Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T09:02:35.207Z Has data issue: false hasContentIssue false

Chapter 10 - Electroencephalography and Staging

from Section 2 - Progress with Clinical Staging

Published online by Cambridge University Press:  08 August 2019

Patrick D. McGorry
Affiliation:
University of Melbourne
Ian B. Hickie
Affiliation:
University of Sydney
Get access

Summary

This chapter covers the staging evolution of the most important brain functioning impairments, as measured with electroencephalography (EEG), in psychosis spectrum and in severe mood disorders. The current state of the literature demonstrates that although these impairments have been extensively studied in all stages of schizophrenia, the results remain highly inconsistent in bipolar disorder and major depressive disorder, and almost nonexistent for the early stages of these illnesses. Indeed, it is currently impossible to draw any conclusion with regard to the state or trait character of any of the EEG impairments in both major depressive and bipolar disorders. As for psychosis, the most promising staging markers are the pitch mismatch negativity, as well as the P300 event-related potentials, as these components seem to deteriorate with increasing severity of the illness. Longitudinal studies will be necessary to follow the course of the EEG-measured impairments in ‘at-risk’ individuals who are later diagnosed with a severe mental illness. Furthermore, and most importantly, if some of these markers are going to be used as diagnostic tools in the establishment of the stage of a psychotic disorder, a quantifying parameter will need to be identified as well as normal and pathological ranges.

Type
Chapter
Information
Clinical Staging in Psychiatry
Making Diagnosis Work for Research and Treatment
, pp. 204 - 220
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahveninen, J., Jaaskelainen, I. P., Osipova, D., Huttunen, M. O., Ilmoniemi, R. J., Kaprio, J., … Cannon, T. D. (2006). Inherited auditory-cortical dysfunction in twin pairs discordant for schizophrenia. Biological Psychiatry, 60(6), 612620.Google Scholar
Andersson, S., Barder, H. E., Hellvin, T., Løvdahl, H., & Malt, U. F. (2008). Neuropsychological and electrophysiological indices of neurocognitive dysfunction in bipolar II disorder. Bipolar Disorders, 10, 888899.Google Scholar
Atkinson, R. J., Fulham, W. R., Michie, P. T., Ward, P. B., Todd, J., Stain, H., … Schall, U. (2017). Electrophysiological, cognitive and clinical profiles of at-risk mental state: the longitudinal Minds in Transition (MinT) study. PLoS One, 12(2), e0171657.Google Scholar
Atkinson, R. J., Michie, P. T., & Schall, U. (2012). Duration mismatch negativity and P3a in first-episode psychosis and individuals at ultra-high risk of psychosis. Biological Psychiatry, 71(2), 98104.CrossRefGoogle ScholarPubMed
Basar, E., Guntekin, B., Atagun, I., Turp Golbasi, B., Tulay, E., & Ozerdem, A. (2012). Brain’s alpha activity is highly reduced in euthymic bipolar disorder patients. Cognitive Neurodynamics, 6(1), 1120.Google Scholar
Basar, E., Schmiedt-Fehr, C., Mathes, B., Femir, B., Emek-Savas, D. D., Tulay, E., … Basar-Eroglu, C. (2016). What does the broken brain say to the neuroscientist? Oscillations and connectivity in schizophrenia, Alzheimer’s disease, and bipolar disorder. International Journal of Psychophysiology, 103, 135148.CrossRefGoogle Scholar
Berk, M., Conus, P., Lucas, N., Hallam, K., Malhi, G. S., Dodd, S., … McGorry, P. (2007). Setting the stage: from prodrome to treatment resistance in bipolar disorder. Bipolar Disorders, 9(7), 671678.Google Scholar
Blackwood, D. H., St Clair, D. M., Muir, W. J., & Duffy, J. C. (1991). Auditory P300 and eye tracking dysfunction in schizophrenic pedigrees. Archives of General Psychiatry, 48(10), 899909.Google Scholar
Bodatsch, M., Ruhrmann, S., Wagner, M., Muller, R., Schultze-Lutter, F., Frommann, I., … Brockhaus-Dumke, A. (2011). Prediction of psychosis by mismatch negativity. Biological Psychiatry, 69(10), 959966.Google Scholar
Boutros, N. N., Arfken, C., Galderisi, S., Warrick, J., Pratt, G., & Iacono, W. (2008). The status of spectral EEG abnormality as a diagnostic test for schizophrenia. Schizophrenia Research, 99(1–3), 225237.Google Scholar
Bramon, E., McDonald, C., Croft, R. J., Landau, S., Filbey, F., Gruzelier, J. H., … Murray, R. M. (2005). Is the P300 wave an endophenotype for schizophrenia? A meta-analysis and a family study. NeuroImage, 27(4), 960968.CrossRefGoogle Scholar
