staging model to map the course of eating disorders from high risk to severe enduring illness? An examination of the evidence. Early Intervention in Psychiatry, 9(3), 173184.Google Scholar
Trotta, A., Murray, R. M., & MacCabe, J. H. (2015). Do premorbid and post-onset cognitive functioning differ between schizophrenia and bipolar disorder? A systematic review and meta-analysis. Psychological Medicine, 45, 381394.Google Scholar
Uren, J., Cotton, S., Killackey, E., Saling, M., & Allott, K. (2017). Cognitive clusters in first-episode psychosis: overlap with healthy controls and relationship to concurrent and prospective symptoms and functioning. Neuropsychology, 31(7), 787797.Google Scholar
Van den Eynde, F., Guillaume, S., Broadbent, H., Stahl, D., Campbell, I. C., Schmidt, U., & Tchanturia, K. (2011). Neurocognition in bulimic eating disorders: a systematic review. Acta Psychiatrica Scandinavica, 124(2), 120140.Google Scholar
Viswanath, B., Janardhan Reddy, Y. C., Kumar, K. J., Kandavel, T., & Chandrashekar, C. R. (2009). Cognitive endophenotypes in OCD: a study of unaffected siblings of probands with familial OCD. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33(4), 610615.Google Scholar
Vorstman, J. A., Breetvelt, E. J., Duijff, S. N., Eliez, S., Schneider, M., Jalbrzikowski, M., … Bassett, A. S. (2015). Cognitive decline preceding the onset of psychosis in patients with 22q11.2 deletion syndrome. JAMA Psychiatry, 72(4), 377385.Google Scholar
Weiser, M., Reichenberg, A., Kravitz, E., Lubin, G., Shmushkevich, M., Glahn, D. C., … Davidson, M. (2008). Subtle cognitive dysfunction in nonaffected siblings of individuals affected by nonpsychotic disorders. Biological Psychiatry, 63(6), 602608.Google Scholar
Weiser, M., Reichenberg, A., Rabinowitz, J., Knobler, H. Y., Lubin, G., Yazvitzky, R., … Davidson, M. (2004). Cognitive performance of male adolescents is lower than controls across psychiatric disorders: a population-based study. Acta Psychiatrica Scandinavica, 110(6), 471475.Google Scholar
Whitney, J., Howe, M., Shoemaker, V., Li, S., Sanders, E. M., Dijamco, C., … Chang, K. (2013). Socio-emotional processing and functioning of youth at high risk for bipolar disorder. Journal of Affective Disorders, 148(1), 112117.Google Scholar
Wood, S. J., Yung, A. R., McGorry, P. D., & Pantelis, C. (2011). Neuroimaging and treatment evidence for clinical staging in psychotic disorders: from the at-risk mental state to chronic schizophrenia. Biological Psychiatry, 70(7), 619625.Google Scholar
Wood, S. J., Yung, A. R., & Pantelis, C. (2013). Cognitive precursors of severe mental disorders. Cognitive Neuropsychiatry, 18(1–2), 18.Google Scholar
Woodberry, K. A., Giuliano, A. J., & Seidman, L. J. (2008). Premorbid IQ in schizophrenia: a meta-analytic review. American Journal of Psychiatry, 165(5), 579587.Google Scholar
Wu, M., Brockmeyer, T., Hartmann, M., Skunde, M., Herzog, W., & Friederich, H. C. (2014). Set-shifting ability across the spectrum of eating disorders and in overweight and obesity: a systematic review and meta-analysis. Psychological Medicine, 44(16), 33653385.Google Scholar
Zakzanis, K. K., Campbell, Z., & Polsinelli, A. (2010). Quantitative evidence for distinct cognitive impairment in anorexia nervosa and bulimia nervosa. Journal of Neuropsychology, 4(Pt 1), 89106.Google Scholar
Zammit, S., Allebeck, P., David, A. S., Dalman, C., Hemmingsson, T., Lundberg, I., & Lewis, G. (2004). A longitudinal study of premorbid IQ score and risk of developing schizophrenia, bipolar disorder, severe depression, and other nonaffective psychoses. Archives of General Psychiatry, 61(4), 354360.Google Scholar

References

Aguliar-Valles, A., Kim, J., Jung, S., Woodside, B., & Luheshi, G. N. (2014). Role of brain transmigrating neutrophils in depression-like behavior during systemic infection. Molecular Psychiatry, 19(5), 599606.Google Scholar
Akhondzadeh, S., Jafari, S., Raisi, F., Nasehi, A. A., Ghoreishi, A., Salehi, B., … Kamalipour, A. (2009). Clinical trial of adjunctive celecoxib treatment in patients with major depression: a double blind and placebo controlled trial. Depression and Anxiety, 26(7), 607611.Google Scholar
Almeida, O. P., Alfonso, H., Jamrozik, K., Hankey, G. J., & Flicker, L. (2010). Aspirin use, depression, and cognitive impairment in later life: the health in men study. Journal of the American Geriatrics Society, 58(5), 990992.Google Scholar
Almeida, O. P., Flicker, L., Yeap, B. B., Alfonso, H., McCaul, K., & Hankey, G. J. (2012). Aspirin decreases the risk of depression in older men with high plasma homocysteine. Translational Psychiatry, 2, e151.Google Scholar
Amminger, G. P., Schafer, M. R., Klier, C. M., Slavik, J. M., Holzer, I., Holub, M., … Berk, M. (2012). Decreased nervonic acid levels in erythrocyte membranes predict psychosis in help-seeking ultra-high-risk individuals. Molecular Psychiatry, 17(12), 11501152.CrossRefGoogle ScholarPubMed
Amminger, G. P., Schafer, M. R., Papageorgiou, K., Klier, C. M., Cotton, S. M., Harrigan, S. M., … Berger, G. E. (2010). Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Archives of General Psychiatry, 67(2), 146154.Google Scholar
Arion, D., Unger, T., Lewis, D. A., Levitt, P., & Mirnics, K. (2007). Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biological Psychiatry, 62(7), 711721.Google Scholar
Barbaresko, J., Koch, M., Schulze, M. B., & Nothlings, U. (2013). Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutrition Reviews, 71(8), 511527.Google Scholar
Baune, B. (2009). Conceptual challenges of a tentative model of stress-induced depression. PLoS One, 4(1), e4266.Google Scholar
Baune, B. T. (2015). Inflammation and neurodegenerative disorders: is there still hope for therapeutic intervention? Current Opinion in Psychiatry, 28(2), 148154.Google Scholar
Baune, B. T., Wiede, F., Braun, A., Golledge, J., Arolt, V., & Koerner, H. (2008). Cognitive dysfunction in mice deficient for TNF- and its receptors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B(7), 10561064.Google Scholar
Berger, G. E., Wood, S., & McGorry, P. (2003). Incipient neurovulnerability and neuroprotection in early psychosis. Psychopharmacology Bulletin, 37(2), 79101.Google Scholar
Berger, G. E., Wood, S. J., Wellard, R. M., Proffitt, T. M., McConchie, M., Amminger, G. P., … McGorry, P. D. (2008). Ethyl-eicosapentaenoic acid in first-episode psychosis: a 1H-MRS study. Neuropsychopharmacology, 33(10), 24672473.Google Scholar
Berk, M., Copolov, D., Dean, O., Lu, K., Jeavons, S., Schapkaitz, I., … Bush, A. (2008). N-acetyl cysteine as a glutathione precursor for schizophrenia: a double-blind, randomized, placebo-controlled trial. Biological Psychiatry, 64, 361368.Google Scholar
Bertelsen, M., Jeppesen, P., Petersen, L., Thorup, A., Ohlenschlaeger, J., le Quach, P., … Nordentoft, M. (2008). Five-year follow-up of a randomized multicenter trial of intensive early intervention vs standard treatment for patients with a first episode of psychotic illness: the OPUS trial. Archives of General Psychiatry, 65(7), 762771.Google Scholar
Blank, T., & Prinz, M. (2013). Microglia as modulators of cognition and neuropsychiatric disorders. Glia, 61(1), 6270.Google Scholar
Borovcanin, M., Jovanovic, I., Radosavljevic, G., Djukic Dejanovic, S., Bankovic, D., Arsenijevic, N., & Lukic, M. L. (2012). Elevated serum level of type-2 cytokine and low IL-17 in first episode psychosis and schizophrenia in relapse. Journal of Psychiatric Research, 46(11), 14211426.Google Scholar
Calviello, G., Su, H. M., Weylandt, K. H., Fasano, E., Serini, S., & Cittadini, A. (2013). Experimental evidence of omega-3 polyunsaturated fatty acid modulation of inflammatory cytokines and bioactive lipid mediators: their potential role in inflammatory, neurodegenerative, and neoplastic diseases. BioMed Research International, 2013, 743171.Google Scholar
Camara, M. L., Corrigan, F., Jaehne, E. J., Jawahar, M. C., Anscomb, H., & Baune, B. T. (2015). Effects of centrally administered etanercept on behavior, microglia, and astrocytes in mice following a peripheral immune challenge. Neuropsychopharmacology, 40(2), 502512.Google Scholar
Clark, S. R., Schubert, K. O., & Baune, B. T. (2015). Towards indicated prevention of psychosis: using probabilistic assessments of transition risk in psychosis prodrome. Journal of Neural Transmission, 122(1), 155169.Google Scholar
Conradi, H. J., Ormel, J., & De Jonge, P. (2011). Presence of individual (residual) symptoms during depressive episodes and periods of remission: a 3-year prospective study. Psychological Medicine, 41(6), 11651174.Google Scholar
Couch, Y., Anthony, D. C., Dolgov, O., Revischin, A., Festoff, B., Santos, A. I., … Strekalova, T. (2013). Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia. Brain, Behavior, and Immunity, 29, 136146.Google Scholar
Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience, 9(1), 4656.Google Scholar
Do, K. Q., Trabesinger, A. H., Kirsten-Krüger, M., Lauer, C. J., Dydak, U., Hell, D., … Cuénod, M. (2000). Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. European Journal of Neuroscience, 12, 37213728.Google Scholar
Dunner, D. L., Rush, A. J., Russell, J. M., Burke, M., Woodard, S., Wingard, P., & Allen, J. (2006). Prospective, long-term, multicenter study of the naturalistic outcomes of patients with treatment-resistant depression. Journal of Clinical Psychiatry, 67(5), 688695.Google Scholar
Erickson, K. I., Gildengers, A. G., & Butters, M. A. (2013). Physical activity and brain plasticity in late adulthood. Dialogues in Clinical Neuroscience, 15(1), 99108.Google Scholar
Eyre, H. A., Air, T., Proctor, S., Rositano, S., & Baune, B. T. (2014). A critical review of the efficacy of non-steroidal anti-inflammatory drugs in depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 57C, 1116.Google Scholar
