Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T22:24:48.987Z Has data issue: false hasContentIssue false

Chapter 6 - Neuroimaging and Staging

Do Disparate Mental Illnesses Have Distinct Neurobiological Trajectories?

from Section 2 - Progress with Clinical Staging

Published online by Cambridge University Press:  08 August 2019

Patrick D. McGorry
Affiliation:
University of Melbourne
Ian B. Hickie
Affiliation:
University of Sydney
Get access

Summary

Integration of brain structural information into prognostic and treatment formulation is key for achieving an all-encompassing biopsychosocial approach in psychiatry. Uncovering biological markers of specific mental illnesses, specific illness stages and of remission, may help further our understanding of the aetiology and precipitators of certain types of psychopathologies, identify central neurobiological processes as distinct from epiphenomena, validate boundaries of clinical groups, and potentially aid in predicting response to treatment. This book chapter reviewed the current structural neuroimaging evidence in three prominent mental illness domains: schizophrenia-spectrum, bipolar and depressive disorders. The large degree of overlap in abnormal neuropathology across the broad mental illness groups, which is no doubt partially due to within-group heterogeneity, makes the discovery of sets or networks of localized diagnosis-specific neural biomarkers unlikely. However, this is not to say that subtle distinctions in neural abnormalities do not exist, but rather challenges the usefulness of traditional diagnostic categories in the context of brain imaging being applied within a clinical staging model. A focus on identifying and characterising microscale circuits that are dysfunctional and which map onto symptomatology in a transdiagnostic manner, may have the greatest implications for clinical translation in the near future.

Type
Chapter
Information
Clinical Staging in Psychiatry
Making Diagnosis Work for Research and Treatment
, pp. 103 - 139
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, C. M., DelBello, M. P., Jarvis, K., Levine, A., Adams, J., & Strakowski, S. M. (2007). Voxel-based study of structural changes in first-episode patients with bipolar disorder. Biological Psychiatry, 61(6), 776781.Google Scholar
Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 11(2), 231239.Google Scholar
Adriano, F., Caltagirone, C., & Spalletta, G. (2012). Hippocampal volume reduction in first-episode and chronic schizophrenia: a review and meta-analysis. Neuroscientist, 18(2), 180200.Google Scholar
Andreasen, N. C., Carpenter, W. T. Jr, Kane, J. M., Lasser, R. A., Marder, S. R., & Weinberger, D. R. (2005). Remission in schizophrenia: proposed criteria and rationale for consensus. American Journal of Psychiatry, 162(3), 441449.CrossRefGoogle ScholarPubMed
Andreasen, N. C., Liu, D., Ziebell, S., Vora, A., & Ho, B. C. (2013). Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: a prospective longitudinal MRI study. American Journal of Psychiatry, 170(6), 609615.CrossRefGoogle ScholarPubMed
Andreasen, N. C., Nopoulos, P., Magnotta, V., Pierson, R., Ziebell, S., & Ho, B. C. (2011). Progressive brain change in schizophrenia: a prospective longitudinal study of first-episode schizophrenia. Biological Psychiatry, 70(7), 672679.Google Scholar
Ansell, B. R., Dwyer, D. B., Wood, S. J., Bora, E., Brewer, W. J., Proffitt, T. M., … Pantelis, C. (2014). Divergent effects of first-generation and second-generation antipsychotics on cortical thickness in first-episode psychosis. Psychological Medicine, 45, 515527.Google Scholar
Arnone, D., Cavanagh, J., Gerber, D., Lawrie, S. M., Ebmeier, K. P., & McIntosh, A. M. (2009). Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. British Journal of Psychiatry, 195(3), 194201.Google Scholar
Atmaca, M., Ozdemir, H., & Yildirim, H. (2007). Corpus callosum areas in first-episode patients with bipolar disorder. Psychological Medicine, 37(5), 699704.Google Scholar
Bechdolf, A., Wood, S. J., Nelson, B., Velakoulis, D., Yucel, M., Takahashi, T., … McGorry, P. D. (2012). Amygdala and insula volumes prior to illness onset in bipolar disorder: a magnetic resonance imaging study. Psychiatry Research, 201(1), 3439.CrossRefGoogle ScholarPubMed
Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561571.CrossRefGoogle ScholarPubMed
Beyer, J. L., Young, R., Kuchibhatla, M., & Krishnan, K. R. (2009). Hyperintense MRI lesions in bipolar disorder: a meta-analysis and review. International Review of Psychiatry, 21(4), 394409.CrossRefGoogle ScholarPubMed
Bitter, S. M., Mills, N. P., Adler, C. M., Strakowski, S. M., & DelBello, M. P. (2011). Progression of amygdala volumetric abnormalities in adolescents after their first manic episode. Journal of the American Academy of Child and Adolescent Psychiatry, 50(10), 10171026.CrossRefGoogle ScholarPubMed
Bloemen, O. J., de Koning, M. B., Schmitz, N., Nieman, D. H., Becker, H. E., de Haan, L., … van Amelsvoort, T. A. (2010). White-matter markers for psychosis in a prospective ultra-high-risk cohort. Psychological Medicine, 40(8), 12971304.Google Scholar
Bois, C., Whalley, H. C., McIntosh, A. M., & Lawrie, S. M. (2015). Structural magnetic resonance imaging markers of susceptibility and transition to schizophrenia: a review of familial and clinical high risk population studies. Journal of Psychopharmacology, 29(2), 144154.Google Scholar
Boos, H. B., Aleman, A., Cahn, W., Hulshoff Pol, H., & Kahn, R. S. (2007). Brain volumes in relatives of patients with schizophrenia: a meta-analysis. Archives of General Psychiatry, 64(3), 297304.CrossRefGoogle ScholarPubMed
Bora, E., Fornito, A., Yucel, M., & Pantelis, C. (2010). Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biological Psychiatry, 67(11), 10971105.Google Scholar