Bramon, E., Rabe-Hesketh, S., Sham, P., Murray, R. M., & Frangou, S. (2004). Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophrenia Research, 70(2–3), 315329.Google Scholar
Bramon, E., Shaikh, M., Broome, M., Lappin, J., Berge, D., Day, F., … McGuire, P. (2008). Abnormal P300 in people with high risk of developing psychosis. NeuroImage, 41(2), 553560.Google Scholar
Brockhaus-Dumke, A., Schultze-Lutter, F., Mueller, R., Tendolkar, I., Bechdolf, A., Pukrop, R., … Ruhrmann, S. (2008). Sensory gating in schizophrenia: P50 and N100 gating in antipsychotic-free subjects at risk, first-episode, and chronic patients. Biological Psychiatry, 64(5), 376384.Google Scholar
Brockhaus-Dumke, A., Tendolkar, I., Pukrop, R., Schultze-Lutter, F., Klosterkotter, J., & Ruhrmann, S. (2005). Impaired mismatch negativity generation in prodromal subjects and patients with schizophrenia. Schizophrenia Research, 73(2–3), 297310.Google Scholar
Brown, K. J., Gonsalvez, C. J., Harris, A. W. F., Williams, L. M., & Gordon, E. (2002). Target and non-target ERP disturbances in first episode vs. chronic schizophrenia. Clinical Neurophysiology, 113(11), 17541763.Google Scholar
Bruder, G. E., Tenke, C. E., Warner, V., Nomura, Y., Grillon, C., Hille, J., … Weissman, M. M. (2005). Electroencephalographic measures of regional hemispheric activity in offspring at risk for depressive disorders. Biological Psychiatry, 57(4), 328335.CrossRefGoogle ScholarPubMed
Bruder, G. E., Tenke, C. E., Warner, V., & Weissman, M. M. (2007). Grandchildren at high and low risk for depression differ in EEG measures of regional brain asymmetry. Biological Psychiatry, 62(11), 13171323.Google Scholar
Bruder, G. E., Towey, J. P., Stewart, J. W., Friedman, D., Tenke, C., & Quitkin, F. M. (1991). Event-related potentials in depression: influence of task, stimulus hemifield and clinical features on P3 latency. Biological Psychiatry, 30(3), 233246.Google Scholar
Cadenhead, K. S., Light, G. A., Shafer, K. M., & Braff, D. L. (2005). P50 suppression in individuals at risk for schizophrenia: the convergence of clinical, familial, and vulnerability marker risk assessment. Biological Psychiatry, 57(12), 15041509.Google Scholar
Catts, S. V., Shelley, A. M., Ward, P. B., Liebert, B., McConaghy, N., Andrews, S., & Michie, P. T. (1995). Brain potential evidence for an auditory sensory memory deficit in schizophrenia. American Journal of Psychiatry, 152(2), 213219.Google Scholar
Chen, J., Zhang, Y., Wei, D., Wu, X., Fu, Q., Xu, F., … Zhang, Z. (2014). Neurophysiological handover from MMN to P3a in first-episode and recurrent major depression. Journal of Affective Disorders, 174C, 173179.Google Scholar
Chen, Y. H., Stone-Howell, B., Edgar, J. C., Huang, M., Wootton, C., Hunter, M. A., … Canive, J. M. (2016). Frontal slow-wave activity as a predictor of negative symptoms, cognition and functional capacity in schizophrenia. British Journal of Psychiatry, 208(2), 160167.Google Scholar
Cheng, C. H., Chan, P. Y., Liu, C. Y., & Hsu, S. C. (2016). Auditory sensory gating in patients with bipolar disorders: a meta-analysis. Journal of Affective Disorders, 203, 199203.CrossRefGoogle ScholarPubMed
Chitty, K. M., Lagopoulos, J., Lee, R. S., Hickie, I. B., & Hermens, D. F. (2013). A systematic review and meta-analysis of proton magnetic resonance spectroscopy and mismatch negativity in bipolar disorder. European Neuropsychopharmacology, 23(11), 13481363.Google Scholar
Clementz, B. A., Sponheim, S. R., Iacono, W. G., & Beiser, M. (1994). Resting EEG in first-episode schizophrenia patients, bipolar psychosis patients, and their first-degree relatives. Psychophysiology, 31(5), 486494.Google Scholar
de Wilde, O. M., Bour, L. J., Dingemans, P. M., Koelman, J. H., Boeree, T., & Linszen, D. H. (2008). P300 deficits are present in young first-episode patients with schizophrenia and not in their healthy young siblings. Clinical Neurophysiology, 119(12), 27212726.CrossRefGoogle Scholar
de Wilde, O. M., Bour, L. J., Dingemans, P. M., Koelman, J. H., & Linszen, D. H. (2007). Failure to find P50 suppression deficits in young first-episode patients with schizophrenia and clinically unaffected siblings. Schizophrenia Bulletin, 33(6), 13191323.Google Scholar
Demiralp, T., Ucok, A., Devrim, M., Isoglu-Alkac, U., Tecer, A., & Polich, J. (2002). N2 and P3 components of event-related potential in first-episode schizophrenic patients: scalp topography, medication, and latency effects. Psychiatry Research, 111(2–3), 167179.Google Scholar