Eyre, H., & Baune, B. T. (2012). Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology, 37(9), 13971416.Google Scholar
Eyre, H. A., & Baune, B. T. (2015). Anti-inflammatory intervention in depression. JAMA Psychiatry, 72(5), 511.Google Scholar
Eyre, H., Papps, E., & Baune, B. T. (2013). Treating depression and depression-like behaviour with physical activity: an immune perspective. Frontiers in Psychiatry, 4, 3.Google Scholar
Fava, G. A., Ruini, C., & Belaise, C. (2007). The concept of recovery in major depression. Psychological Medicine, 37(3), 307317.Google Scholar
Fields, C., Drye, L., Vaidya, V., & Lyketsos, C. (2012). Celecoxib or naproxen treatment does not benefit depressive symptoms in persons age 70 and older: findings from a randomized controlled trial. American Journal of Geriatric Psychiatry, 20(6), 505513.Google Scholar
Flatow, J., Buckley, P., & Miller, B. J. (2013). Meta-analysis of oxidative stress in schizophrenia. Biological Psychiatry, 74, 400409.Google Scholar
Fond, G., Hamdani, N., Kapczinski, F., Boukouaci, W., Drancourt, N., Dargel, A., … Leboyer, M. (2014). Effectiveness and tolerance of anti-inflammatory drugs’ add-on therapy in major mental disorders: a systematic qualitative review. Acta Psychiatrica Scandinavica, 129(3), 163179.Google Scholar
Freund-Levi, Y., Eriksdotter-Jonhagen, M., Cederholm, T., Basun, H., Faxen-Irving, G., Garlind, A., … Palmblad, J. (2006). Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study – a randomized double-blind trial. Archives of Neurology, 63(10), 14021408.Google Scholar
Freund-Levi, Y., Hjorth, E., Lindberg, C., Cederholm, T., Faxen-Irving, G., Vedin, I., … Eriksdotter Jonhagen, M. (2009). Effects of omega-3 fatty acids on inflammatory markers in cerebrospinal fluid and plasma in Alzheimer’s disease: the OmegAD study. Dementia and Geriatric Cognitive Disorders, 27(5), 481490.Google Scholar
Gallagher, P. J., Castro, V., Fava, M., Weilburg, J. B., Murphy, S. N., Gainer, V. S., … Perlis, R. H. (2012). Antidepressant response in patients with major depression exposed to NSAIDs: a pharmacovigilance study. American Journal of Psychiatry, 169(10), 10651072.Google Scholar
Garcia-Rizo, C., Fernandez-Egea, E., Oliveira, C., Justicia, A., Bernardo, M., & Kirkpatrick, B. (2012). Inflammatory markers in antipsychotic-naïve patients with nonaffective psychosis and deficit vs. nondeficit features. Psychiatry Research, 198(2), 212215.Google Scholar
Gupta, S., Knight, A. G., Keller, J. N., & Bruce-Keller, A. J. (2012). Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. Journal of Neurochemistry, 120(6), 10601071.Google Scholar
Hamer, M., Sabia, S., Batty, G. D., Shipley, M. J., Tabak, A. G., Singh-Manoux, A., & Kivimaki, M. (2012). Physical activity and inflammatory markers over 10 years: follow-up in men and women from the Whitehall II cohort study. Circulation, 126(8), 928933.Google Scholar
Haroon, E., Raison, C. L., & Miller, A. H. (2012). Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology, 37(1), 137162.Google Scholar
Hegelstad, W. T., Larsen, T. K., Auestad, B., Evensen, J., Haahr, U., Joa, I., … McGlashan, T. (2012). Long-term follow-up of the TIPS early detection in psychosis study: effects on 10-year outcome. American Journal of Psychiatry, 169(4), 374380.Google Scholar
Hjorth, E., Zhu, M., Toro, V. C., Vedin, I., Palmblad, J., Cederholm, T., … Schultzberg, M. (2013). Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-beta42 by human microglia and decrease inflammatory markers. Journal of Alzheimer’s Disease, 35(4), 697713.Google Scholar
Insel, T. (2007). The arrival of preemptive psychiatry. Early Intervention in Psychiatry, 1, 56.Google Scholar
Jaturapatporn, D., Isaac, M. G., McCleery, J., & Tabet, N. (2012). Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease. Cochrane Database of Systematic Reviews, 2, CD006378.Google Scholar
Kendler, K. S., Thornton, L. M., & Gardner, C. O. (2001). Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. American Journal of Psychiatry, 158(4), 582586.Google Scholar
Keshavan, M. S., Sanders, R. D., Pettegrew, J. W., Dombrowsky, S. M., & Panchalingam, K. (1993). Frontal lobe metabolism and cerebral morphology in schizophrenia: 31P MRS and MRI studies. Schizophrenia Research, 10, 241246.Google Scholar
Kiecolt-Glaser, J. K., Epel, E. S., Belury, M. A., Andridge, R., Lin, J., Glaser, R., … Blackburn, E. (2013). Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain, Behavior, and Immunity, 28, 1624.Google Scholar
Krstic, D., & Knuesel, I. (2013). Deciphering the mechanism underlying late-onset Alzheimer disease. Nature Reviews: Neurology, 9(1), 2534.Google Scholar
Labrousse, V. F., Nadjar, A., Joffre, C., Costes, L., Aubert, A., Gregoire, S., … Laye, S. (2012). Short-term long chain omega3 diet protects from neuroinflammatory processes and memory impairment in aged mice. PLoS One, 7(5), e36861.Google Scholar
Larsen, T. K., Melle, I., Auestad, B., Haahr, U., Joa, I., Johannessen, J. O., … McGlashan, T. (2011). Early detection of psychosis: positive effects on 5-year outcome. Psychological Medicine, 41(7), 14611469.Google Scholar
Latour, A., Grintal, B., Champeil-Potokar, G., Hennebelle, M., Lavialle, M., Dutar, P., … Denis, I. (2013). Omega-3 fatty acids deficiency aggravates glutamatergic synapse and astroglial aging in the rat hippocampal CA1. Aging Cell, 12(1), 7684.Google Scholar
Lavoie, S., Berger, M., Schlögelhofer, M., Schäfer, M. R., Rice, S., Kim, S. W., … Amminger, G. P. (2017). Erythrocyte glutathione levels as long-term predictor of transition to psychosisTranslational Psychiatry, 7(3), e1064.Google Scholar
Leonard, B., & Maes, M. (2012). Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neuroscience and Biobehavioral Reviews, 36(2), 764785.Google Scholar
Lewinsohn, P. M., Rohde, P., Seeley, J. R., Klein, D. N., & Gotlib, I. H. (2000). Natural course of adolescent major depressive disorder in a community sample: predictors of recurrence in young adults. American Journal of Psychiatry, 157(10), 15841591.Google Scholar
Libov, I., Miodownik, C., Bersudsky, Y., Dwolatzky, T., Lerner, V. (2007). Efficacy of piracetam in the treatment of tardive dyskinesia in schizophrenic patients: a randomized, double-blind, placebo-controlled crossover study. Journal of Clinical Psychiatry, 68, 10311037.Google Scholar
Liu, Y. H., Zeng, F., Wang, Y. R., Zhou, H. D., Giunta, B., Tan, J., & Wang, Y. J. (2013). Immunity and Alzheimer’s disease: immunological perspectives on the development of novel therapies. Drug Discovery Today, 18(23–24), 12121220.Google Scholar
Loef, M., & Walach, H. (2013). The omega-6/omega-3 ratio and dementia or cognitive decline: a systematic review on human studies and biological evidence. Journal of Nutrition in Gerontology and Geriatrics, 32(1), 123.Google Scholar
Lourida, I., Soni, M., Thompson-Coon, J., Purandare, N., Lang, I. A., Ukoumunne, O. C., & Llewellyn, D. J. (2013). Mediterranean diet, cognitive function, and dementia: a systematic review. Epidemiology, 24(4), 479489.Google Scholar
Maes, M., Mihaylova, I., Kubera, M., & Ringel, K. (2012). Activation of cell-mediated immunity in depression: association with inflammation, melancholia, clinical staging and the fatigue and somatic symptom cluster of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 36(1), 169175.Google Scholar
Mahar, I., Bambico, F. R., Mechawar, N., & Nobrega, J. N. (2014). Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neuroscience and Biobehavioral Reviews, 38, 173192.Google Scholar
March, J., Silva, S., Petrycki, S., Curry, J., Wells, K., Fairbank, J., … Treatment for Adolescents with Depression Study Team. (2004). Fluoxetine, cognitive-behavioral therapy, and their combination for adolescents with depression: treatment for Adolescents with Depression Study (TADS) randomized controlled trial. JAMA, 292(7), 807820.Google Scholar
McAfoose, J., & Baune, B. T. (2009). Evidence for a cytokine model of cognitive function. Neuroscience and Biobehavioral Reviews, 33(3), 355366.Google Scholar
McGorry, P. D. (2007). Issues for DSM-V: clinical staging – a heuristic pathway to valid nosology and safer, more effective treatment in psychiatry. American Journal of Psychiatry, 164(6), 859860.Google Scholar
McGorry, P. D., Hickie, I. B., Yung, A. R., Pantelis, C., & Jackson, H. J. (2006). Clinical staging of psychiatric disorders: a heuristic framework for choosing earlier, safer and more effective interventions. Australian and New Zealand Journal of Psychiatry, 40(8), 616622.Google Scholar
McGorry, P., Keshavan, M., Goldstone, S., Amminger, P., Allott, K., Berk, M., … Hickie, I. (2014). Biomarkers and clinical staging in psychiatry. World Psychiatry, 13(3), 211223.Google Scholar
McGorry, P. D., Nelson, B., Goldstone, S., & Yung, A. R. (2010). Clinical staging: a heuristic and practical strategy for new research and better health and social outcomes for psychotic and related mood disorders. Canadian Journal of Psychiatry, 55(8), 486497.Google Scholar
Miller, A. H., Maletic, V., & Raison, C. L. (2009). Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biological Psychiatry, 65(9), 732741.Google Scholar
Miller, B. J., Buckley, P., Seabolt, W., Mellor, A., & Kirkpatrick, B. (2011). Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biological Psychiatry, 70(7), 663671.Google Scholar
Miller, B. J., Culpepper, N., & Rapaport, M. H. (2014). C-reactive protein levels in schizophrenia. Clinical Schizophrenia & Related Psychoses, 7, 223230.Google Scholar
Miller, G. E., & Cole, S. W. (2012). Clustering of depression and inflammation in adolescents previously exposed to childhood adversity. Biological Psychiatry, 72(1), 3440.Google Scholar