Bora, E., Harrison, B. J., Davey, C. G., Yucel, M., & Pantelis, C. (2012). Meta-analysis of volumetric abnormalities in cortico-striatal-pallidal-thalamic circuits in major depressive disorder. Psychological Medicine, 42(4), 671681.Google Scholar
Borgwardt, S. J., Riecher-Rossler, A., Dazzan, P., Chitnis, X., Aston, J., Drewe, M., … McGuire, P. K. (2007). Regional gray matter volume abnormalities in the at risk mental state. Biological Psychiatry, 61(10), 11481156.Google Scholar
Buschlen, J., Berger, G. E., Borgwardt, S. J., Aston, J., Gschwandtner, U., Pflueger, M. O., … Riecher-Rossler, A. (2011). Pituitary volume increase during emerging psychosis. Schizophrenia Research, 125(1), 4148.Google Scholar
Campbell, S., & MacQueen, G. (2004). The role of the hippocampus in the pathophysiology of major depression. Journal of Psychiatry and Neuroscience, 29(6), 417426.Google Scholar
Cannon, T. D., Chung, Y., He, G., Sun, D., Jacobson, A., van Erp, T. G., … Heinssen, R. (2015). Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biological Psychiatry, 77(2), 147157.Google Scholar
Cardoso de Almeida, J. R., & Phillips, M. L. (2013). Distinguishing between unipolar depression and bipolar depression: current and future clinical and neuroimaging perspectives. Biological Psychiatry, 73(2), 111118.Google Scholar
Carletti, F., Woolley, J. B., Bhattacharyya, S., Perez-Iglesias, R., Fusar Poli, P., Valmaggia, L., … McGuire, P. K. (2012). Alterations in white matter evident before the onset of psychosis. Schizophrenia Bulletin, 38(6), 11701179.Google Scholar
Carpenter, W. T., Bustillo, J. R., Thaker, G. K., van Os, J., Krueger, R. F., & Green, M. J. (2009). The psychoses: cluster 3 of the proposed meta-structure for DSM-V and ICD-11. Psychological Medicine, 39(12), 20252042.Google Scholar
Chan, R. C., Di, X., McAlonan, G. M., & Gong, Q. Y. (2011). Brain anatomical abnormalities in high-risk individuals, first-episode, and chronic schizophrenia: an activation likelihood estimation meta-analysis of illness progression. Schizophrenia Bulletin, 37(1), 177188.CrossRefGoogle ScholarPubMed
Chen, Z., Cui, L., Li, M., Jiang, L., Deng, W., Ma, X., … Li, T. (2012). Voxel based morphometric and diffusion tensor imaging analysis in male bipolar patients with first-episode mania. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 36(2), 231238.CrossRefGoogle ScholarPubMed
Clark, S. R., Schubert, K. O., & Baune, B. T. (2015). Towards indicated prevention of psychosis: using probabilistic assessments of transition risk in psychosis prodrome. Journal of Neural Transmission, 122(1), 155169.CrossRefGoogle ScholarPubMed
Cocchi, L., Harding, I. H., Lord, A., Pantelis, C., Yucel, M., & Zalesky, A. (2014). Disruption of structure–function coupling in the schizophrenia connectome. NeuroImage: Clinical, 4, 779787.CrossRefGoogle ScholarPubMed
Cole, J., Costafreda, S. G., McGuffin, P., & Fu, C. H. (2011). Hippocampal atrophy in first episode depression: a meta-analysis of magnetic resonance imaging studies. Journal of Affective Disorders, 134(1–3), 483487.Google Scholar
Cooper, D., Barker, V., Radua, J., Fusar-Poli, P., & Lawrie, S. M. (2014). Multimodal voxel-based meta-analysis of structural and functional magnetic resonance imaging studies in those at elevated genetic risk of developing schizophrenia. Psychiatry Research, 221(1), 6977.Google Scholar
Cropley, V. L., & Pantelis, C. (2014). Using longitudinal imaging to map the ‘relapse signature’ of schizophrenia and other psychoses. Epidemiology and Psychiatric Sciences, 23(3), 219225.CrossRefGoogle ScholarPubMed
Davidson, L. L., & Heinrichs, R. W. (2003). Quantification of frontal and temporal lobe brain-imaging findings in schizophrenia: a meta-analysis. Psychiatry Research, 122(2), 6987.Google Scholar
Dazzan, P., Soulsby, B., Mechelli, A., Wood, S. J., Velakoulis, D., Phillips, L. J., … Pantelis, C. (2012). Volumetric abnormalities predating the onset of schizophrenia and affective psychoses: an MRI study in subjects at ultrahigh risk of psychosis. Schizophrenia Bulletin, 38(5), 10831091.CrossRefGoogle ScholarPubMed
De Peri, L., Crescini, A., Deste, G., Fusar-Poli, P., Sacchetti, E., & Vita, A. (2012). Brain structural abnormalities at the onset of schizophrenia and bipolar disorder: a meta-analysis of controlled magnetic resonance imaging studies. Current Pharmaceutical Design, 18(4), 486494.CrossRefGoogle ScholarPubMed
Demjaha, A., Egerton, A., Murray, R. M., Kapur, S., Howes, O. D., Stone, J. M., & McGuire, P. K. (2014). Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biological Psychiatry, 75(5), e11e13.Google Scholar
Desmyter, S., van Heeringen, C., & Audenaert, K. (2011). Structural and functional neuroimaging studies of the suicidal brain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(4), 796808.Google Scholar
Di, X., Chan, R. C., & Gong, Q. Y. (2009). White matter reduction in patients with schizophrenia as revealed by voxel-based morphometry: an activation likelihood estimation meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33(8), 13901394.Google Scholar
Du, M. Y., Wu, Q. Z., Yue, Q., Li, J., Liao, Y., Kuang, W. H., … Gong, Q. Y. (2012). Voxelwise meta-analysis of gray matter reduction in major depressive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 36(1), 1116.CrossRefGoogle ScholarPubMed
Ducharme, S., Albaugh, M. D., Hudziak, J. J., Botteron, K. N., Nguyen, T. V., Truong, C., … Karama, S. (2014). Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults. Cerebral Cortex, 24(11), 29412950.Google Scholar
Duman, R. S., Nakagawa, S., & Malberg, J. (2001). Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology, 25(6), 836844.CrossRefGoogle ScholarPubMed
Eack, S. M., Hogarty, G. E., Cho, R. Y., Prasad, K. M., Greenwald, D. P., Hogarty, S. S., & Keshavan, M. S. (2010). Neuroprotective effects of cognitive enhancement therapy against gray matter loss in early schizophrenia: results from a 2-year randomized controlled trial. Archives of General Psychiatry, 67(7), 674682.CrossRefGoogle ScholarPubMed