Devrim-Ucok, M., Keskin-Ergen, H. Y., & Ucok, A. (2008a). P50 gating at acute and post-acute phases of first-episode schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(8), 19521956.Google Scholar
Devrim-Ucok, M., Keskin-Ergen, H. Y., & Ucok, A. (2008b). Mismatch negativity at acute and post-acute phases of first-episode schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 258(3), 179185.Google Scholar
Duncan, C. C., Barry, R. J., Connolly, J. F., Fischer, C., Michie, P. T., Naatanen, R., … Van Petten, C. (2009). Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clinical Neurophysiology, 120(11), 18831908.Google Scholar
Farzan, F., Barr, M. S., Levinson, A. J., Chen, R., Wong, W., Fitzgerald, P. B., & Daskalakis, Z. J. (2010). Evidence for gamma inhibition deficits in the dorsolateral prefrontal cortex of patients with schizophrenia. Brain, 133(Pt 5), 15051514.Google Scholar
Flynn, G., Alexander, D., Harris, A., Whitford, T., Wong, W., Galletly, C., … Williams, L. M. (2008). Increased absolute magnitude of gamma synchrony in first-episode psychosis. Schizophrenia Research, 105(1–3), 262271.Google Scholar
Frommann, I., Brinkmeyer, J., Ruhrmann, S., Hack, E., Brockhaus-Dumke, A., Bechdolf, A., … Wagner, M. (2008). Auditory P300 in individuals clinically at risk for psychosis. International Journal of Psychophysiology, 70(3), 192205.CrossRefGoogle ScholarPubMed
Galderisi, S., Mucci, A., Volpe, U., & Boutros, N. (2009). Evidence-based medicine and electrophysiology in schizophrenia. Clinical EEG and Neuroscience, 40(2), 6277.CrossRefGoogle ScholarPubMed
Gatt, J. M., Kuan, S. A., Dobson-Stone, C., Paul, R. H., Joffe, R. T., Kemp, A. H., … Williams, L. M. (2008). Association between BDNF Val66Met polymorphism and trait depression is mediated via resting EEG alpha band activity. Biological Psychology, 79(2), 275284.Google Scholar
Gattaz, W. F., Mayer, S., Ziegler, P., Platz, M., & Gasser, T. (1992). Hypofrontality on topographic EEG in schizophrenia: correlations with neuropsychological and psychopathological parameters. European Archives of Psychiatry and Clinical Neuroscience, 241(6), 328332.Google Scholar
Gerez, M., & Tello, A. (1995). Selected quantitative EEG (QEEG) and event-related potential (ERP) variables as discriminators for positive and negative schizophrenia. Biological Psychiatry, 38(1), 3449.Google Scholar
Gross, A., Joutsiniemi, S. L., Rimon, R., & Appelberg, B. (2006). Correlation of symptom clusters of schizophrenia with absolute powers of main frequency bands in quantitative EEG. Behavioral and Brain Functions, 2, 23.Google Scholar
Gschwandtner, U., Zimmermann, R., Pflueger, M. O., Riecher-Rossler, A., & Fuhr, P. (2009). Negative symptoms in neuroleptic-naive patients with first-episode psychosis correlate with QEEG parameters. Schizophrenia Research, 115(2–3), 231236.CrossRefGoogle ScholarPubMed
Hall, M. H., Rijsdijk, F., Kalidindi, S., Schulze, K., Kravariti, E., Kane, F., … Murray, R. M. (2007a). Genetic overlap between bipolar illness and event-related potentials. Psychological Medicine, 37(5), 667678.Google Scholar
Hall, M. H., Rijsdijk, F., Picchioni, M., Schulze, K., Ettinger, U., Toulopoulou, T., … Sham, P. (2007b). Substantial shared genetic influences on schizophrenia and event-related potentials. American Journal of Psychiatry, 164(5), 804812.Google Scholar
Hall, M. H., Schulze, K., Rijsdijk, F., Kalidindi, S., McDonald, C., Bramon, E., … Sham, P. (2009). Are auditory P300 and duration MMN heritable and putative endophenotypes of psychotic bipolar disorder? A Maudsley Bipolar Twin and Family Study. Psychological Medicine, 39(8), 12771287.Google Scholar
He, W., Chai, H., Zheng, L., Yu, W., Chen, W., Li, J., & Wang, W. (2010). Mismatch negativity in treatment-resistant depression and borderline personality disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(2), 366371.Google Scholar
Hermens, D. F., Chitty, K. M., & Kaur, M. (2018). Mismatch negativity in bipolar disorder: a neurophysiological biomarker of intermediate effect? Schizophrenia Research, 191, 132139.Google Scholar
Hermens, D. F., Ward, P. B., Hodge, M. A., Kaur, M., Naismith, S. L., & Hickie, I. B. (2010). Impaired MMN/P3a complex in first-episode psychosis: cognitive and psychosocial associations. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(6), 822829.Google Scholar
Hetrick, S. E., Parker, A. G., Hickie, I. B., Purcell, R., Yung, A. R., & McGorry, P. D. (2008). Early identification and intervention in depressive disorders: towards a clinical staging model. Psychotherapy and Psychosomatics, 77(5), 263270.Google Scholar