Mizwicki, M. T., Liu, G., Fiala, M., Magpantay, L., Sayre, J., Siani, A., … Teplow, D. B. (2013). 1alpha,25-dihydroxyvitamin D3 and resolvin D1 retune the balance between amyloid-beta phagocytosis and inflammation in Alzheimer’s disease patients. Journal of Alzheimer’s Disease, 34(1), 155170.Google Scholar
Monji, A., Kato, T., & Kanba, S. (2009). Cytokines and schizophrenia: microglia hypothesis of schizophrenia. Psychiatry and Clinical Neurosciences, 63(3), 257265.Google Scholar
Monsonego, A., Nemirovsky, A., & Harpaz, I. (2013). CD4 T cells in immunity and immunotherapy of Alzheimer’s disease. Immunology, 139(4), 438446.Google Scholar
Moylan, S., Berk, M., Dean, O. M., Samuni, Y., Williams, L. J., O’Neil, A., … Maes, M. (2014). Oxidative & nitrosative stress in depression: why so much stress? Neuroscience and Biobehavioral Reviews, 45C, 4662.Google Scholar
Moylan, S., Maes, M., Wray, N. R., & Berk, M. (2013). The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Molecular Psychiatry, 18(5), 595606.Google Scholar
Muller, N. (2013). The role of anti-inflammatory treatment in psychiatric disorders. Psychiatria Danubina, 25(3), 292298.Google Scholar
Muller, N., Myint, A. M., & Schwarz, M. J. (2011). Inflammatory biomarkers and depression. Neurotoxicity Research, 19(2), 308318.Google Scholar
Muller, N., Myint, A. M., & Schwarz, M. J. (2012). Inflammation in schizophrenia. Advances in Protein Chemistry and Structural Biology, 88, 4968.Google Scholar
Muller, N., Riedel, M., Scheppach, C., Brandstatter, B., Sokullu, S., Krampe, K., … Schwarz, M. J. (2002). Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. American Journal of Psychiatry, 159(6), 10291034.Google Scholar
Muller, N., Schwarz, M. J., Dehning, S., Douhe, A., Cerovecki, A., Goldstein-Muller, B., … Riedel, M. (2006). The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Molecular Psychiatry, 11(7), 680684.Google Scholar
Musil, R., Schwarz, M. J., Riedel, M., Dehning, S., Cerovecki, A., Spellmann, I., … Muller, N. (2011). Elevated macrophage migration inhibitory factor and decreased transforming growth factor-beta levels in major depression: no influence of celecoxib treatment. Journal of Affective Disorders, 134(1–3), 217225.Google Scholar
Naert, G., & Rivest, S. (2013). A deficiency in CCR2+ monocytes: the hidden side of Alzheimer’s disease. Journal of Molecular Cell Biology, 5(5), 284293.Google Scholar
Nagelhus, E. A., Amiry-Moghaddam, M., Bergersen, L. H., Bjaalie, J. G., Eriksson, J., Gundersen, V., … Tonjum, T. (2013). The glia doctrine: addressing the role of glial cells in healthy brain ageing. Mechanisms of Ageing and Development, 134(10), 449459.Google Scholar
Nery, F. G., Monkul, E. S., Hatch, J. P., Fonseca, M., Zunta-Soares, G. B., Frey, B. N., … Soares, J. C. (2008). Celecoxib as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: a double-blind, randomized, placebo-controlled study. Human Psychopharmacology, 23(2), 8794.Google Scholar
Norman, R. M., Manchanda, R., Malla, A. K., Windell, D., Harricharan, R., & Northcott, S. (2011). Symptom and functional outcomes for a 5 year early intervention program for psychoses. Schizophrenia Research, 129(2–3), 111115.Google Scholar
Orr, S. K., Trepanier, M. O., & Bazinet, R. P. (2013). n-3 polyunsaturated fatty acids in animal models with neuroinflammation. Prostaglandins, Leukotrienes and Essential Fatty Acids, 88(1), 97103.Google Scholar
Park, S. E., Dantzer, R., Kelley, K. W., & McCusker, R. H. (2011). Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. Journal of Neuroinflammation, 8, 12.Google Scholar
Pasco, J. A., Jacka, F. N., Williams, L. J., Henry, M. J., Nicholson, G. C., Kotowicz, M. A., & Berk, M. (2010). Clinical implications of the cytokine hypothesis of depression: the association between use of statins and aspirin and the risk of major depression. Psychotherapy and Psychosomatics, 79(5), 323325.Google Scholar
Ponomarev, E. D., Veremeyko, T., & Weiner, H. L. (2013). MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia, 61(1), 91103.Google Scholar
Raison, C. L., Rutherford, R. E., Woolwine, B. J., Shuo, C., Schettler, P., Drake, D. F., … Miller, A. H. (2012). A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. Archives of General Psychiatry, 70, 3141.Google Scholar
Ripke, S., Sanders, A. R., Kendler, K. S., Levinson, D. F., Sklar, P., Holmans, P. A., … Cichon, S. (2011). Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 43(10), 969976.Google Scholar
Saetre, P., Emilsson, L., Axelsson, E., Kreuger, J., Lindholm, E., & Jazin, E. (2007). Inflammation-related genes up-regulated in schizophrenia brains. BMC Psychiatry, 7, 46.Google Scholar
Schubert, K. O., Clark, S. R., & Baune, B. T. (2015). The use of clinical and biological characteristics to predict outcome following first episode psychosis. Australian and New Zealand Journal of Psychiatry, 49(1), 2435.Google Scholar
Shamir, E., Barak, Y., Shalman, I., Laudon, M., Zisapel, N., Tarrasch, R., … Weizman, R. (2001). Melatonin treatment for tardive dyskinesia: a double-blind, placebo-controlled, crossover study. Archives of General Psychiatry, 58, 10491052.Google Scholar
Sheline, Y. I., Gado, M. H., & Kraemer, H. C. (2003). Untreated depression and hippocampal volume loss. American Journal of Psychiatry, 160(8), 15161518.Google Scholar
Shelton, R. C. (2012). Does concomitant use of NSAIDs reduce the effectiveness of antidepressants? American Journal of Psychiatry, 169(10), 10121015.Google Scholar
Shi, J., Levinson, D. F., Duan, J., Sanders, A. R., Zheng, Y., Pe’er, I., … Gejman, P. V. (2009). Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature, 460, 753757.Google Scholar
Slavich, G. M., & Irwin, M. R. (2014). From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychological Bulletin, 140(3), 774815.Google Scholar
Stojanovic, A., Martorell, L., Montalvo, I., Ortega, L., Monseny, R., Vilella, E., & Labad, J. (2014). Increased serum interleukin-6 levels in early stages of psychosis: associations with at-risk mental states and the severity of psychotic symptoms. Psychoneuroendocrinology, 41, 2332.Google Scholar
Terrando, N., Monaco, C., Ma, D., Foxwell, B. M., Feldmann, M., & Maze, M. (2010). Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 2051820522.Google Scholar
Tobinick, E. L., & Gross, H. (2008). Rapid cognitive improvement in Alzheimer’s disease following perispinal etanercept administration. Journal of Neuroinflammation, 5, 2.Google Scholar
Torres, K. C., Santos, R. R., de Lima, G. S., Ferreira, R. O., Mapa, F. C., Pereira, P. A., … Romano-Silva, M. A. (2012). Decreased expression of CCL3 in monocytes and CCR5 in lymphocytes from frontotemporal dementia as compared with Alzheimer’s disease patients. Journal of Neuropsychiatry and Clinical Neurosciences, 24(3), E11E12.Google Scholar
Uher, R., Carver, S., Power, R. A., Mors, O., Maier, W., Rietschel, M., … McGuffin, P. (2012). Non-steroidal anti-inflammatory drugs and efficacy of antidepressants in major depressive disorder. Psychological Medicine, 42(10), 20272035.Google Scholar
Videbech, P., & Ravnkilde, B. (2004). Hippocampal volume and depression: a meta-analysis of MRI studies. American Journal of Psychiatry, 161(11), 19571966.Google Scholar
Warner-Schmidt, J. L., Vanover, K. E., Chen, E. Y., Marshall, J. J., & Greengard, P. (2011). Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 108(22), 92629267.Google Scholar
Wyss-Coray, T., & Rogers, J. (2012). Inflammation in Alzheimer disease: a brief review of the basic science and clinical literature. Cold Spring Harbor Perspectives in Medicine, 2(1), a006346.Google Scholar
Xu, M., & He, L. (2010). Convergent evidence shows a positive association of interleukin-1 gene complex locus with susceptibility to schizophrenia in the Caucasian population. Schizophrenia Research, 120(1–3), 131142.Google Scholar
Yao, J. K., & Keshavan, M. S. (2011). Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxidants & Redox Signaling, 15, 20112035.Google Scholar
Zhang, X. Y., Zhou, D. F., Cao, L. Y., Xu, C. Q., Chen, D. C., & Wu, G. Y. (2004). The effect of vitamin E treatment on tardive dyskinesia and blood superoxide dismutase: a double-blind placebo-controlled trial. Journal of Clinical Psychopharmacology, 24, 8386.Google Scholar

References

Amminger, G. P., Mechelli, A., Rice, S., Kim, S. W., Klier, C. M., McNamara, R. K., … Schafer, M. R. (2015a). Predictors of treatment response in young people at ultra-high risk for psychosis who received long-chain omega-3 fatty acids. Translational Psychiatry, 5, e495.Google Scholar
Amminger, G. P., Schafer, M. R., Papageorgiou, K., Klier, C. M., Cotton, S. M., Harrigan, S. M., … Berger, G. E. (2010). Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Archives of General Psychiatry, 67(2), 146154.Google Scholar
Amminger, G. P., Schafer, M. R., Schlogelhofer, M., Klier, C. M., & McGorry, P. D. (2015b). Longer-term outcome in the prevention of psychotic disorders by the Vienna omega-3 study. Nature Communications, 6, 7934.Google Scholar
Bechdolf, A., Veith, V., Schwarzer, D., Schormann, M., Stamm, E., Janssen, B., … Klosterkötter, J. (2005). Cognitive-behavioral therapy in the pre-psychotic phase: an exploratory study. Psychiatry Research, 136(2), 251255.Google Scholar
Berger, G. (2016). Comments on Bozzatello et al. Supplementation with omega-3 fatty acids in psychiatric disorders: a review of literature data. J. Clin. Med. 2016, 5, 67. Journal of Clinical Medicine, 5(8), 69.Google Scholar
Berger, G. E., Smesny, S., & Amminger, G. P. (2006). Bioactive lipids in schizophrenia. International Review of Psychiatry, 18(2), 8598.Google Scholar
Berger, G. E., Smesny, S., Schafer, M. R., Milleit, B., Langbein, K., Hipler, U. C., … Amminger, G. P. (2016). Niacin skin sensitivity is increased in adolescents at ultra-high risk for psychosis. PLoS One, 11(2), e0148429.Google Scholar
Berger, G. E., Wood, S., & McGorry, P. D. (2003). Incipient neurovulnerability and neuroprotection in early psychosis. Psychopharmacology Bulletin, 37(2), 79101.Google Scholar