Eichenbaum, H. (2004). Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron, 44(1), 109120.CrossRefGoogle ScholarPubMed
Ellison-Wright, I., & Bullmore, E. (2009). Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophrenia Research, 108(1–3), 310.Google Scholar
Ellison-Wright, I., & Bullmore, E. (2010). Anatomy of bipolar disorder and schizophrenia: a meta-analysis. Schizophrenia Research, 117(1), 112.Google Scholar
Ellison-Wright, I., Glahn, D. C., Laird, A. R., Thelen, S. M., & Bullmore, E. (2008). The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. American Journal of Psychiatry, 165(8), 10151023.CrossRefGoogle ScholarPubMed
Eng, G. K., Sim, K., & Chen, S. H. (2015). Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: an integrative review. Neuroscience and Biobehavioral Reviews, 52, 233257.Google Scholar
Farrow, T. F., Whitford, T. J., Williams, L. M., Gomes, L., & Harris, A. W. (2005). Diagnosis-related regional gray matter loss over two years in first episode schizophrenia and bipolar disorder. Biological Psychiatry, 58(9), 713723.CrossRefGoogle ScholarPubMed
Fontenelle, L. F., Oostermeijer, S., Harrison, B. J., Pantelis, C., & Yucel, M. (2011). Obsessive-compulsive disorder, impulse control disorders and drug addiction: common features and potential treatments. Drugs, 71(7), 827840.CrossRefGoogle ScholarPubMed
Fornito, A., Yucel, M., Patti, J., Wood, S. J., & Pantelis, C. (2009). Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophrenia Research, 108(1–3), 104113.Google Scholar
Fornito, A., Yung, A. R., Wood, S. J., Phillips, L. J., Nelson, B., Cotton, S., … Yucel, M. (2008). Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals. Biological Psychiatry, 64(9), 758765.CrossRefGoogle ScholarPubMed
Frangou, S. (2014). A systems neuroscience perspective of schizophrenia and bipolar disorder. Schizophrenia Bulletin, 40(3), 523531.Google Scholar
Frank, E., Nimgaonkar, V. L., Phillips, M. L., & Kupfer, D. J. (2015). All the world’s a (clinical) stage: rethinking bipolar disorder from a longitudinal perspective. Molecular Psychiatry, 20(1), 2331.Google Scholar
Fu, C. H., Steiner, H., & Costafreda, S. G. (2013). Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiology of Disease, 52, 7583.CrossRefGoogle ScholarPubMed
Fujino, J., Yamasaki, N., Miyata, J., Sasaki, H., Matsukawa, N., Takemura, A., … Murai, T. (2015). Anterior cingulate volume predicts response to cognitive behavioral therapy in major depressive disorder. Journal of Affective Disorders, 174, 397399.Google Scholar
Fung, G., Cheung, C., Chen, E., Lam, C., Chiu, C., Law, C. W., … Chua, S. E. (2014). MRI predicts remission at 1 year in first-episode schizophrenia in females with larger striato-thalamic volumes. Neuropsychobiology, 69(4), 243248.Google Scholar
Fusar-Poli, P., Crossley, N., Woolley, J., Carletti, F., Perez-Iglesias, R., Broome, M., … McGuire, P. (2011). White matter alterations related to P300 abnormalities in individuals at high risk for psychosis: an MRI-EEG study. Journal of Psychiatry and Neuroscience, 36(4), 239248.Google Scholar
Fusar-Poli, P., Howes, O., Bechdolf, A., & Borgwardt, S. (2012a). Mapping vulnerability to bipolar disorder: a systematic review and meta-analysis of neuroimaging studies. Journal of Psychiatry and Neuroscience, 37(3), 170184.Google Scholar
Fusar-Poli, P., Radua, J., McGuire, P., & Borgwardt, S. (2012b). Neuroanatomical maps of psychosis onset: voxel-wise meta-analysis of antipsychotic-naive VBM studies. Schizophrenia Bulletin, 38(6), 12971307.Google Scholar
Fusar-Poli, P., Smieskova, R., Kempton, M. J., Ho, B. C., Andreasen, N. C., & Borgwardt, S. (2013). Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies. Neuroscience and Biobehavioral Reviews, 37(8), 16801691.Google Scholar
Fusar-Poli, P., Smieskova, R., Serafini, G., Politi, P., & Borgwardt, S. (2014). Neuroanatomical markers of genetic liability to psychosis and first episode psychosis: a voxelwise meta-analytical comparison. World Journal of Biological Psychiatry, 15(3), 219228.Google Scholar
Garner, B., Pariante, C. M., Wood, S. J., Velakoulis, D., Phillips, L., Soulsby, B., … Pantelis, C. (2005). Pituitary volume predicts future transition to psychosis in individuals at ultra-high risk of developing psychosis. Biological Psychiatry, 58(5), 417423.Google Scholar
Gogtay, N., Vyas, N. S., Testa, R., Wood, S. J., & Pantelis, C. (2011). Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophrenia Bulletin, 37(3), 504513.Google Scholar
Gupta, C. N., Calhoun, V. D., Rachakonda, S., Chen, J., Patel, V., Liu, J., … Turner, J. A. (2015). Patterns of gray matter abnormalities in schizophrenia based on an international mega-analysis. Schizophrenia Bulletin, 41(5), 11331142.CrossRefGoogle Scholar
Hahn, C., Lim, H. K., & Lee, C. U. (2014). Neuroimaging findings in late-onset schizophrenia and bipolar disorder. Journal of Geriatric Psychiatry and Neurology, 27(1), 5662.CrossRefGoogle ScholarPubMed
Haijma, S. V., Van Haren, N., Cahn, W., Koolschijn, P. C., Hulshoff Pol, H. E., & Kahn, R. S. (2013). Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophrenia Bulletin, 39(5), 11291138.Google Scholar
Hajek, T., Kopecek, M., Hoschl, C., & Alda, M. (2012). Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis. Journal of Psychiatry and Neuroscience, 37(5), 333343.Google Scholar
Hajek, T., Kopecek, M., Kozeny, J., Gunde, E., Alda, M., & Hoschl, C. (2009). Amygdala volumes in mood disorders: meta-analysis of magnetic resonance volumetry studies. Journal of Affective Disorders, 115(3), 395410.Google Scholar
Han, K. M., Choi, S., Jung, J., Na, K. S., Yoon, H. K., Lee, M. S., & Ham, B. J. (2014). Cortical thickness, cortical and subcortical volume, and white matter integrity in patients with their first episode of major depression. Journal of Affective Disorders, 155, 4248.Google Scholar