Higuchi, Y., Seo, T., Miyanishi, T., Kawasaki, Y., Suzuki, M., & Sumiyoshi, T. (2014). Mismatch negativity and p3a/reorienting complex in subjects with schizophrenia or at-risk mental state. Frontiers in Behavioral Neuroscience, 8, 172.Google Scholar
Higuchi, Y., Sumiyoshi, T., Seo, T., Miyanishi, T., Kawasaki, Y., & Suzuki, M. (2013). Mismatch negativity and cognitive performance for the prediction of psychosis in subjects with at-risk mental state. PLoS One, 8(1), e54080.Google Scholar
Hirayasu, Y., Asato, N., Ohta, H., Hokama, H., Arakaki, H., & Ogura, C. (1998). Abnormalities of auditory event-related potentials in schizophrenia prior to treatment. Biological Psychiatry, 43, 244253.Google Scholar
Hong, X., Chan, R. C., Zhuang, X., Jiang, T., Wan, X., Wang, J., … Weng, B. (2009). Neuroleptic effects on P50 sensory gating in patients with first-episode never-medicated schizophrenia. Schizophrenia Research, 108(1–3), 151157.Google Scholar
Hsieh, M. H., Shan, J. C., Huang, W. L., Cheng, W. C., Chiu, M. J., Jaw, F. S., … Liu, C. C. (2012). Auditory event-related potential of subjects with suspected pre-psychotic state and first-episode psychosis. Schizophrenia Research, 140(1–3), 243249.Google Scholar
Hutchison, A. K., Hunter, S. K., Wagner, B. D., Calvin, E. A., Zerbe, G. O., & Ross, R. G. (2017). Diminished infant P50 sensory gating predicts increased 40-month-old attention, anxiety/depression, and externalizing symptoms. Journal of Attention Disorders, 21(3), 209218.Google Scholar
Jahshan, C., Cadenhead, K. S., Rissling, A. J., Kirihara, K., Braff, D. L., & Light, G. A. (2012a). Automatic sensory information processing abnormalities across the illness course of schizophrenia. Psychological Medicine, 42(1), 8597.Google Scholar
Jahshan, C., Wynn, J. K., Mathis, K. I., Altshuler, L. L., Glahn, D. C., & Green, M. F. (2012b). Cross-diagnostic comparison of duration mismatch negativity and P3a in bipolar disorder and schizophrenia. Bipolar Disorders, 14(3), 239248.Google Scholar
Javitt, D. C., Schroeder, C. E., Steinschneider, M., Arezzo, J. C., Ritter, W., & Vaughan, H. G. Jr. (1995). Cognitive event-related potentials in human and non-human primates: implications for the PCP/NMDA model of schizophrenia. Electroencephalography and Clinical Neurophysiology Supplement, 44, 161175.Google Scholar
Jeon, Y. W., & Polich, J. (2003). Meta-analysis of P300 and schizophrenia: patients, paradigms, and practical implications. Psychophysiology, 40(5), 684701.Google Scholar
Kahkonen, S., Yamashita, H., Rytsala, H., Suominen, K., Ahveninen, J., & Isometsa, E. (2007). Dysfunction in early auditory processing in major depressive disorder revealed by combined MEG and EEG. Journal of Psychiatry and Neuroscience, 32(5), 316322.Google Scholar
Kano, K., Nakamura, M., Matsuoka, T., Iida, H., & Nakajima, T. (1992). The topographical features of EEGs in patients with affective disorders. Electroencephalography and Clinical Neurophysiology, 83(2), 124129.CrossRefGoogle ScholarPubMed
Kaur, M., Battisti, R. A., Lagopoulos, J., Ward, P. B., Hickie, I. B., & Hermens, D. F. (2012). Neurophysiological biomarkers support bipolar-spectrum disorders within psychosis cluster. Journal of Psychiatry and Neuroscience, 37(5), 313321.Google Scholar
Kaur, M., Battisti, R. A., Ward, P. B., Ahmed, A., Hickie, I. B., & Hermens, D. F. (2011). MMN/P3a deficits in first episode psychosis: comparing schizophrenia-spectrum and affective-spectrum subgroups. Schizophrenia Research, 130(1–3), 203209.Google Scholar
Kawakubo, Y., & Kasai, K. (2006). Support for an association between mismatch negativity and social functioning in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30(7), 13671368.Google Scholar
Kemp, A. H., Pe Benito, L., Quintana, D. S., Clark, C. R., McFarlane, A., Mayur, P., … Williams, L. M. (2010). Impact of depression heterogeneity on attention: an auditory oddball event related potential study. Journal of Affective Disorders, 123(1–3), 202207.Google Scholar
Kiang, M., Light, G. A., Prugh, J., Coulson, S., Braff, D. L., & Kutas, M. (2007). Cognitive, neurophysiological, and functional correlates of proverb interpretation abnormalities in schizophrenia. Journal of the International Neuropsychological Society, 13(4), 653663.Google Scholar
Kim, M., Lee, T. Y., Lee, S., Kim, S. N., & Kwon, J. S. (2015). Auditory P300 as a predictor of short-term prognosis in subjects at clinical high risk for psychosis. Schizophrenia Research, 165(2–3), 138144.CrossRefGoogle ScholarPubMed