Berger, G. E., Wood, S. J., Pantelis, C., Velakoulis, D., Wellard, R. M., & McGorry, P. D. (2002). Implications of lipid biology for the pathogenesis of schizophrenia. Australian and New Zealand Journal of Psychiatry, 36(3), 355366.Google Scholar
Berger, G. E., Wood, S. J., Ross, M., Hamer, C. A., Wellard, R. M., Pell, G., … McGorry, P. D. (2012). Neuroprotective effects of low-dose lithium in individuals at ultra-high risk for psychosis: a longitudinal MRI/MRS study. Current Pharmaceutical Design, 18(4), 570575.Google Scholar
Bergink, V., Gibney, S. M., & Drexhage, H. A. (2014). Autoimmunity, inflammation, and psychosis: a search for peripheral markers. Biological Psychiatry, 75(4), 324331.Google Scholar
Beumer, W., Drexhage, R. C., De Wit, H., Versnel, M. A., Drexhage, H. A., & Cohen, D. (2012a). Increased level of serum cytokines, chemokines and adipokines in patients with schizophrenia is associated with disease and metabolic syndrome. Psychoneuroendocrinology, 37(12), 19011911.Google Scholar
Beumer, W., Gibney, S. M., Drexhage, R. C., Pont-Lezica, L., Doorduin, J., Klein, H. C., … Drexhage, H. A. (2012b). The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. Journal of Leukocyte Biology, 92(5), 959975.Google Scholar
Bleuler, E. (1950). Dementia praecox or the group of schizophrenias (German edition published in 1911). New York: International Universities Press.Google Scholar
Cabrera, B., Bioque, M., Penades, R., Gonzalez-Pinto, A., Parellada, M., Bobes, J., … Bernardo, M. (2016). Cognition and psychopathology in first-episode psychosis: are they related to inflammation? Psychological Medicine, 46(10), 21332144.Google Scholar
Carcone, D., & Ruocco, A. C. (2017). Six years of research on the National Institute of Mental Health’s Research Domain Criteria (RDoC) Initiative: a systematic review. Frontiers in Cellular Neuroscience, 11, 46.Google Scholar
Deverman, B. E., & Patterson, P. H. (2009). Cytokines and CNS development. Neuron, 64(1), 6178.Google Scholar
Domenici, E., Willé, D. R., Tozzi, F., Prokopenko, I., Miller, S., McKeown, A., … Turck, C. W. (2010). Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections. PLoS One, 5(2), e9166.Google Scholar
Drexhage, R. C., Knijff, E. M., Padmos, R. C., Heul-Nieuwenhuijzen, L., Beumer, W., Versnel, M. A., & Drexhage, H. A. (2010). The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Review of Neurotherapeutics, 10(1), 5976.Google Scholar
Feinberg, I. (1982). Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research, 17(4), 319334.Google Scholar
Fusar-Poli, P., Frascarelli, M., Valmaggia, L., Byrne, M., Stahl, D., Rocchetti, M., … McGuire, P. (2015). Antidepressant, antipsychotic and psychological interventions in subjects at high clinical risk for psychosis: OASIS 6-year naturalistic study. Psychological Medicine, 45(6), 13271339.Google Scholar
García-Bueno, B., Bioque, M., Mac-Dowell, K. S., Barcones, M. F., Martínez-Cengotitabengoa, M., Pina-Camacho, L., … Lafuente, A. (2013). Pro-/anti-inflammatory dysregulation in patients with first episode of psychosis: toward an integrative inflammatory hypothesis of schizophrenia. Schizophrenia Bulletin, 40(2), 376387.Google Scholar
García-Bueno, B., Bioque, M., MacDowell, K. S., Santabárbara, J., Martínez-Cengotitabengoa, M., Moreno, C., … Barcones, M. F. (2015). Pro-/anti-inflammatory dysregulation in early psychosis: results from a longitudinal, case-control study. International Journal of Neuropsychopharmacology, 18(2), pyu037.Google Scholar
Gattaz, W. F., Kollisch, M., Thuren, T., Virtanen, J. A., & Kinnunen, P. K. (1987). Increased plasma phospholipase-A2 activity in schizophrenic patients: reduction after neuroleptic therapy. Biological Psychiatry, 22(4), 421426.Google Scholar
Gore, F. M., Bloem, P. J., Patton, G. C., Ferguson, J., Joseph, V., Coffey, C., … Mathers, C. D. (2011). Global burden of disease in young people aged 10–24 years: a systematic analysis. Lancet, 377(9783), 20932102.Google Scholar
Grosso, G., Galvano, F., Marventano, S., Malaguarnera, M., Bucolo, C., Drago, F., & Caraci, F. (2014). Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. Oxidative Medicine and Cellular Longevity, 2014, 313570.Google Scholar
Haggerty, R. J., & Mrazek, P. J. (1994). Can we prevent mental illness? Bulletin of the New York Academy of Medicine, 71(2), 300306.Google Scholar
Hamdy, F. C., Donovan, J. L., Lane, J. A., Mason, M., Metcalfe, C., Holding, P., … Neal, D. E. (2016). 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. New England Journal of Medicine, 375(15), 14151424.Google Scholar
Hong, H., Kim, B. S., & Im, H. I. (2016). Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. International Neurourology Journal, 20(Suppl. 1), S2S7.Google Scholar
Horrobin, D. F. (1977). Schizophrenia as a prostaglandin deficiency disease. Lancet, 1(8018), 936937.Google Scholar
Jeon, S. W., & Kim, Y. K. (2016). Neuroinflammation and cytokine abnormality in major depression: cause or consequence in that illness? World Journal of Psychiatry, 6(3), 283293.Google Scholar
Keshavan, M. S., Berger, G., Zipursky, R. B., Wood, S. J., & Pantelis, C. (2005). Neurobiology of early psychosis. British Journal of Psychiatry Supplement, 48, s8s18.Google Scholar
Kim, D. J., Kim, W., Yoon, S. J., Go, H. J., Choi, B. M., Jun, T. Y., & Kim, Y. K. (2001). Effect of risperidone on serum cytokines. International Journal of Neuroscience, 111(1–2), 1119.Google Scholar
Kim, Y. K., Myint, A. M., Verkerk, R., Scharpe, S., Steinbusch, H., & Leonard, B. (2009). Cytokine changes and tryptophan metabolites in medication-naive and medication-free schizophrenic patients. Neuropsychobiology, 59(2), 123129.Google Scholar
Kirkpatrick, B., & Miller, B. J. (2013). Inflammation and schizophrenia. Schizophrenia Bulletin, 39(6), 11741179.Google Scholar
Knorr, C., Marks, D., Gerstberger, R., Muhlradt, P. F., Roth, J., & Rummel, C. (2010). Peripheral and central cyclooxygenase (COX) products may contribute to the manifestation of brain-controlled sickness responses during localized inflammation induced by macrophage-activating lipopeptide-2 (MALP-2). Neuroscience Letters, 479(2), 107111.Google Scholar
Kruger, K., Bredehoft, J., Mooren, F. C., & Rummel, C. (2016). Different effects of strength and endurance exercise training on COX-2 and mPGES expression in mouse brain are independent of peripheral inflammation. Journal of Applied Physiology, 121(1), 248254.Google Scholar
Lasic, D., Bevanda, M., Bosnjak, N., Uglesic, B., Glavina, T., & Franic, T. (2014). Metabolic syndrome and inflammation markers in patients with schizophrenia and recurrent depressive disorder. Psychiatria Danubina, 26(3), 214219.Google Scholar
Law, M. H., Cotton, R. G., & Berger, G. E. (2006). The role of phospholipases A2 in schizophrenia. Molecular Psychiatry, 11(6), 547556.Google Scholar
Lehnardt, S. (2010). Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll‐like receptor‐mediated neuronal injury. Glia, 58(3), 253263.Google Scholar
Leza, J. C., García-Bueno, B., Bioque, M., Arango, C., Parellada, M., Do, K., … Bernardo, M. (2015). Inflammation in schizophrenia: a question of balance. Neuroscience and Biobehavioral Reviews, 55, 612626.Google Scholar
Martinez-Gras, I., Garcia-Sanchez, F., Guaza, C., Rodriguez-Jimenez, R., Andres-Esteban, E., Palomo, T., … Borrell, J. (2012). Altered immune function in unaffected first-degree biological relatives of schizophrenia patients. Psychiatry Research, 200(2–3), 10221025.Google Scholar
McGorry, P. D., Goldstone, S., Berger, G. E., Chen, E., de Haan, L., Hickie, I., … Amminger, G. P. (2016). The neurapro-e study: a multicentre RCT of omega-3 fatty acids and cognitive-behavioral case management for patients at ultra-high risk of psychosis. Paper presented at the 5th Biennial Schizophrenia International Research Society Conference, Florence, Italy.Google Scholar
McGorry, P., Keshavan, M., Goldstone, S., Amminger, P., Allott, K., Berk, M., … Hickie, I. (2014). Biomarkers and clinical staging in psychiatry. World Psychiatry, 13(3), 211223.Google Scholar
McGorry, P. D., Nelson, B., Markulev, C., Yuen, H. P., Schafer, M. R., Mossaheb, N., … Amminger, G. P. (2017). Effect of omega-3 polyunsaturated fatty acids in young people at ultrahigh risk for psychotic disorders: the NEURAPRO randomized clinical trial. JAMA Psychiatry, 74(1), 1927.Google Scholar
McGorry, P. D., Yung, A. R., Phillips, L. J., Yuen, H. P., Francey, S., Cosgrave, E. M., … Blair, A. (2002). Randomized controlled trial of interventions designed to reduce the risk of progression to first-episode psychosis in a clinical sample with subthreshold symptoms. Archives of General Psychiatry, 59(10), 921928.Google Scholar
Meyer, U., & Feldon, J. (2009). Neural basis of psychosis-related behaviour in the infection model of schizophrenia. Behavioural Brain Research, 204(2), 322334.Google Scholar
Michel, C., Ruhrmann, S., Schimmelmann, B. G., Klosterkötter, J., & Schultze-Lutter, F. (2018). Course of clinical high-risk states for psychosis beyond conversion. European Archives of Psychiatry and Clinical Neuroscience, 268(1), 3948.Google Scholar
Miller, B. J., Buckley, P., Seabolt, W., Mellor, A., & Kirkpatrick, B. (2011). Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biological Psychiatry, 70(7), 663671.Google Scholar
More, S. V., Kumar, H., Kim, I. S., Song, S. Y., & Choi, D. K. (2013). Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators of Inflammation, 2013, 952375.Google Scholar
Muller, N., Myint, A. M., Krause, D., Weidinger, E., & Schwarz, M. J. (2013). Anti-inflammatory treatment in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 42, 146153.Google Scholar
Muller, N., Weidinger, E., Leitner, B., & Schwarz, M. J. (2015). The role of inflammation in schizophrenia. Frontiers in Neuroscience, 9, 372.Google Scholar