Heinze, K., Reniers, R. L., Nelson, B., Yung, A. R., Lin, A., Harrison, B. J., … Wood, S. J. (2015). Discrete alterations of brain network structural covariance in individuals at ultra-high risk for psychosis. Biological Psychiatry, 77(11), 989996.Google Scholar
Hibar, D. P., Westlye, L. T., van Erp, T. G., Rasmussen, J., Leonardo, C. D., Faskowitz, J., … Andreassen, O. A. (2016). Subcortical volumetric abnormalities in bipolar disorder. Molecular Psychiatry, 21(12), 17101716.CrossRefGoogle ScholarPubMed
Hickie, I. B., Scott, E. M., Hermens, D. F., Naismith, S. L., Guastella, A. J., Kaur, M., … McGorry, P. D. (2013). Applying clinical staging to young people who present for mental health care. Early Intervention in Psychiatry, 7(1), 3143.Google Scholar
Hikosaka, O. (2010). The habenula: from stress evasion to value-based decision-making. Nature Reviews Neuroscience, 11(7), 503513.Google Scholar
Hirschfeld, R. M., Lewis, L., & Vornik, L. A. (2003). Perceptions and impact of bipolar disorder: how far have we really come? Results of the national depressive and manic-depressive association 2000 survey of individuals with bipolar disorder. Journal of Clinical Psychiatry, 64(2), 161174.Google Scholar
Ho, B. C., Andreasen, N. C., Ziebell, S., Pierson, R., & Magnotta, V. (2011). Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Archives of General Psychiatry, 68(2), 128137.Google Scholar
Houenou, J., Frommberger, J., Carde, S., Glasbrenner, M., Diener, C., Leboyer, M., & Wessa, M. (2011). Neuroimaging-based markers of bipolar disorder: evidence from two meta-analyses. Journal of Affective Disorders, 132(3), 344355.Google Scholar
Hulshoff Pol, H., & Bullmore, E. (2013). Neural networks in psychiatry. European Neuropsychopharmacology, 23(1), 16.CrossRefGoogle ScholarPubMed
Ide, S., Kakeda, S., Watanabe, K., Yoshimura, R., Abe, O., Hayashi, K., … Korogi, Y. (2015). Relationship between a BDNF gene polymorphism and the brain volume in treatment-naive patients with major depressive disorder: a VBM analysis of brain MRI. Psychiatry Research, 233(2), 120124.Google Scholar
Ivleva, E. I., Morris, D. W., Moates, A. F., Suppes, T., Thaker, G. K., & Tamminga, C. A. (2010). Genetics and intermediate phenotypes of the schizophrenia–bipolar disorder boundary. Neuroscience and Biobehavioral Reviews, 34(6), 897921.Google Scholar
Jenkins, L. M., Barba, A., Campbell, M., Lamar, M., Shankman, S. A., Leow, A. D., … Langenecker, S. A. (2016). Shared white matter alterations across emotional disorders: a voxel-based meta-analysis of fractional anisotropy. NeuroImage: Clinical, 12, 10221034.Google Scholar
Jiang, J., Zhao, Y. J., Hu, X. Y., Du, M. Y., Chen, Z. Q., Wu, M., … Gong, Q. Y. (2017). Microstructural brain abnormalities in medication-free patients with major depressive disorder: a systematic review and meta-analysis of diffusion tensor imaging. Journal of Psychiatry and Neuroscience, 42(3), 150163.Google Scholar
Johnstone, E. C., Crow, T. J., Frith, C. D., Husband, J., & Kreel, L. (1976). Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet, 2(7992), 924926.Google Scholar
Judd, L. L., Akiskal, H. S., Schettler, P. J., Coryell, W., Endicott, J., Maser, J. D., … Keller, M. B. (2003). A prospective investigation of the natural history of the long-term weekly symptomatic status of bipolar II disorder. Archives of General Psychiatry, 60(3), 261269.CrossRefGoogle ScholarPubMed
Judd, L. L., Akiskal, H. S., Schettler, P. J., Endicott, J., Maser, J., Solomon, D. A., … Keller, M. B. (2002). The long-term natural history of the weekly symptomatic status of bipolar I disorder. Archives of General Psychiatry, 59(6), 530537.Google Scholar
Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science (4th ed.). New York: McGraw-Hill Health Professions Division.Google Scholar
Kasai, K., Shenton, M. E., Salisbury, D. F., Hirayasu, Y., Lee, C. U., Ciszewski, A. A., … McCarley, R. W. (2003). Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. American Journal of Psychiatry, 160(1), 156164.Google Scholar
Katagiri, N., Pantelis, C., Nemoto, T., Zalesky, A., Hori, M., Shimoji, K., … Mizuno, M. (2015). A longitudinal study investigating sub-threshold symptoms and white matter changes in individuals with an ‘at risk mental state’ (ARMS). Schizophrenia Research, 162(1–3), 713.Google Scholar
Kelly, P. A., Viding, E., Wallace, G. L., Schaer, M., De Brito, S. A., Robustelli, B., & McCrory, E. J. (2013). Cortical thickness, surface area, and gyrification abnormalities in children exposed to maltreatment: neural markers of vulnerability? Biological Psychiatry, 74(11), 845852.Google Scholar
Kempton, M. J., Geddes, J. R., Ettinger, U., Williams, S. C., & Grasby, P. M. (2008). Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Archives of General Psychiatry, 65(9), 10171032.Google Scholar
Kempton, M. J., & McGuire, P. (2015). How can neuroimaging facilitate the diagnosis and stratification of patients with psychosis? European Neuropsychopharmacology, 25(5), 725732.Google Scholar
Kempton, M. J., Salvador, Z., Munafo, M. R., Geddes, J. R., Simmons, A., Frangou, S., & Williams, S. C. (2011). Structural neuroimaging studies in major depressive disorder: meta-analysis and comparison with bipolar disorder. Archives of General Psychiatry, 68(7), 675690.Google Scholar
Kempton, M. J., Stahl, D., Williams, S. C., & DeLisi, L. E. (2010). Progressive lateral ventricular enlargement in schizophrenia: a meta-analysis of longitudinal MRI studies. Schizophrenia Research, 120(1–3), 5462.Google Scholar
Keshavan, M. S., Eack, S. M., Wojtalik, J. A., Prasad, K. M., Francis, A. N., Bhojraj, T. S., … Hogarty, S. S. (2011). A broad cortical reserve accelerates response to cognitive enhancement therapy in early course schizophrenia. Schizophrenia Research, 130(1–3), 123129.Google Scholar