Kuang, W., Tian, L., Yue, L., & Li, J. (2016). Effects of escitalopram with a Chinese traditional compound Jiuweizhenxin-keli on mismatch negativity and P50 in patients with major depressive disorders. Neuropsychiatric Disease and Treatment, 12, 19351941.Google Scholar
Lavoie, S., Jack, B. N., Griffiths, O., Ando, A., Amminger, P., Couroupis, A., … Whitford, T. J. (2018). Impaired mismatch negativity to frequency deviants in individuals at ultra-high risk for psychosis, and preliminary evidence for further impairment with transition to psychosis. Schizophrenia Research, 191, 95100.CrossRefGoogle ScholarPubMed
Lavoie, S., Murray, M. M., Deppen, P., Knyazeva, M. G., Berk, M., Boulat, O., … Do, K. Q. (2007). Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology, 33, 21872199.CrossRefGoogle ScholarPubMed
Lavoie, S., Schafer, M. R., Whitford, T. J., Benninger, F., Feucht, M., Klier, C. M., … Amminger, G. P. (2012). Frontal delta power associated with negative symptoms in ultra-high risk individuals who transitioned to psychosis. Schizophrenia Research, 138, 206211.Google Scholar
Lee, K. H., Williams, L. M., Breakspear, M., & Gordon, E. (2003). Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Research Reviews, 41(1), 5778.Google Scholar
Leicht, G., Vauth, S., Polomac, N., Andreou, C., Rauh, J., Mussmann, M., … Mulert, C. (2016). EEG-informed fMRI reveals a disturbed gamma-band-specific network in subjects at high risk for psychosis. Schizophrenia Bulletin, 42(1), 239249.Google Scholar
Light, G. A., & Braff, D. L. (2005a). Mismatch negativity deficits are associated with poor functioning in schizophrenia patients. Archives of General Psychiatry, 62(2), 127136.Google Scholar
Light, G. A., & Braff, D. L. (2005b). Stability of mismatch negativity deficits and their relationship to functional impairments in chronic schizophrenia. American Journal of Psychiatry, 162(9), 17411743.Google Scholar
Magno, E., Yeap, S., Thakore, J. H., Garavan, H., De Sanctis, P., & Foxe, J. J. (2008). Are auditory-evoked frequency and duration mismatch negativity deficits endophenotypic for schizophrenia? High-density electrical mapping in clinically unaffected first-degree relatives and first-episode and chronic schizophrenia. Biological Psychiatry, 64(5), 385391.Google Scholar
Mathalon, D. H., Ford, J. M., Rosenbloom, M., & Pfefferbaum, A. (2000). P300 reduction and prolongation with illness duration in schizophrenia. Biological Psychiatry, 47, 413427.Google Scholar
McCarley, R. W., Salisbury, D. F., Hirayasu, Y., Yurgelun-Todd, D. A., Tohen, M., Zarate, C., … Shenton, M. E. (2002). Association between smaller left posterior superior temporal gyrus volume on magnetic resonance imaging and smaller left temporal P300 amplitude in first-episode schizophrenia. Archives of General Psychiatry, 59(4), 321331.CrossRefGoogle ScholarPubMed
Moeini, M., Khaleghi, A., & Mohammadi, M. R. (2015). Characteristics of alpha band frequency in adolescents with bipolar II disorder: a resting-state QEEG study. Iranian Journal of Psychiatry, 10(1), 812.Google Scholar
Mondragon-Maya, A., Solis-Vivanco, R., Leon-Ortiz, P., Rodriguez-Agudelo, Y., Yanez-Tellez, G., Bernal-Hernandez, J., … de la Fuente-Sandoval, C. (2013). Reduced P3a amplitudes in antipsychotic naive first-episode psychosis patients and individuals at clinical high-risk for psychosis. Journal of Psychiatric Research, 47(6), 755761.Google Scholar
Morales-Munoz, I., Jurado-Barba, R., Fernandez-Guinea, S., Rodriguez-Jimenez, R., Jimenez-Arriero, M. A., Criado, J. R., & Rubio, G. (2016). Sensory gating deficits in first-episode psychosis: evidence from neurophysiology, psychophysiology, and neuropsychology. Journal of Nervous and Mental Disease, 204(12), 877884.Google Scholar
Myles-Worsley, M., Ord, L., Blailes, F., Ngiralmau, H., & Freedman, R. (2004). P50 sensory gating in adolescents from a Pacific Island isolate with elevated risk for schizophrenia. Biological Psychiatry, 55(7), 663667.Google Scholar
Naatanen, R., Kujala, T., & Winkler, I. (2011). Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology, 48(1), 422.Google Scholar
Naatanen, R., Shiga, T., Asano, S., & Yabe, H. (2015). Mismatch negativity (MMN) deficiency: a break-through biomarker in predicting psychosis onset. International Journal of Psychophysiology, 95(3), 338344.Google Scholar