Na, K. S., Jung, H. Y., & Kim, Y. K. (2014). The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 48, 277286.Google Scholar
Nadalin, S., Buretic-Tomljanovic, A., Rubesa, G., Tomljanovic, D., & Gudelj, L. (2010). Niacin skin flush test: a research tool for studying schizophrenia. Psychiatria Danubina, 22(1), 1427.Google Scholar
Nelson, B., Amminger, G. P., Yuen, H. P., Wallis, N. J. Kerr, M., Dixon, L., … Shumway, M. (2018). Staged treatment in early psychosis: a sequential multiple assignment randomised trial of interventions for ultra high risk of psychosis patients. Early Intervention in Psychiatry, 12(3), 292306.Google Scholar
Nelson, B., McGorry, P. D., Wichers, M., Wigman, J. T., & Hartmann, J. A. (2017). Moving from static to dynamic models of the onset of mental disorder: a review. JAMA Psychiatry, 74(5), 528534.Google Scholar
Parletta, N., Zarnowiecki, D., Cho, J., Wilson, A., Procter, N., Gordon, A., … Meyer, B. J. (2016). People with schizophrenia and depression have a low omega-3 index. Prostaglandins, Leukotrienes and Essential Fatty Acids, 110, 4247.Google Scholar
Rao, J. S., Kellom, M., Kim, H. W., Rapoport, S. I., & Reese, E. A. (2012). Neuroinflammation and synaptic loss. Neurochemical Research, 37(5), 903910.Google Scholar
Rapaport, M. H., Nierenberg, A. A., Schettler, P. J., Kinkead, B., Cardoos, A., Walker, R., & Mischoulon, D. (2016). Inflammation as a predictive biomarker for response to omega-3 fatty acids in major depressive disorder: a proof-of-concept study. Molecular Psychiatry, 21(1), 7179.Google Scholar
Schmitt, A., Maras, A., Petroianu, G., Braus, D. F., Scheuer, L., & Gattaz, W. F. (2001). Effects of antipsychotic treatment on membrane phospholipid metabolism in schizophrenia. Journal of Neural Transmission, 108(8–9), 10811091.Google Scholar
Schmitt, A., Martins-de-Souza, D., Akbarian, S., Cassoli, J. S., Ehrenreich, H., Fischer, A., … Gerlach, M. (2017). Consensus paper of the WFSBP Task Force on Biological Markers: criteria for biomarkers and endophenotypes of schizophrenia, part III – molecular mechanisms. World Journal of Biological Psychiatry, 18(5), 330356.Google Scholar
Sellgren, C. M., Kegel, M. E., Bergen, S. E., Ekman, C. J., Olsson, S., Larsson, M., … Landen, M. (2016). A genome-wide association study of kynurenic acid in cerebrospinal fluid: implications for psychosis and cognitive impairment in bipolar disorder. Molecular Psychiatry, 21(10), 13421350.Google Scholar
Shaftel, S. S., Griffin, W. S., & O’Banion, M. K. (2008). The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. Journal of Neuroinflammation, 5, 7.Google Scholar
Skvarc, D. R., Dean, O. M., Byrne, L. K., Gray, L., Lane, S., Lewis, M., … Marriott, A. (2017). The effect of N-acetylcysteine (NAC) on human cognition: a systematic review. Neuroscience and Biobehavioral Reviews, 78, 4456.Google Scholar
Smesny, S., Kinder, D., Willhardt, I., Rosburg, T., Lasch, J., Berger, G., & Sauer, H. (2005). Increased calcium-independent phospholipase A2 activity in first but not in multiepisode chronic schizophrenia. Biological Psychiatry, 57(4), 399405.Google Scholar
Smesny, S., Klemm, S., Stockebrand, M., Grunwald, S., Gerhard, U.-J., Rosburg, T., … Blanz, B. (2007). Endophenotype properties of niacin sensitivity as marker of impaired prostaglandin signalling in schizophrenia. Prostaglandins, Leukotrienes and Essential Fatty Acids, 77(2), 7985.Google Scholar
Smesny, S., Milleit, B., Nenadic, I., Preul, C., Kinder, D., Lasch, J., … Gaser, C. (2010). Phospholipase A2 activity is associated with structural brain changes in schizophrenia. NeuroImage, 52(4), 13141327.Google Scholar
Stevens, B., Allen, N. J., Vazquez, L. E., Howell, G. R., Christopherson, K. S., Nouri, N., … Stafford, B. (2007). The classical complement cascade mediates CNS synapse elimination. Cell, 131(6), 11641178.Google Scholar
Stevens, J. R. (1982). Neuropathology of schizophrenia. Archives of General Psychiatry, 39(10), 11311139.Google Scholar
Tadokoro, S., Kanahara, N., Kikuchi, S., Hashimoto, K., & Masaomi, I. (2011). Fluvoxamine may prevent onset of psychosis: a case report of a patient at ultra-high risk of psychotic disorder. Annals of General Psychiatry, 10, 26.Google Scholar
Tamargo, J., Rosano, G. M., Delpon, E., Ruilope, L., & Lopez-Sendon, J. (2017). Pharmacological reasons that may explain why randomized clinical trials have failed in acute heart failure syndromes. International Journal of Cardiology, 233, 111.Google Scholar
Wilt, T. J., Jones, K. M., Barry, M. J., Andriole, G. L., Culkin, D., Wheeler, T., … Brawer, M. K. (2017). Follow-up of prostatectomy versus observation for early prostate cancer. New England Journal of Medicine, 377(2), 132142.Google Scholar
Yung, A. R. (2017). Treatment of people at ultra‐high risk for psychosis. World Psychiatry, 16(2), 207208.Google Scholar

References

Ahveninen, J., Jaaskelainen, I. P., Osipova, D., Huttunen, M. O., Ilmoniemi, R. J., Kaprio, J., … Cannon, T. D. (2006). Inherited auditory-cortical dysfunction in twin pairs discordant for schizophrenia. Biological Psychiatry, 60(6), 612620.Google Scholar
Andersson, S., Barder, H. E., Hellvin, T., Løvdahl, H., & Malt, U. F. (2008). Neuropsychological and electrophysiological indices of neurocognitive dysfunction in bipolar II disorder. Bipolar Disorders, 10, 888899.Google Scholar
Atkinson, R. J., Fulham, W. R., Michie, P. T., Ward, P. B., Todd, J., Stain, H., … Schall, U. (2017). Electrophysiological, cognitive and clinical profiles of at-risk mental state: the longitudinal Minds in Transition (MinT) study. PLoS One, 12(2), e0171657.Google Scholar
Atkinson, R. J., Michie, P. T., & Schall, U. (2012). Duration mismatch negativity and P3a in first-episode psychosis and individuals at ultra-high risk of psychosis. Biological Psychiatry, 71(2), 98104.Google Scholar
Basar, E., Guntekin, B., Atagun, I., Turp Golbasi, B., Tulay, E., & Ozerdem, A. (2012). Brain’s alpha activity is highly reduced in euthymic bipolar disorder patients. Cognitive Neurodynamics, 6(1), 1120.Google Scholar
Basar, E., Schmiedt-Fehr, C., Mathes, B., Femir, B., Emek-Savas, D. D., Tulay, E., … Basar-Eroglu, C. (2016). What does the broken brain say to the neuroscientist? Oscillations and connectivity in schizophrenia, Alzheimer’s disease, and bipolar disorder. International Journal of Psychophysiology, 103, 135148.Google Scholar
Berk, M., Conus, P., Lucas, N., Hallam, K., Malhi, G. S., Dodd, S., … McGorry, P. (2007). Setting the stage: from prodrome to treatment resistance in bipolar disorder. Bipolar Disorders, 9(7), 671678.Google Scholar
Blackwood, D. H., St Clair, D. M., Muir, W. J., & Duffy, J. C. (1991). Auditory P300 and eye tracking dysfunction in schizophrenic pedigrees. Archives of General Psychiatry, 48(10), 899909.Google Scholar
Bodatsch, M., Ruhrmann, S., Wagner, M., Muller, R., Schultze-Lutter, F., Frommann, I., … Brockhaus-Dumke, A. (2011). Prediction of psychosis by mismatch negativity. Biological Psychiatry, 69(10), 959966.Google Scholar
Boutros, N. N., Arfken, C., Galderisi, S., Warrick, J., Pratt, G., & Iacono, W. (2008). The status of spectral EEG abnormality as a diagnostic test for schizophrenia. Schizophrenia Research, 99(1–3), 225237.Google Scholar
Bramon, E., McDonald, C., Croft, R. J., Landau, S., Filbey, F., Gruzelier, J. H., … Murray, R. M. (2005). Is the P300 wave an endophenotype for schizophrenia? A meta-analysis and a family study. NeuroImage, 27(4), 960968.Google Scholar
Bramon, E., Rabe-Hesketh, S., Sham, P., Murray, R. M., & Frangou, S. (2004). Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophrenia Research, 70(2–3), 315329.Google Scholar
Bramon, E., Shaikh, M., Broome, M., Lappin, J., Berge, D., Day, F., … McGuire, P. (2008). Abnormal P300 in people with high risk of developing psychosis. NeuroImage, 41(2), 553560.Google Scholar
Brockhaus-Dumke, A., Schultze-Lutter, F., Mueller, R., Tendolkar, I., Bechdolf, A., Pukrop, R., … Ruhrmann, S. (2008). Sensory gating in schizophrenia: P50 and N100 gating in antipsychotic-free subjects at risk, first-episode, and chronic patients. Biological Psychiatry, 64(5), 376384.Google Scholar
Brockhaus-Dumke, A., Tendolkar, I., Pukrop, R., Schultze-Lutter, F., Klosterkotter, J., & Ruhrmann, S. (2005). Impaired mismatch negativity generation in prodromal subjects and patients with schizophrenia. Schizophrenia Research, 73(2–3), 297310.Google Scholar
Brown, K. J., Gonsalvez, C. J., Harris, A. W. F., Williams, L. M., & Gordon, E. (2002). Target and non-target ERP disturbances in first episode vs. chronic schizophrenia. Clinical Neurophysiology, 113(11), 17541763.Google Scholar
Bruder, G. E., Tenke, C. E., Warner, V., Nomura, Y., Grillon, C., Hille, J., … Weissman, M. M. (2005). Electroencephalographic measures of regional hemispheric activity in offspring at risk for depressive disorders. Biological Psychiatry, 57(4), 328335.Google Scholar
Bruder, G. E., Tenke, C. E., Warner, V., & Weissman, M. M. (2007). Grandchildren at high and low risk for depression differ in EEG measures of regional brain asymmetry. Biological Psychiatry, 62(11), 13171323.Google Scholar
Bruder, G. E., Towey, J. P., Stewart, J. W., Friedman, D., Tenke, C., & Quitkin, F. M. (1991). Event-related potentials in depression: influence of task, stimulus hemifield and clinical features on P3 latency. Biological Psychiatry, 30(3), 233246.Google Scholar
Cadenhead, K. S., Light, G. A., Shafer, K. M., & Braff, D. L. (2005). P50 suppression in individuals at risk for schizophrenia: the convergence of clinical, familial, and vulnerability marker risk assessment. Biological Psychiatry, 57(12), 15041509.Google Scholar
Catts, S. V., Shelley, A. M., Ward, P. B., Liebert, B., McConaghy, N., Andrews, S., & Michie, P. T. (1995). Brain potential evidence for an auditory sensory memory deficit in schizophrenia. American Journal of Psychiatry, 152(2), 213219.Google Scholar