Klauser, P., Zhou, J., Lim, J. K., Poh, J. S., Zheng, H., Tng, H. Y., … Chee, M. W. (2015). Lack of evidence for regional brain volume or cortical thickness abnormalities in youths at clinical high risk for psychosis: findings from the Longitudinal Youth at Risk Study. Schizophrenia Bulletin, 41, 12851293.Google Scholar
Kloppel, S., Abdulkadir, A., Jack, C. R. Jr, Koutsouleris, N., Mourao-Miranda, J., & Vemuri, P. (2012). Diagnostic neuroimaging across diseases. NeuroImage, 61(2), 457463.Google Scholar
Koo, M. S., Levitt, J. J., Salisbury, D. F., Nakamura, M., Shenton, M. E., & McCarley, R. W. (2008). A cross-sectional and longitudinal magnetic resonance imaging study of cingulate gyrus gray matter volume abnormalities in first-episode schizophrenia and first-episode affective psychosis. Archives of General Psychiatry, 65(7), 746760.Google Scholar
Koolschijn, P. C., van Haren, N. E., Lensvelt-Mulders, G. J., Hulshoff Pol, H. E., & Kahn, R. S. (2009). Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Human Brain Mapping, 30(11), 37193735.Google Scholar
Koutsouleris, N., Meisenzahl, E. M., Davatzikos, C., Bottlender, R., Frodl, T., Scheuerecker, J., … Gaser, C. (2009). Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Archives of General Psychiatry, 66(7), 700712.Google Scholar
Kozicky, J. M., Ha, T. H., Torres, I. J., Bond, D. J., Honer, W. G., Lam, R. W., & Yatham, L. N. (2013). Relationship between frontostriatal morphology and executive function deficits in bipolar I disorder following a first manic episode: data from the Systematic Treatment Optimization Program for Early Mania (STOP-EM). Bipolar Disorders, 15(6), 657668.Google Scholar
Lagopoulos, J., Hermens, D. F., Hatton, S. N., Battisti, R. A., Tobias-Webb, J., White, D., … Hickie, I. B. (2013). Microstructural white matter changes are correlated with the stage of psychiatric illness. Translational Psychiatry, 3, e248.Google Scholar
Lagopoulos, J., Hermens, D. F., Naismith, S. L., Scott, E. M., & Hickie, I. B. (2012). Frontal lobe changes occur early in the course of affective disorders in young people. BMC Psychiatry, 12, 4.Google Scholar
Lai, C. H. (2013). Gray matter volume in major depressive disorder: a meta-analysis of voxel-based morphometry studies. Psychiatry Research, 211(1), 3746.Google Scholar
Lai, C. H., & Wu, Y. T. (2015). The gray matter alterations in major depressive disorder and panic disorder: putative differences in the pathogenesis. Journal of Affective Disorders, 186, 16.Google Scholar
Lesh, T. A., Tanase, C., Geib, B. R., Niendam, T. A., Yoon, J. H., Minzenberg, M. J., … Carter, C. S. (2015). A multimodal analysis of antipsychotic effects on brain structure and function in first-episode schizophrenia. JAMA Psychiatry, 72(3), 226234.CrossRefGoogle ScholarPubMed
Liao, Y., Huang, X., Wu, Q., Yang, C., Kuang, W., Du, M., … Gong, Q. (2013). Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. Journal of Psychiatry and Neuroscience, 38(1), 4956.Google Scholar
Lim, C. S., Baldessarini, R. J., Vieta, E., Yucel, M., Bora, E., & Sim, K. (2013). Longitudinal neuroimaging and neuropsychological changes in bipolar disorder patients: review of the evidence. Neuroscience and Biobehavioral Reviews, 37(3), 418435.Google Scholar
Lin, A., Reniers, R. L., & Wood, S. J. (2013). Clinical staging in severe mental disorder: evidence from neurocognition and neuroimaging. British Journal of Psychiatry Supplement, 54, s11s17.Google Scholar
Long, Z., Duan, X., Wang, Y., Liu, F., Zeng, L., Zhao, J. P., & Chen, H. (2015). Disrupted structural connectivity network in treatment-naive depressionProgress in Neuro-Psychopharmacology and Biological Psychiatry56, 1826.CrossRefGoogle ScholarPubMed
Lorenzetti, V., Solowij, N., Whittle, S., Fornito, A., Lubman, D. I., Pantelis, C., & Yucel, M. (2015). Gross morphological brain changes with chronic, heavy cannabis use. British Journal of Psychiatry, 206(1), 7778.Google Scholar
Lyoo, I. K., Lee, H. K., Jung, J. H., Noam, G. G., & Renshaw, P. F. (2002). White matter hyperintensities on magnetic resonance imaging of the brain in children with psychiatric disorders. Comprehensive Psychiatry, 43(5), 361368.CrossRefGoogle ScholarPubMed
McDonald, C., Zanelli, J., Rabe-Hesketh, S., Ellison-Wright, I., Sham, P., Kalidindi, S., … Kennedy, N. (2004). Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder. Biological Psychiatry, 56(6), 411417.Google Scholar
McGorry, P. D. (2014). Beyond psychosis risk: early clinical phenotypes in mental disorder and the subthreshold pathway to safe, timely and effective care. Psychopathology, 47(5), 285286.Google Scholar
McGorry, P., Keshavan, M., Goldstone, S., Amminger, P., Allott, K., Berk, M., … Hickie, I. (2014). Biomarkers and clinical staging in psychiatry. World Psychiatry, 13(3), 211223.Google Scholar
McGorry, P. D., Purcell, R., Hickie, I. B., Yung, A. R., Pantelis, C., & Jackson, H. J. (2007). Clinical staging: a heuristic model for psychiatry and youth mental health. Medical Journal of Australia, 187(7 Suppl.), S40S42.Google Scholar
McIntosh, A. M., Owens, D. C., Moorhead, W. J., Whalley, H. C., Stanfield, A. C., Hall, J., … Lawrie, S. M. (2011). Longitudinal volume reductions in people at high genetic risk of schizophrenia as they develop psychosis. Biological Psychiatry, 69(10), 953958.Google Scholar
Mills, N. P., Delbello, M. P., Adler, C. M., & Strakowski, S. M. (2005). MRI analysis of cerebellar vermal abnormalities in bipolar disorder. American Journal of Psychiatry, 162(8), 15301532.Google Scholar
Mittal, V. A., Dean, D. J., Bernard, J. A., Orr, J. M., Pelletier-Baldelli, A., Carol, E. E., … Millman, Z. B. (2014). Neurological soft signs predict abnormal cerebellar-thalamic tract development and negative symptoms in adolescents at high risk for psychosis: a longitudinal perspective. Schizophrenia Bulletin, 40(6), 12041215.Google Scholar