Naismith, S. L., Mowszowski, L., Ward, P. B., Diamond, K., Paradise, M., Kaur, M., … Hermens, D. F. (2012). Reduced temporal mismatch negativity in late-life depression: an event-related potential index of cognitive deficit and functional disability? Journal of Affective Disorders, 138(1–2), 7178.Google Scholar
Narayanan, B., O’Neil, K., Berwise, C., Stevens, M. C., Calhoun, V. D., Clementz, B. A., … Pearlson, G. D. (2014). Resting state electroencephalogram oscillatory abnormalities in schizophrenia and psychotic bipolar patients and their relatives from the bipolar and schizophrenia network on intermediate phenotypes study. Biological Psychiatry, 76(6), 456465.CrossRefGoogle ScholarPubMed
Nieman, D. H., Ruhrmann, S., Dragt, S., Soen, F., van Tricht, M. J., Koelman, J. H., … de Haan, L. (2014). Psychosis prediction: stratification of risk estimation with information-processing and premorbid functioning variables. Schizophrenia Bulletin, 40(6), 14821490.Google Scholar
O’Donnell, B. F., Faux, S. F., McCarley, R. W., Kimble, M. O., Salisbury, D. F., Nestor, P. G., … Shenton, M. E. (1995). Increased rate of P300 latency prolongation with age in schizophrenia: electrophysiological evidence for a neurodegenerative process. Archives of General Psychiatry, 52(7), 544549.Google Scholar
O’Donnell, B. F., Vohs, J. L., Hetrick, W. P., Carroll, C. A., & Shekhar, A. (2004). Auditory event-related potential abnormalities in bipolar disorder and schizophrenia. International Journal of Psychophysiology, 53(1), 4555.Google Scholar
Oades, R. D., Wild-Wall, N., Juran, S. A., Sachsse, J., Oknina, L. B., & Ropcke, B. (2006). Auditory change detection in schizophrenia: sources of activity, related neuropsychological function and symptoms in patients with a first episode in adolescence, and patients 14 years after an adolescent illness-onset. BMC Psychiatry, 6, 7.Google Scholar
Olbrich, S., & Arns, M. (2013). EEG biomarkers in major depressive disorder: discriminative power and prediction of treatment response. International Review of Psychiatry, 25(5), 604618.Google Scholar
Onitsuka, T., Oribe, N., & Kanba, S. (2013). Neurophysiological findings in patients with bipolar disorder. Supplements to Clinical Neurophysiology, 62, 197206.Google Scholar
Ozerdem, A., Guntekin, B., Tunca, Z., & Basar, E. (2008). Brain oscillatory responses in patients with bipolar disorder manic episode before and after valproate treatment. Brain Research, 1235, 98108.Google Scholar
Ozgurdal, S., Gudlowski, Y., Witthaus, H., Kawohl, W., Uhl, I., Hauser, M., … Juckel, G. (2008). Reduction of auditory event-related P300 amplitude in subjects with at-risk mental state for schizophrenia. Schizophrenia Research, 105(1–3), 272278.Google Scholar
Patterson, J. V., Hetrick, W. P., Boutros, N. N., Jin, Y., Sandman, C., Stern, H., … Bunney, W. E. Jr. (2008). P50 sensory gating ratios in schizophrenics and controls: a review and data analysis. Psychiatry Research, 158(2), 226247.Google Scholar
Perez, V. B., Roach, B. J., Woods, S. W., Srihari, V. H., McGlashan, T. H., Ford, J. M., & Mathalon, D. H. (2013). Early auditory gamma-band responses in patients at clinical high risk for schizophrenia. Supplements to Clinical Neurophysiology, 62, 147162.Google Scholar
Perez, V. B., Woods, S. W., Roach, B. J., Ford, J. M., McGlashan, T. H., Srihari, V. H., & Mathalon, D. H. (2014). Automatic auditory processing deficits in schizophrenia and clinical high-risk patients: forecasting psychosis risk with mismatch negativity. Biological Psychiatry, 75(6), 459469.Google Scholar
Pierson, A., Jouvent, R., Quintin, P., Perez-Diaz, F., & Leboyer, M. (2000). Information processing deficits in relatives of manic depressive patients. Psychological Medicine, 30(3), 545555.Google Scholar
Pollock, V. E., & Schneider, L. S. (1990). Quantitative, waking EEG research on depression. Biological Psychiatry, 27(7), 757780.Google Scholar
Qiao, Z., Yu, Y., Wang, L., Yang, X., Qiu, X., Zhang, C., … Yang, Y. (2013). Impaired pre-attentive change detection in major depressive disorder patients revealed by auditory mismatch negativity. Psychiatry Research, 211(1), 7884.Google Scholar
Ranlund, S., Nottage, J., Shaikh, M., Dutt, A., Constante, M., Walshe, M., … Bramon, E. (2014). Resting EEG in psychosis and at-risk populations: a possible endophenotype? Schizophrenia Research, 153(1–3), 96102.Google Scholar
Rasser, P. E., Schall, U., Todd, J., Michie, P. T., Ward, P. B., Johnston, P., … Thompson, P. M. (2011). Gray matter deficits, mismatch negativity, and outcomes in schizophrenia. Schizophrenia Bulletin, 37(1), 131140.Google Scholar