Chen, J., Zhang, Y., Wei, D., Wu, X., Fu, Q., Xu, F., … Zhang, Z. (2014). Neurophysiological handover from MMN to P3a in first-episode and recurrent major depression. Journal of Affective Disorders, 174C, 173179.Google Scholar
Chen, Y. H., Stone-Howell, B., Edgar, J. C., Huang, M., Wootton, C., Hunter, M. A., … Canive, J. M. (2016). Frontal slow-wave activity as a predictor of negative symptoms, cognition and functional capacity in schizophrenia. British Journal of Psychiatry, 208(2), 160167.Google Scholar
Cheng, C. H., Chan, P. Y., Liu, C. Y., & Hsu, S. C. (2016). Auditory sensory gating in patients with bipolar disorders: a meta-analysis. Journal of Affective Disorders, 203, 199203.Google Scholar
Chitty, K. M., Lagopoulos, J., Lee, R. S., Hickie, I. B., & Hermens, D. F. (2013). A systematic review and meta-analysis of proton magnetic resonance spectroscopy and mismatch negativity in bipolar disorder. European Neuropsychopharmacology, 23(11), 13481363.Google Scholar
Clementz, B. A., Sponheim, S. R., Iacono, W. G., & Beiser, M. (1994). Resting EEG in first-episode schizophrenia patients, bipolar psychosis patients, and their first-degree relatives. Psychophysiology, 31(5), 486494.Google Scholar
de Wilde, O. M., Bour, L. J., Dingemans, P. M., Koelman, J. H., Boeree, T., & Linszen, D. H. (2008). P300 deficits are present in young first-episode patients with schizophrenia and not in their healthy young siblings. Clinical Neurophysiology, 119(12), 27212726.Google Scholar
de Wilde, O. M., Bour, L. J., Dingemans, P. M., Koelman, J. H., & Linszen, D. H. (2007). Failure to find P50 suppression deficits in young first-episode patients with schizophrenia and clinically unaffected siblings. Schizophrenia Bulletin, 33(6), 13191323.Google Scholar
Demiralp, T., Ucok, A., Devrim, M., Isoglu-Alkac, U., Tecer, A., & Polich, J. (2002). N2 and P3 components of event-related potential in first-episode schizophrenic patients: scalp topography, medication, and latency effects. Psychiatry Research, 111(2–3), 167179.Google Scholar
Devrim-Ucok, M., Keskin-Ergen, H. Y., & Ucok, A. (2008a). P50 gating at acute and post-acute phases of first-episode schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(8), 19521956.Google Scholar
Devrim-Ucok, M., Keskin-Ergen, H. Y., & Ucok, A. (2008b). Mismatch negativity at acute and post-acute phases of first-episode schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 258(3), 179185.Google Scholar
Duncan, C. C., Barry, R. J., Connolly, J. F., Fischer, C., Michie, P. T., Naatanen, R., … Van Petten, C. (2009). Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clinical Neurophysiology, 120(11), 18831908.Google Scholar
Farzan, F., Barr, M. S., Levinson, A. J., Chen, R., Wong, W., Fitzgerald, P. B., & Daskalakis, Z. J. (2010). Evidence for gamma inhibition deficits in the dorsolateral prefrontal cortex of patients with schizophrenia. Brain, 133(Pt 5), 15051514.Google Scholar
Flynn, G., Alexander, D., Harris, A., Whitford, T., Wong, W., Galletly, C., … Williams, L. M. (2008). Increased absolute magnitude of gamma synchrony in first-episode psychosis. Schizophrenia Research, 105(1–3), 262271.Google Scholar
Frommann, I., Brinkmeyer, J., Ruhrmann, S., Hack, E., Brockhaus-Dumke, A., Bechdolf, A., … Wagner, M. (2008). Auditory P300 in individuals clinically at risk for psychosis. International Journal of Psychophysiology, 70(3), 192205.Google Scholar
Galderisi, S., Mucci, A., Volpe, U., & Boutros, N. (2009). Evidence-based medicine and electrophysiology in schizophrenia. Clinical EEG and Neuroscience, 40(2), 6277.Google Scholar
Gatt, J. M., Kuan, S. A., Dobson-Stone, C., Paul, R. H., Joffe, R. T., Kemp, A. H., … Williams, L. M. (2008). Association between BDNF Val66Met polymorphism and trait depression is mediated via resting EEG alpha band activity. Biological Psychology, 79(2), 275284.Google Scholar
Gattaz, W. F., Mayer, S., Ziegler, P., Platz, M., & Gasser, T. (1992). Hypofrontality on topographic EEG in schizophrenia: correlations with neuropsychological and psychopathological parameters. European Archives of Psychiatry and Clinical Neuroscience, 241(6), 328332.Google Scholar
Gerez, M., & Tello, A. (1995). Selected quantitative EEG (QEEG) and event-related potential (ERP) variables as discriminators for positive and negative schizophrenia. Biological Psychiatry, 38(1), 3449.Google Scholar
Gross, A., Joutsiniemi, S. L., Rimon, R., & Appelberg, B. (2006). Correlation of symptom clusters of schizophrenia with absolute powers of main frequency bands in quantitative EEG. Behavioral and Brain Functions, 2, 23.Google Scholar
Gschwandtner, U., Zimmermann, R., Pflueger, M. O., Riecher-Rossler, A., & Fuhr, P. (2009). Negative symptoms in neuroleptic-naive patients with first-episode psychosis correlate with QEEG parameters. Schizophrenia Research, 115(2–3), 231236.Google Scholar
Hall, M. H., Rijsdijk, F., Kalidindi, S., Schulze, K., Kravariti, E., Kane, F., … Murray, R. M. (2007a). Genetic overlap between bipolar illness and event-related potentials. Psychological Medicine, 37(5), 667678.Google Scholar
Hall, M. H., Rijsdijk, F., Picchioni, M., Schulze, K., Ettinger, U., Toulopoulou, T., … Sham, P. (2007b). Substantial shared genetic influences on schizophrenia and event-related potentials. American Journal of Psychiatry, 164(5), 804812.Google Scholar
Hall, M. H., Schulze, K., Rijsdijk, F., Kalidindi, S., McDonald, C., Bramon, E., … Sham, P. (2009). Are auditory P300 and duration MMN heritable and putative endophenotypes of psychotic bipolar disorder? A Maudsley Bipolar Twin and Family Study. Psychological Medicine, 39(8), 12771287.Google Scholar
He, W., Chai, H., Zheng, L., Yu, W., Chen, W., Li, J., & Wang, W. (2010). Mismatch negativity in treatment-resistant depression and borderline personality disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(2), 366371.Google Scholar
Hermens, D. F., Chitty, K. M., & Kaur, M. (2018). Mismatch negativity in bipolar disorder: a neurophysiological biomarker of intermediate effect? Schizophrenia Research, 191, 132139.Google Scholar
Hermens, D. F., Ward, P. B., Hodge, M. A., Kaur, M., Naismith, S. L., & Hickie, I. B. (2010). Impaired MMN/P3a complex in first-episode psychosis: cognitive and psychosocial associations. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(6), 822829.Google Scholar
Hetrick, S. E., Parker, A. G., Hickie, I. B., Purcell, R., Yung, A. R., & McGorry, P. D. (2008). Early identification and intervention in depressive disorders: towards a clinical staging model. Psychotherapy and Psychosomatics, 77(5), 263270.Google Scholar
Higuchi, Y., Seo, T., Miyanishi, T., Kawasaki, Y., Suzuki, M., & Sumiyoshi, T. (2014). Mismatch negativity and p3a/reorienting complex in subjects with schizophrenia or at-risk mental state. Frontiers in Behavioral Neuroscience, 8, 172.Google Scholar
Higuchi, Y., Sumiyoshi, T., Seo, T., Miyanishi, T., Kawasaki, Y., & Suzuki, M. (2013). Mismatch negativity and cognitive performance for the prediction of psychosis in subjects with at-risk mental state. PLoS One, 8(1), e54080.Google Scholar
Hirayasu, Y., Asato, N., Ohta, H., Hokama, H., Arakaki, H., & Ogura, C. (1998). Abnormalities of auditory event-related potentials in schizophrenia prior to treatment. Biological Psychiatry, 43, 244253.Google Scholar
Hong, X., Chan, R. C., Zhuang, X., Jiang, T., Wan, X., Wang, J., … Weng, B. (2009). Neuroleptic effects on P50 sensory gating in patients with first-episode never-medicated schizophrenia. Schizophrenia Research, 108(1–3), 151157.Google Scholar
Hsieh, M. H., Shan, J. C., Huang, W. L., Cheng, W. C., Chiu, M. J., Jaw, F. S., … Liu, C. C. (2012). Auditory event-related potential of subjects with suspected pre-psychotic state and first-episode psychosis. Schizophrenia Research, 140(1–3), 243249.Google Scholar
Hutchison, A. K., Hunter, S. K., Wagner, B. D., Calvin, E. A., Zerbe, G. O., & Ross, R. G. (2017). Diminished infant P50 sensory gating predicts increased 40-month-old attention, anxiety/depression, and externalizing symptoms. Journal of Attention Disorders, 21(3), 209218.Google Scholar
Jahshan, C., Cadenhead, K. S., Rissling, A. J., Kirihara, K., Braff, D. L., & Light, G. A. (2012a). Automatic sensory information processing abnormalities across the illness course of schizophrenia. Psychological Medicine, 42(1), 8597.Google Scholar
Jahshan, C., Wynn, J. K., Mathis, K. I., Altshuler, L. L., Glahn, D. C., & Green, M. F. (2012b). Cross-diagnostic comparison of duration mismatch negativity and P3a in bipolar disorder and schizophrenia. Bipolar Disorders, 14(3), 239248.Google Scholar
Javitt, D. C., Schroeder, C. E., Steinschneider, M., Arezzo, J. C., Ritter, W., & Vaughan, H. G. Jr. (1995). Cognitive event-related potentials in human and non-human primates: implications for the PCP/NMDA model of schizophrenia. Electroencephalography and Clinical Neurophysiology Supplement, 44, 161175.Google Scholar
Jeon, Y. W., & Polich, J. (2003). Meta-analysis of P300 and schizophrenia: patients, paradigms, and practical implications. Psychophysiology, 40(5), 684701.Google Scholar
Kahkonen, S., Yamashita, H., Rytsala, H., Suominen, K., Ahveninen, J., & Isometsa, E. (2007). Dysfunction in early auditory processing in major depressive disorder revealed by combined MEG and EEG. Journal of Psychiatry and Neuroscience, 32(5), 316322.Google Scholar
Kano, K., Nakamura, M., Matsuoka, T., Iida, H., & Nakajima, T. (1992). The topographical features of EEGs in patients with affective disorders. Electroencephalography and Clinical Neurophysiology, 83(2), 124129.Google Scholar
Kaur, M., Battisti, R. A., Lagopoulos, J., Ward, P. B., Hickie, I. B., & Hermens, D. F. (2012). Neurophysiological biomarkers support bipolar-spectrum disorders within psychosis cluster. Journal of Psychiatry and Neuroscience, 37(5), 313321.Google Scholar