Moore, G. J., Bebchuk, J. M., Wilds, I. B., Chen, G., & Menji, H. K. (2000). Lithium-induced increase in human brain grey matter. Lancet356(9237), 12411242.Google Scholar
Moore, M. T., Nathan, D., Elliott, A. R., & Laubach, C. (1935). Encephalographic studies in mental disease: an analysis of 152 cases. American Journal of Psychiatry, 92, 4367.Google Scholar
Mueser, K. T., & McGurk, S. R. (2004). Schizophrenia. Lancet, 363(9426), 20632072.Google Scholar
Munn, M. A., Alexopoulos, J., Nishino, T., Babb, C. M., Flake, L. A., Singer, T., … Botteron, K. N. (2007). Amygdala volume analysis in female twins with major depression. Biological Psychiatry, 62(5), 415422.CrossRefGoogle ScholarPubMed
Nakamura, M., Salisbury, D. F., Hirayasu, Y., Bouix, S., Pohl, K. M., Yoshida, T., … McCarley, R. W. (2007). Neocortical gray matter volume in first-episode schizophrenia and first-episode affective psychosis: a cross-sectional and longitudinal MRI study. Biological Psychiatry, 62(7), 773783.Google Scholar
Nelson, B., Yuen, H. P., Wood, S. J., Lin, A., Spiliotacopoulos, D., Bruxner, A., … Yung, A. R. (2013). Long-term follow-up of a group at ultra high risk (‘prodromal’) for psychosis: the PACE 400 study. JAMA Psychiatry, 70(8), 793802.Google Scholar
Nelson, M. D., Saykin, A. J., Flashman, L. A., & Riordan, H. J. (1998). Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Archives of General Psychiatry, 55(5), 433440.Google Scholar
Nordholm, D., Krogh, J., Mondelli, V., Dazzan, P., Pariante, C., & Nordentoft, M. (2013). Pituitary gland volume in patients with schizophrenia, subjects at ultra high-risk of developing psychosis and healthy controls: a systematic review and meta-analysis. Psychoneuroendocrinology, 38(11), 23942404.Google Scholar
Olabi, B., Ellison-Wright, I., McIntosh, A. M., Wood, S. J., Bullmore, E., & Lawrie, S. M. (2011). Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biological Psychiatry, 70(1), 8896.Google Scholar
Orru, G., Pettersson-Yeo, W., Marquand, A. F., Sartori, G., & Mechelli, A. (2012). Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neuroscience and Biobehavioral Reviews, 36(4), 11401152.Google Scholar
Paillere Martinot, M. L., Lemaitre, H., Artiges, E., Miranda, R., Goodman, R., Penttila, J., … Martinot, J. L. (2014). White-matter microstructure and gray-matter volumes in adolescents with subthreshold bipolar symptoms. Molecular Psychiatry, 19(4), 462470.Google Scholar
Pajonk, F. G., Wobrock, T., Gruber, O., Scherk, H., Berner, D., Kaizl, I., … Falkai, P. (2010). Hippocampal plasticity in response to exercise in schizophrenia. Archives of General Psychiatry, 67(2), 133143.Google Scholar
Palaniyappan, L., Marques, T. R., Taylor, H., Handley, R., Mondelli, V., Bonaccorso, S., … Dazzan, P. (2013). Cortical folding defects as markers of poor treatment response in first-episode psychosis. JAMA Psychiatry, 70(10), 10311040.Google Scholar
Pantelis, C., Velakoulis, D., McGorry, P. D., Wood, S. J., Suckling, J., Phillips, L. J., … McGuire, P. K. (2003). Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet, 361(9354), 281288.Google Scholar
Pantelis, C., Wannan, C., Bartholomeusz, C. F., Allott, K., & McGorry, P. (2015). Cognitive intervention in early psychosis: preserving abilities versus remediating deficits. Current Opinion in Behavioral Sciences, 4, 6372.Google Scholar
Pantelis, C., Yucel, M., Bora, E., Fornito, A., Testa, R., Brewer, W. J., … Wood, S. J. (2009). Neurobiological markers of illness onset in psychosis and schizophrenia: the search for a moving target. Neuropsychology Review, 19(3), 385398.Google Scholar
Pantelis, C., Yucel, M., Wood, S. J., Brewer, W. J., Fornito, A., Berger, G., … Velakoulis, D. (2008). Neurobiological endophenotypes of psychosis and schizophrenia: are there biological markers of illness onset? In Jackson, H. J. & McGorry, P. (Eds), Recognition and management of early psychosis: a preventative approach (2nd ed.). Cambridge: Cambridge University Press pp. 6180.Google Scholar
Pantelis, C., Yucel, M., Wood, S. J., Velakoulis, D., Sun, D., Berger, G., … McGorry, P. D. (2005). Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophrenia Bulletin, 31(3), 672696.Google Scholar
Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9(2), 6068.Google Scholar
Peterson, B. S., Warner, V., Bansal, R., Zhu, H., Hao, X., Liu, J., … Weissman, M. M. (2009). Cortical thinning in persons at increased familial risk for major depression. Proceedings of the National Academy of Sciences of the United States of America, 106(15), 62736278.Google Scholar
Pfeifer, J. C., Welge, J., Strakowski, S. M., Adler, C. M., & DelBello, M. P. (2008). Meta-analysis of amygdala volumes in children and adolescents with bipolar disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 47(11), 12891298.Google Scholar
Phillips, L. J., Velakoulis, D., Pantelis, C., Wood, S., Yuen, H. P., Yung, A. R., … McGorry, P. D. (2002). Non-reduction in hippocampal volume is associated with higher risk of psychosis. Schizophrenia Research, 58(2–3), 145158.Google Scholar
Qiu, L., Lui, S., Kuang, W., Huang, X., Li, J., Li, J., … Gong, Q. (2014). Regional increases of cortical thickness in untreated, first-episode major depressive disorder. Translational Psychiatry, 4, e378.Google Scholar
Radua, J., Borgwardt, S., Crescini, A., Mataix-Cols, D., Meyer-Lindenberg, A., McGuire, P. K., & Fusar-Poli, P. (2012). Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication. Neuroscience and Biobehavioral Reviews, 36(10), 23252333.Google Scholar
Radua, J., & Mataix-Cols, D. (2009). Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. British Journal of Psychiatry, 195(5), 393402.Google Scholar