Renoult, L., Prevost, M., Brodeur, M., Lionnet, C., Joober, R., Malla, A., & Debruille, J. B. (2007). P300 asymmetry and positive symptom severity: a study in the early stage of a first episode of psychosis. Schizophrenia Research, 93(1–3), 366373.Google Scholar
Rieder, M. K., Rahm, B., Williams, J. D., & Kaiser, J. (2011). Human gamma-band activity and behavior. International Journal of Psychophysiology, 79(1), 3948.Google Scholar
Salisbury, D. F., Kuroki, N., Kasai, K., Shenton, M. E., & McCarley, R. W. (2007). Progressive and interrelated functional and structural evidence of post-onset brain reduction in schizophrenia. Archives of General Psychiatry, 64(5), 521529.Google Scholar
Salisbury, D. F., Shenton, M. E., Griggs, C. B., Bonner-Jackson, A., & McCarley, R. W. (2002). Mismatch negativity in chronic schizophrenia and first-episode schizophrenia. Archives of General Psychiatry, 59(8), 686694.Google Scholar
Salisbury, D. F., Shenton, M. E., & McCarley, R. W. (1999). P300 topography differs in schizophrenia and manic psychosis. Biological Psychiatry, 45(1), 98106.Google Scholar
Sanchez-Morla, E. M., Garcia-Jimenez, M. A., Barabash, A., Martinez-Vizcaino, V., Mena, J., Cabranes-Diaz, J. A., … Santos, J. L. (2008). P50 sensory gating deficit is a common marker of vulnerability to bipolar disorder and schizophrenia. Acta Psychiatrica Scandinavica, 117(4), 313318.Google Scholar
Schlegel, S., Nieber, D., Herrmann, C., & Bakauski, E. (1991). Latencies of the P300 component of the auditory event-related potential in depression are related to the Bech–Rafaelsen Melancholia Scale but not to the Hamilton Rating Scale for Depression. Acta Psychiatrica Scandinavica, 83(6), 438440.Google Scholar
Schulze, K. K., Hall, M. H., McDonald, C., Marshall, N., Walshe, M., Murray, R. M., & Bramon, E. (2008). Auditory P300 in patients with bipolar disorder and their unaffected relatives. Bipolar Disorders, 10(3), 377386.Google Scholar
Shaikh, M., Valmaggia, L., Broome, M. R., Dutt, A., Lappin, J., Day, F., … Bramon, E. (2012). Reduced mismatch negativity predates the onset of psychosis. Schizophrenia Research, 134(1), 4248.Google Scholar
Shin, K. S., Kim, J. S., Kang, D. H., Koh, Y., Choi, J. S., O’Donnell, B. F., … Kwon, J. S. (2009). Pre-attentive auditory processing in ultra-high-risk for schizophrenia with magnetoencephalography. Biological Psychiatry, 65(12), 10711078.Google Scholar
Siegle, G. J., Condray, R., Thase, M. E., Keshavan, M., & Steinhauer, S. R. (2010). Sustained gamma-band EEG following negative words in depression and schizophrenia. International Journal of Psychophysiology, 75(2), 107118.Google Scholar
Slewa-Younan, S., Gordon, E., Harris, A. W., Haig, A. R., Brown, K. J., Flor-Henry, P., & Williams, L. M. (2004). Sex differences in functional connectivity in first-episode and chronic schizophrenia patients. American Journal of Psychiatry, 161(9), 15951602.Google Scholar
Solis-Vivanco, R., Mondragon-Maya, A., Leon-Ortiz, P., Rodriguez-Agudelo, Y., Cadenhead, K. S., & de la Fuente-Sandoval, C. (2014). Mismatch negativity reduction in the left cortical regions in first-episode psychosis and in individuals at ultra high-risk for psychosis. Schizophrenia Research, 158(1–3), 5863.Google Scholar
Spencer, K. M., Salisbury, D. F., Shenton, M. E., & McCarley, R. W. (2008). Gamma-band auditory steady-state responses are impaired in first episode psychosis. Biological Psychiatry, 64(5), 369375.Google Scholar
Sponheim, S. R., Clementz, B. A., Iacono, W. G., & Beiser, M. (2000). Clinical and biological concomitants of resting state EEG power abnormalities in schizophrenia. Biological Psychiatry, 48(11), 10881097.Google Scholar
Strelets, V. B., Novototsky-Vlasov, V. Y., & Golikova, J. V. (2002). Cortical connectivity in high frequency beta-rhythm in schizophrenics with positive and negative symptoms. International Journal of Psychophysiology, 44, 101115.Google Scholar
Symond, M. P., Harris, A. W., Gordon, E., & Williams, L. M. (2005). ‘Gamma synchrony’ in first-episode schizophrenia: a disorder of temporal connectivity? American Journal of Psychiatry, 162(3), 459465.Google Scholar
Tada, M., Nagai, T., Kirihara, K., Koike, S., Suga, M., Araki, T., … Kasai, K. (2014). Differential alterations of auditory gamma oscillatory responses between pre-onset high-risk individuals and first-episode schizophrenia. Cerebral Cortex, 26(3), 10271035.Google Scholar