Kaur, M., Battisti, R. A., Ward, P. B., Ahmed, A., Hickie, I. B., & Hermens, D. F. (2011). MMN/P3a deficits in first episode psychosis: comparing schizophrenia-spectrum and affective-spectrum subgroups. Schizophrenia Research, 130(1–3), 203209.Google Scholar
Kawakubo, Y., & Kasai, K. (2006). Support for an association between mismatch negativity and social functioning in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30(7), 13671368.Google Scholar
Kemp, A. H., Pe Benito, L., Quintana, D. S., Clark, C. R., McFarlane, A., Mayur, P., … Williams, L. M. (2010). Impact of depression heterogeneity on attention: an auditory oddball event related potential study. Journal of Affective Disorders, 123(1–3), 202207.Google Scholar
Kiang, M., Light, G. A., Prugh, J., Coulson, S., Braff, D. L., & Kutas, M. (2007). Cognitive, neurophysiological, and functional correlates of proverb interpretation abnormalities in schizophrenia. Journal of the International Neuropsychological Society, 13(4), 653663.Google Scholar
Kim, M., Lee, T. Y., Lee, S., Kim, S. N., & Kwon, J. S. (2015). Auditory P300 as a predictor of short-term prognosis in subjects at clinical high risk for psychosis. Schizophrenia Research, 165(2–3), 138144.CrossRefGoogle ScholarPubMed
Kuang, W., Tian, L., Yue, L., & Li, J. (2016). Effects of escitalopram with a Chinese traditional compound Jiuweizhenxin-keli on mismatch negativity and P50 in patients with major depressive disorders. Neuropsychiatric Disease and Treatment, 12, 19351941.Google ScholarPubMed
Lavoie, S., Jack, B. N., Griffiths, O., Ando, A., Amminger, P., Couroupis, A., … Whitford, T. J. (2018). Impaired mismatch negativity to frequency deviants in individuals at ultra-high risk for psychosis, and preliminary evidence for further impairment with transition to psychosis. Schizophrenia Research, 191, 95100.CrossRefGoogle ScholarPubMed
Lavoie, S., Murray, M. M., Deppen, P., Knyazeva, M. G., Berk, M., Boulat, O., … Do, K. Q. (2007). Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology, 33, 21872199.Google Scholar
Lavoie, S., Schafer, M. R., Whitford, T. J., Benninger, F., Feucht, M., Klier, C. M., … Amminger, G. P. (2012). Frontal delta power associated with negative symptoms in ultra-high risk individuals who transitioned to psychosis. Schizophrenia Research, 138, 206211.Google Scholar
Lee, K. H., Williams, L. M., Breakspear, M., & Gordon, E. (2003). Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Research Reviews, 41(1), 5778.Google Scholar
Leicht, G., Vauth, S., Polomac, N., Andreou, C., Rauh, J., Mussmann, M., … Mulert, C. (2016). EEG-informed fMRI reveals a disturbed gamma-band-specific network in subjects at high risk for psychosis. Schizophrenia Bulletin, 42(1), 239249.Google Scholar
Light, G. A., & Braff, D. L. (2005a). Mismatch negativity deficits are associated with poor functioning in schizophrenia patients. Archives of General Psychiatry, 62(2), 127136.Google Scholar
Light, G. A., & Braff, D. L. (2005b). Stability of mismatch negativity deficits and their relationship to functional impairments in chronic schizophrenia. American Journal of Psychiatry, 162(9), 17411743.Google Scholar
Magno, E., Yeap, S., Thakore, J. H., Garavan, H., De Sanctis, P., & Foxe, J. J. (2008). Are auditory-evoked frequency and duration mismatch negativity deficits endophenotypic for schizophrenia? High-density electrical mapping in clinically unaffected first-degree relatives and first-episode and chronic schizophrenia. Biological Psychiatry, 64(5), 385391.Google Scholar
Mathalon, D. H., Ford, J. M., Rosenbloom, M., & Pfefferbaum, A. (2000). P300 reduction and prolongation with illness duration in schizophrenia. Biological Psychiatry, 47, 413427.Google Scholar
McCarley, R. W., Salisbury, D. F., Hirayasu, Y., Yurgelun-Todd, D. A., Tohen, M., Zarate, C., … Shenton, M. E. (2002). Association between smaller left posterior superior temporal gyrus volume on magnetic resonance imaging and smaller left temporal P300 amplitude in first-episode schizophrenia. Archives of General Psychiatry, 59(4), 321331.Google Scholar
Moeini, M., Khaleghi, A., & Mohammadi, M. R. (2015). Characteristics of alpha band frequency in adolescents with bipolar II disorder: a resting-state QEEG study. Iranian Journal of Psychiatry, 10(1), 812.Google ScholarPubMed
Mondragon-Maya, A., Solis-Vivanco, R., Leon-Ortiz, P., Rodriguez-Agudelo, Y., Yanez-Tellez, G., Bernal-Hernandez, J., … de la Fuente-Sandoval, C. (2013). Reduced P3a amplitudes in antipsychotic naive first-episode psychosis patients and individuals at clinical high-risk for psychosis. Journal of Psychiatric Research, 47(6), 755761.Google Scholar
Morales-Munoz, I., Jurado-Barba, R., Fernandez-Guinea, S., Rodriguez-Jimenez, R., Jimenez-Arriero, M. A., Criado, J. R., & Rubio, G. (2016). Sensory gating deficits in first-episode psychosis: evidence from neurophysiology, psychophysiology, and neuropsychology. Journal of Nervous and Mental Disease, 204(12), 877884.Google Scholar
Myles-Worsley, M., Ord, L., Blailes, F., Ngiralmau, H., & Freedman, R. (2004). P50 sensory gating in adolescents from a Pacific Island isolate with elevated risk for schizophrenia. Biological Psychiatry, 55(7), 663667.Google Scholar
Naatanen, R., Kujala, T., & Winkler, I. (2011). Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology, 48(1), 422.Google Scholar
Naatanen, R., Shiga, T., Asano, S., & Yabe, H. (2015). Mismatch negativity (MMN) deficiency: a break-through biomarker in predicting psychosis onset. International Journal of Psychophysiology, 95(3), 338344.Google Scholar
Naismith, S. L., Mowszowski, L., Ward, P. B., Diamond, K., Paradise, M., Kaur, M., … Hermens, D. F. (2012). Reduced temporal mismatch negativity in late-life depression: an event-related potential index of cognitive deficit and functional disability? Journal of Affective Disorders, 138(1–2), 7178.Google Scholar
Narayanan, B., O’Neil, K., Berwise, C., Stevens, M. C., Calhoun, V. D., Clementz, B. A., … Pearlson, G. D. (2014). Resting state electroencephalogram oscillatory abnormalities in schizophrenia and psychotic bipolar patients and their relatives from the bipolar and schizophrenia network on intermediate phenotypes study. Biological Psychiatry, 76(6), 456465.Google Scholar
Nieman, D. H., Ruhrmann, S., Dragt, S., Soen, F., van Tricht, M. J., Koelman, J. H., … de Haan, L. (2014). Psychosis prediction: stratification of risk estimation with information-processing and premorbid functioning variables. Schizophrenia Bulletin, 40(6), 14821490.Google Scholar
O’Donnell, B. F., Faux, S. F., McCarley, R. W., Kimble, M. O., Salisbury, D. F., Nestor, P. G., … Shenton, M. E. (1995). Increased rate of P300 latency prolongation with age in schizophrenia: electrophysiological evidence for a neurodegenerative process. Archives of General Psychiatry, 52(7), 544549.Google Scholar
O’Donnell, B. F., Vohs, J. L., Hetrick, W. P., Carroll, C. A., & Shekhar, A. (2004). Auditory event-related potential abnormalities in bipolar disorder and schizophrenia. International Journal of Psychophysiology, 53(1), 4555.Google Scholar
Oades, R. D., Wild-Wall, N., Juran, S. A., Sachsse, J., Oknina, L. B., & Ropcke, B. (2006). Auditory change detection in schizophrenia: sources of activity, related neuropsychological function and symptoms in patients with a first episode in adolescence, and patients 14 years after an adolescent illness-onset. BMC Psychiatry, 6, 7.Google Scholar
Olbrich, S., & Arns, M. (2013). EEG biomarkers in major depressive disorder: discriminative power and prediction of treatment response. International Review of Psychiatry, 25(5), 604618.Google Scholar
Onitsuka, T., Oribe, N., & Kanba, S. (2013). Neurophysiological findings in patients with bipolar disorder. Supplements to Clinical Neurophysiology, 62, 197206.Google Scholar
Ozerdem, A., Guntekin, B., Tunca, Z., & Basar, E. (2008). Brain oscillatory responses in patients with bipolar disorder manic episode before and after valproate treatment. Brain Research, 1235, 98108.Google Scholar
Ozgurdal, S., Gudlowski, Y., Witthaus, H., Kawohl, W., Uhl, I., Hauser, M., … Juckel, G. (2008). Reduction of auditory event-related P300 amplitude in subjects with at-risk mental state for schizophrenia. Schizophrenia Research, 105(1–3), 272278.Google Scholar
Patterson, J. V., Hetrick, W. P., Boutros, N. N., Jin, Y., Sandman, C., Stern, H., … Bunney, W. E. Jr. (2008). P50 sensory gating ratios in schizophrenics and controls: a review and data analysis. Psychiatry Research, 158(2), 226247.Google Scholar
Perez, V. B., Roach, B. J., Woods, S. W., Srihari, V. H., McGlashan, T. H., Ford, J. M., & Mathalon, D. H. (2013). Early auditory gamma-band responses in patients at clinical high risk for schizophrenia. Supplements to Clinical Neurophysiology, 62, 147162.Google Scholar
Perez, V. B., Woods, S. W., Roach, B. J., Ford, J. M., McGlashan, T. H., Srihari, V. H., & Mathalon, D. H. (2014). Automatic auditory processing deficits in schizophrenia and clinical high-risk patients: forecasting psychosis risk with mismatch negativity. Biological Psychiatry, 75(6), 459469.Google Scholar
Pierson, A., Jouvent, R., Quintin, P., Perez-Diaz, F., & Leboyer, M. (2000). Information processing deficits in relatives of manic depressive patients. Psychological Medicine, 30(3), 545555.Google Scholar
Pollock, V. E., & Schneider, L. S. (1990). Quantitative, waking EEG research on depression. Biological Psychiatry, 27(7), 757780.Google Scholar
Qiao, Z., Yu, Y., Wang, L., Yang, X., Qiu, X., Zhang, C., … Yang, Y. (2013). Impaired pre-attentive change detection in major depressive disorder patients revealed by auditory mismatch negativity. Psychiatry Research, 211(1), 7884.Google Scholar