Rao, U., Chen, L. A., Bidesi, A. S., Shad, M. U., Thomas, M. A., & Hammen, C. L. (2010). Hippocampal changes associated with early-life adversity and vulnerability to depression. Biological Psychiatry, 67(4), 357364.Google Scholar
Rasetti, R., & Weinberger, D. R. (2011). Intermediate phenotypes in psychiatric disorders. Current Opinion in Genetics and Development, 21(3), 340348.Google Scholar
Rosso, I. M., Killgore, W. D., Cintron, C. M., Gruber, S. A., Tohen, M., & Yurgelun-Todd, D. A. (2007). Reduced amygdala volumes in first-episode bipolar disorder and correlation with cerebral white matter. Biological Psychiatry, 61(6), 743749.Google Scholar
Sachdev, P., Wen, W., Chen, X., & Brodaty, H. (2007). Progression of white matter hyperintensities in elderly individuals over 3 years. Neurology, 68(3), 214222.Google Scholar
Sacher, J., Neumann, J., Funfstuck, T., Soliman, A., Villringer, A., & Schroeter, M. L. (2012). Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. Journal of Affective Disorders, 140(2), 142148.Google Scholar
Scarr, E., Cowie, T. F., Kanellakis, S., Sundram, S., Pantelis, C., & Dean, B. (2009). Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia. Molecular Psychiatry, 14(11), 10171023.Google Scholar
Schmaal, L., Hibar, D. P., Samann, P. G., Hall, G. B., Baune, B. T., Jahanshad, N., … Veltman, D. J. (2017). Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Molecular Psychiatry, 22, 900909.Google Scholar
Schmaal, L., Veltman, D. J., van Erp, T. G., Samann, P. G., Frodl, T., Jahanshad, N., … Hibar, D. P. (2016). Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Molecular Psychiatry, 21, 806812.Google Scholar
Schnack, H. G., Nieuwenhuis, M., van Haren, N. E., Abramovic, L., Scheewe, T. W., Brouwer, R. M., … Kahn, R. S. (2014). Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. NeuroImage, 84, 299306.Google Scholar
Selvaraj, S., Arnone, D., Job, D., Stanfield, A., Farrow, T. F., Nugent, A. C., … McIntosh, A. M. (2012). Grey matter differences in bipolar disorder: a meta-analysis of voxel-based morphometry studies. Bipolar Disorders, 14(2), 135145.Google Scholar
Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., … Wise, S. P. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28(14), 35863594.Google Scholar
Shenton, M. E., Dickey, C. C., Frumin, M., & McCarley, R. W. (2001). A review of MRI findings in schizophrenia. Schizophrenia Research, 49(1–2), 152.Google Scholar
Shepherd, A. M., Laurens, K. R., Matheson, S. L., Carr, V. J., & Green, M. J. (2012). Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. Neuroscience and Biobehavioral Reviews, 36(4), 13421356.Google Scholar
Simon, A. E., Borgwardt, S., Riecher-Rossler, A., Velthorst, E., de Haan, L., & Fusar-Poli, P. (2013). Moving beyond transition outcomes: meta-analysis of remission rates in individuals at high clinical risk for psychosis. Psychiatry Research, 209(3), 266272.Google Scholar
Smieskova, R., Fusar-Poli, P., Allen, P., Bendfeldt, K., Stieglitz, R. D., Drewe, J., … Borgwardt, S. J. (2010). Neuroimaging predictors of transition to psychosis: a systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 34(8), 12071222.Google Scholar
Spalletta, G., Piras, F., Caltagirone, C., & Fagioli, S. (2014). Hippocampal multimodal structural changes and subclinical depression in healthy individuals. Journal of Affective Disorders, 152154, 105112.Google Scholar
Steen, R. G., Mull, C., McClure, R., Hamer, R. M., & Lieberman, J. A. (2006). Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. British Journal of Psychiatry, 188, 510518.Google Scholar
Sun, D., Phillips, L., Velakoulis, D., Yung, A., McGorry, P. D., Wood, S. J., … Pantelis, C. (2009a). Progressive brain structural changes mapped as psychosis develops in ‘at risk’ individuals. Schizophrenia Research, 108(1–3), 8592.Google Scholar
Sun, D., Stuart, G. W., Jenkinson, M., Wood, S. J., McGorry, P. D., Velakoulis, D., … Pantelis, C. (2009b). Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Molecular Psychiatry, 14(10), 976986.Google Scholar
Takahashi, T., Wood, S. J., Soulsby, B., McGorry, P. D., Tanino, R., Suzuki, M., … Pantelis, C. (2009a). Follow-up MRI study of the insular cortex in first-episode psychosis and chronic schizophrenia. Schizophrenia Research, 108(1–3), 4956.Google Scholar
Takahashi, T., Wood, S. J., Yung, A. R., Phillips, L. J., Soulsby, B., McGorry, P. D., … Pantelis, C. (2009b). Insular cortex gray matter changes in individuals at ultra-high-risk of developing psychosis. Schizophrenia Research, 111(1–3), 94102.Google Scholar
Takahashi, T., Wood, S. J., Yung, A. R., Soulsby, B., McGorry, P. D., Suzuki, M., … Pantelis, C. (2009c). Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis. Archives of General Psychiatry, 66(4), 366376.Google Scholar
Takahashi, T., Wood, S. J., Yung, A. R., Walterfang, M., Phillips, L. J., Soulsby, B., … Pantelis, C. (2010). Superior temporal gyrus volume in antipsychotic-naive people at risk of psychosis. British Journal of Psychiatry, 196(3), 206211.Google Scholar
Theodoridou, A., Heekeren, K., Dvorsky, D., Metzler, S., Franscini, M., Haker, H., … Rossler, W. (2014). Early recognition of high risk of bipolar disorder and psychosis: an overview of the ZInEP ‘early recognition’ study. Frontiers in Public Health, 2, 166.CrossRefGoogle ScholarPubMed
van Erp, T. G., Hibar, D. P., Rasmussen, J. M., Glahn, D. C., Pearlson, G. D., Andreassen, O. A., … Turner, J. A. (2016). Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Molecular Psychiatry, 21(4), 547553.Google Scholar
Velakoulis, D., Wood, S. J., Wong, M. T., McGorry, P. D., Yung, A., Phillips, L., … Pantelis, C. (2006). Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Archives of General Psychiatry, 63(2), 139149.Google Scholar
Vita, A., & de Peri, L. (2007). Hippocampal and amygdala volume reductions in first-episode schizophrenia. British Journal of Psychiatry, 190, 271.Google Scholar