Ranlund, S., Nottage, J., Shaikh, M., Dutt, A., Constante, M., Walshe, M., … Bramon, E. (2014). Resting EEG in psychosis and at-risk populations: a possible endophenotype? Schizophrenia Research, 153(1–3), 96102.Google Scholar
Rasser, P. E., Schall, U., Todd, J., Michie, P. T., Ward, P. B., Johnston, P., … Thompson, P. M. (2011). Gray matter deficits, mismatch negativity, and outcomes in schizophrenia. Schizophrenia Bulletin, 37(1), 131140.Google Scholar
Renoult, L., Prevost, M., Brodeur, M., Lionnet, C., Joober, R., Malla, A., & Debruille, J. B. (2007). P300 asymmetry and positive symptom severity: a study in the early stage of a first episode of psychosis. Schizophrenia Research, 93(1–3), 366373.Google Scholar
Rieder, M. K., Rahm, B., Williams, J. D., & Kaiser, J. (2011). Human gamma-band activity and behavior. International Journal of Psychophysiology, 79(1), 3948.Google Scholar
Salisbury, D. F., Kuroki, N., Kasai, K., Shenton, M. E., & McCarley, R. W. (2007). Progressive and interrelated functional and structural evidence of post-onset brain reduction in schizophrenia. Archives of General Psychiatry, 64(5), 521529.Google Scholar
Salisbury, D. F., Shenton, M. E., Griggs, C. B., Bonner-Jackson, A., & McCarley, R. W. (2002). Mismatch negativity in chronic schizophrenia and first-episode schizophrenia. Archives of General Psychiatry, 59(8), 686694.CrossRefGoogle ScholarPubMed
Salisbury, D. F., Shenton, M. E., & McCarley, R. W. (1999). P300 topography differs in schizophrenia and manic psychosis. Biological Psychiatry, 45(1), 98106.Google Scholar
Sanchez-Morla, E. M., Garcia-Jimenez, M. A., Barabash, A., Martinez-Vizcaino, V., Mena, J., Cabranes-Diaz, J. A., … Santos, J. L. (2008). P50 sensory gating deficit is a common marker of vulnerability to bipolar disorder and schizophrenia. Acta Psychiatrica Scandinavica, 117(4), 313318.Google Scholar
Schlegel, S., Nieber, D., Herrmann, C., & Bakauski, E. (1991). Latencies of the P300 component of the auditory event-related potential in depression are related to the Bech–Rafaelsen Melancholia Scale but not to the Hamilton Rating Scale for Depression. Acta Psychiatrica Scandinavica, 83(6), 438440.Google Scholar
Schulze, K. K., Hall, M. H., McDonald, C., Marshall, N., Walshe, M., Murray, R. M., & Bramon, E. (2008). Auditory P300 in patients with bipolar disorder and their unaffected relatives. Bipolar Disorders, 10(3), 377386.Google Scholar
Shaikh, M., Valmaggia, L., Broome, M. R., Dutt, A., Lappin, J., Day, F., … Bramon, E. (2012). Reduced mismatch negativity predates the onset of psychosis. Schizophrenia Research, 134(1), 4248.Google Scholar
Shin, K. S., Kim, J. S., Kang, D. H., Koh, Y., Choi, J. S., O’Donnell, B. F., … Kwon, J. S. (2009). Pre-attentive auditory processing in ultra-high-risk for schizophrenia with magnetoencephalography. Biological Psychiatry, 65(12), 10711078.Google Scholar
Siegle, G. J., Condray, R., Thase, M. E., Keshavan, M., & Steinhauer, S. R. (2010). Sustained gamma-band EEG following negative words in depression and schizophrenia. International Journal of Psychophysiology, 75(2), 107118.CrossRefGoogle ScholarPubMed
Slewa-Younan, S., Gordon, E., Harris, A. W., Haig, A. R., Brown, K. J., Flor-Henry, P., & Williams, L. M. (2004). Sex differences in functional connectivity in first-episode and chronic schizophrenia patients. American Journal of Psychiatry, 161(9), 15951602.Google Scholar
Solis-Vivanco, R., Mondragon-Maya, A., Leon-Ortiz, P., Rodriguez-Agudelo, Y., Cadenhead, K. S., & de la Fuente-Sandoval, C. (2014). Mismatch negativity reduction in the left cortical regions in first-episode psychosis and in individuals at ultra high-risk for psychosis. Schizophrenia Research, 158(1–3), 5863.Google Scholar
Spencer, K. M., Salisbury, D. F., Shenton, M. E., & McCarley, R. W. (2008). Gamma-band auditory steady-state responses are impaired in first episode psychosis. Biological Psychiatry, 64(5), 369375.Google Scholar
Sponheim, S. R., Clementz, B. A., Iacono, W. G., & Beiser, M. (2000). Clinical and biological concomitants of resting state EEG power abnormalities in schizophrenia. Biological Psychiatry, 48(11), 10881097.Google Scholar
Strelets, V. B., Novototsky-Vlasov, V. Y., & Golikova, J. V. (2002). Cortical connectivity in high frequency beta-rhythm in schizophrenics with positive and negative symptoms. International Journal of Psychophysiology, 44, 101115.Google Scholar
Symond, M. P., Harris, A. W., Gordon, E., & Williams, L. M. (2005). ‘Gamma synchrony’ in first-episode schizophrenia: a disorder of temporal connectivity? American Journal of Psychiatry, 162(3), 459465.Google Scholar
Tada, M., Nagai, T., Kirihara, K., Koike, S., Suga, M., Araki, T., … Kasai, K. (2014). Differential alterations of auditory gamma oscillatory responses between pre-onset high-risk individuals and first-episode schizophrenia. Cerebral Cortex, 26(3), 10271035.Google Scholar
Takei, Y., Kumano, S., Hattori, S., Uehara, T., Kawakubo, Y., Kasai, K., … Mikuni, M. (2009). Preattentive dysfunction in major depression: a magnetoencephalography study using auditory mismatch negativity. Psychophysiology, 46(1), 5261.Google Scholar
Thibodeau, R., Jorgensen, R. S., & Kim, S. (2006). Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review. Journal of Abnormal Psychology, 115(4), 715729.Google Scholar
Todd, J., Michie, P. T., Schall, U., Karayanidis, F., Yabe, H., & Naatanen, R. (2007). Deviant matters: duration, frequency, and intensity deviants reveal different patterns of mismatch negativity reduction in early and late schizophrenia. Biological Psychiatry, 63(1), 5864.Google Scholar
Turetsky, B. I., Calkins, M. E., Light, G. A., Olincy, A., Radant, A. D., & Swerdlow, N. R. (2007). Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate measures. Schizophrenia Bulletin, 33(1), 6994.Google Scholar
Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155168.CrossRefGoogle ScholarPubMed
Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews Neuroscience, 11(2), 100113.Google Scholar
Umbricht, D. S., Bates, J. A., Lieberman, J. A., Kane, J. M., & Javitt, D. C. (2006). Electrophysiological indices of automatic and controlled auditory information processing in first-episode, recent-onset and chronic schizophrenia. Biological Psychiatry, 59(8), 762772.Google Scholar
Umbricht, D., Koller, R., Schmid, L., Skrabo, A., Grubel, C., Huber, T., & Stassen, H. (2003). How specific are deficits in mismatch negativity generation to schizophrenia? Biological Psychiatry, 53(12), 11201131.Google Scholar
Umbricht, D., Koller, R., Vollenweider, F. X., & Schmid, L. (2002). Mismatch negativity predicts psychotic experiences induced by NMDA receptor antagonist in healthy volunteers. Biological Psychiatry, 51(5), 400406.Google Scholar
Umbricht, D., & Krljes, S. (2005). Mismatch negativity in schizophrenia: a meta-analysis. Schizophrenia Bulletin, 76(1), 123.Google Scholar
Valkonen-Korhonen, M., Purhonen, M., Tarkka, I. M., Sipila, P., Partanen, J., Karhu, J., & Lehtonen, J. (2003). Altered auditory processing in acutely psychotic never-medicated first-episode patients. Cognitive Brain Research, 17(3), 747758.Google Scholar
van der Stelt, O., Lieberman, J. A., & Belger, A. (2005). Auditory P300 in high-risk, recent-onset and chronic schizophrenia. Schizophrenia Research, 77(2–3), 309320.Google Scholar
van Tricht, M. J., Nieman, D. H., Koelman, J. T., Mensink, A. J., Bour, L. J., van der Meer, J. N., … de Haan, L. (2015). Sensory gating in subjects at ultra high risk for developing a psychosis before and after a first psychotic episode. World Journal of Biological Psychiatry, 16(1), 1221.Google Scholar
Vandoolaeghe, E., van Hunsel, F., Nuyten, D., & Maes, M. (1998). Auditory event related potentials in major depression: prolonged P300 latency and increased P200 amplitude. Journal of Affective Disorders, 48(2–3), 105113.Google Scholar
Venables, N. C., Bernat, E. M., & Sponheim, S. R. (2009). Genetic and disorder-specific aspects of resting state EEG abnormalities in schizophrenia. Schizophrenia Bulletin, 35(4), 826839.CrossRefGoogle ScholarPubMed
Wang, J., Tang, Y., Li, C., Mecklinger, A., Xiao, Z., Zhang, M., … Li, H. (2009a). Decreased P300 current source density in drug-naive first episode schizophrenics revealed by high density recording. International Journal of Psychophysiology, 75(3), 249257.Google Scholar
Wang, Y., Fang, Y. R., Chen, X. S., Chen, J., Wu, Z. G., Yuan, C. M., … Cao, L. (2009b). A follow-up study on features of sensory gating P50 in treatment-resistant depression patients. Chinese Medical Journal, 122(24), 29562960.Google Scholar
Wynn, J. K., Sugar, C., Horan, W. P., Kern, R., & Green, M. F. (2010). Mismatch negativity, social cognition, and functioning in schizophrenia patients. Biological Psychiatry, 67(10), 940947.Google Scholar
Xiong, P., Zeng, Y., Zhu, Z., Tan, D., Xu, F., Lu, J., … Ma, M. (2010). Reduced NGF serum levels and abnormal P300 event-related potential in first episode schizophrenia. Schizophrenia Research, 119(1–3), 3439.Google Scholar
Zhang, Y., Hauser, U., Conty, C., Emrich, H. M., & Dietrich, D. E. (2007). Familial risk for depression and p3b component as a possible neurocognitive vulnerability marker. Neuropsychobiology, 55(1), 1420.Google Scholar
Zimmermann, R., Gschwandtner, U., Wilhelm, F. H., Pflueger, M. O., Riecher-Rossler, A., & Fuhr, P. (2010). EEG spectral power and negative symptoms in at-risk individuals predict transition to psychosis. Schizophrenia Research, 123(2–3), 208216.Google Scholar
Zoon, H. F., Veth, C. P., Arns, M., Drinkenburg, W. H., Talloen, W., Peeters, P. J., & Kenemans, J. L. (2013). EEG alpha power as an intermediate measure between brain-derived neurotrophic factor Val66Met and depression severity in patients with major depressive disorder. Journal of Clinical Neurophysiology, 30(3), 261267.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×