Vita, A., de Peri, L., Deste, G., & Sacchetti, E. (2012). Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Translational Psychiatry, 2, e190.Google Scholar
Vita, A., de Peri, L., & Sacchetti, E. (2009). Gray matter, white matter, brain, and intracranial volumes in first-episode bipolar disorder: a meta-analysis of magnetic resonance imaging studies. Bipolar Disorders, 11(8), 807814.CrossRefGoogle ScholarPubMed
Vita, A., de Peri, L., Silenzi, C., & Dieci, M. (2006). Brain morphology in first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance imaging studies. Schizophrenia Research, 82(1), 7588.Google Scholar
Wall, P. M., & Messier, C. (2001). The hippocampal formation: orbitomedial prefrontal cortex circuit in the attentional control of active memory. Behavioural Brain Research, 127(1–2), 99117.Google Scholar
Walter, A., Studerus, E., Smieskova, R., Kuster, P., Aston, J., Lang, U. E., … Borgwardt, S. (2012). Hippocampal volume in subjects at high risk of psychosis: a longitudinal MRI study. Schizophrenia Research, 142(1–3), 217222.Google Scholar
Walterfang, M., McGuire, P. K., Yung, A. R., Phillips, L. J., Velakoulis, D., Wood, S. J., … Pantelis, C. (2008a). White matter volume changes in people who develop psychosis. British Journal of Psychiatry, 193(3), 210215.Google Scholar
Walterfang, M., Wood, S. J., Velakoulis, D., & Pantelis, C. (2006). Neuropathological, neurogenetic and neuroimaging evidence for white matter pathology in schizophrenia. Neuroscience and Biobehavioral Reviews, 30(7), 918948.Google Scholar
Walterfang, M., Yung, A., Wood, A. G., Reutens, D. C., Phillips, L., Wood, S. J., … Pantelis, C. (2008b). Corpus callosum shape alterations in individuals prior to the onset of psychosis. Schizophrenia Research, 103(1–3), 110.Google Scholar
Wang, Y., Xu, C., Zhang, A., Zuo, X. N., Gao, Q., Li, X., … Zhang, K. (2014). White matter abnormalities in medication-naive adult patients with major depressive disorder: tract-based spatial statistical analysis. Neuro Endocrinology Letters, 35(8), 697702.Google Scholar
Watanabe, K., Kakeda, S., Yoshimura, R., Abe, O., Ide, S., Hayashi, K., … Korogi, Y. (2015). Relationship between the catechol-O-methyl transferase Val108/158Met genotype and brain volume in treatment-naive major depressive disorder: voxel-based morphometry analysis. Psychiatry Research, 233(3), 481487.Google Scholar
Whittle, S., Lichter, R., Dennison, M., Vijayakumar, N., Schwartz, O., Byrne, M. L., … Allen, N. B. (2014). Structural brain development and depression onset during adolescence: a prospective longitudinal study. American Journal of Psychiatry, 171(5), 564571.Google Scholar
Witthaus, H., Mendes, U., Brune, M., Ozgurdal, S., Bohner, G., Gudlowski, Y., … Juckel, G. (2010). Hippocampal subdivision and amygdalar volumes in patients in an at-risk mental state for schizophrenia. Journal of Psychiatry and Neuroscience, 35(1), 3340.Google Scholar
Wood, S. J., Kennedy, D., Phillips, L. J., Seal, M. L., Yucel, M., Nelson, B., … Pantelis, C. (2010). Hippocampal pathology in individuals at ultra-high risk for psychosis: a multi-modal magnetic resonance study. NeuroImage, 52(1), 6268.Google Scholar
Wood, S. J., Yung, A. R., McGorry, P. D., & Pantelis, C. (2011). Neuroimaging and treatment evidence for clinical staging in psychotic disorders: from the at-risk mental state to chronic schizophrenia. Biological Psychiatry, 70(7), 619625.Google Scholar
World Federation for Mental Health (2012). Depression: a global crisis. Occoquan, VA: World Federation for Mental Health.Google Scholar
Wright, I. C., Rabe-Hesketh, S., Woodruff, P. W., David, A. S., Murray, R. M., & Bullmore, E. T. (2000). Meta-analysis of regional brain volumes in schizophrenia. American Journal of Psychiatry, 157(1), 1625.Google Scholar
Yao, L., Lui, S., Liao, Y., Du, M. Y., Hu, N., Thomas, J. A., & Gong, Q. Y. (2013). White matter deficits in first episode schizophrenia: an activation likelihood estimation meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 45, 100106.Google Scholar
Yatham, L. N., Lyoo, I. K., Liddle, P., Renshaw, P. F., Wan, D., Lam, R. W., & Hwang, J. (2007). A magnetic resonance imaging study of mood stabilizer- and neuroleptic-naive first-episode mania. Bipolar Disorders, 9(7), 693697.Google Scholar
Yucel, M., Solowij, N., Respondek, C., Whittle, S., Fornito, A., Pantelis, C., & Lubman, D. I. (2008). Regional brain abnormalities associated with long-term heavy cannabis use. Archives of General Psychiatry, 65(6), 694701.Google Scholar
Zakzanis, K. K., Poulin, P., Hansen, K. T., & Jolic, D. (2000). Searching the schizophrenic brain for temporal lobe deficits: a systematic review and meta-analysis. Psychological Medicine, 30(3), 491504.Google Scholar
Zanetti, M. V., Schaufelberger, M. S., de Castro, C. C., Menezes, P. R., Scazufca, M., McGuire, P. K., … Busatto, G. F. (2008). White-matter hyperintensities in first-episode psychosis. British Journal of Psychiatry, 193(1), 2530.Google Scholar
Zhao, Y. J., Du, M. Y., Huang, X. Q., Lui, S., Chen, Z. Q., Liu, J., … Gong, Q. Y. (2014). Brain grey matter abnormalities in medication-free patients with major depressive disorder: a meta-analysis. Psychological Medicine, 44(14), 29272937.Google Scholar
Zhuo, C., Liu, M., Wang, L., Tian, H., & Tang, J. (2016). Diffusion tensor MR imaging evaluation of callosal abnormalities in schizophrenia: a meta-analysis. PLoS One, 11(8), e0161406.Google Scholar
Ziermans, T. B., Schothorst, P. F., Schnack, H. G., Koolschijn, P. C., Kahn, R. S., van Engeland, H., & Durston, S. (2012). Progressive structural brain changes during development of psychosis. Schizophrenia Bulletin, 38(3), 519530.Google Scholar
Zipursky, R. B., Reilly, T. J., & Murray, R. M. (2013). The myth of schizophrenia as a progressive brain disease. Schizophrenia Bulletin, 39(6), 13631372.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×