Takei, Y., Kumano, S., Hattori, S., Uehara, T., Kawakubo, Y., Kasai, K., … Mikuni, M. (2009). Preattentive dysfunction in major depression: a magnetoencephalography study using auditory mismatch negativity. Psychophysiology, 46(1), 5261.Google Scholar
Thibodeau, R., Jorgensen, R. S., & Kim, S. (2006). Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review. Journal of Abnormal Psychology, 115(4), 715729.Google Scholar
Todd, J., Michie, P. T., Schall, U., Karayanidis, F., Yabe, H., & Naatanen, R. (2007). Deviant matters: duration, frequency, and intensity deviants reveal different patterns of mismatch negativity reduction in early and late schizophrenia. Biological Psychiatry, 63(1), 5864.Google Scholar
Turetsky, B. I., Calkins, M. E., Light, G. A., Olincy, A., Radant, A. D., & Swerdlow, N. R. (2007). Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate measures. Schizophrenia Bulletin, 33(1), 6994.Google Scholar
Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155168.Google Scholar
Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews Neuroscience, 11(2), 100113.Google Scholar
Umbricht, D. S., Bates, J. A., Lieberman, J. A., Kane, J. M., & Javitt, D. C. (2006). Electrophysiological indices of automatic and controlled auditory information processing in first-episode, recent-onset and chronic schizophrenia. Biological Psychiatry, 59(8), 762772.Google Scholar
Umbricht, D., Koller, R., Schmid, L., Skrabo, A., Grubel, C., Huber, T., & Stassen, H. (2003). How specific are deficits in mismatch negativity generation to schizophrenia? Biological Psychiatry, 53(12), 11201131.Google Scholar
Umbricht, D., Koller, R., Vollenweider, F. X., & Schmid, L. (2002). Mismatch negativity predicts psychotic experiences induced by NMDA receptor antagonist in healthy volunteers. Biological Psychiatry, 51(5), 400406.Google Scholar
Umbricht, D., & Krljes, S. (2005). Mismatch negativity in schizophrenia: a meta-analysis. Schizophrenia Bulletin, 76(1), 123.Google Scholar
Valkonen-Korhonen, M., Purhonen, M., Tarkka, I. M., Sipila, P., Partanen, J., Karhu, J., & Lehtonen, J. (2003). Altered auditory processing in acutely psychotic never-medicated first-episode patients. Cognitive Brain Research, 17(3), 747758.Google Scholar
van der Stelt, O., Lieberman, J. A., & Belger, A. (2005). Auditory P300 in high-risk, recent-onset and chronic schizophrenia. Schizophrenia Research, 77(2–3), 309320.Google Scholar
van Tricht, M. J., Nieman, D. H., Koelman, J. T., Mensink, A. J., Bour, L. J., van der Meer, J. N., … de Haan, L. (2015). Sensory gating in subjects at ultra high risk for developing a psychosis before and after a first psychotic episode. World Journal of Biological Psychiatry, 16(1), 1221.Google Scholar
Vandoolaeghe, E., van Hunsel, F., Nuyten, D., & Maes, M. (1998). Auditory event related potentials in major depression: prolonged P300 latency and increased P200 amplitude. Journal of Affective Disorders, 48(2–3), 105113.Google Scholar
Venables, N. C., Bernat, E. M., & Sponheim, S. R. (2009). Genetic and disorder-specific aspects of resting state EEG abnormalities in schizophrenia. Schizophrenia Bulletin, 35(4), 826839.Google Scholar
Wang, J., Tang, Y., Li, C., Mecklinger, A., Xiao, Z., Zhang, M., … Li, H. (2009a). Decreased P300 current source density in drug-naive first episode schizophrenics revealed by high density recording. International Journal of Psychophysiology, 75(3), 249257.Google Scholar
Wang, Y., Fang, Y. R., Chen, X. S., Chen, J., Wu, Z. G., Yuan, C. M., … Cao, L. (2009b). A follow-up study on features of sensory gating P50 in treatment-resistant depression patients. Chinese Medical Journal, 122(24), 29562960.Google Scholar
Wynn, J. K., Sugar, C., Horan, W. P., Kern, R., & Green, M. F. (2010). Mismatch negativity, social cognition, and functioning in schizophrenia patients. Biological Psychiatry, 67(10), 940947.Google Scholar
Xiong, P., Zeng, Y., Zhu, Z., Tan, D., Xu, F., Lu, J., … Ma, M. (2010). Reduced NGF serum levels and abnormal P300 event-related potential in first episode schizophrenia. Schizophrenia Research, 119(1–3), 3439.Google Scholar
Zhang, Y., Hauser, U., Conty, C., Emrich, H. M., & Dietrich, D. E. (2007). Familial risk for depression and p3b component as a possible neurocognitive vulnerability marker. Neuropsychobiology, 55(1), 1420.Google Scholar
Zimmermann, R., Gschwandtner, U., Wilhelm, F. H., Pflueger, M. O., Riecher-Rossler, A., & Fuhr, P. (2010). EEG spectral power and negative symptoms in at-risk individuals predict transition to psychosis. Schizophrenia Research, 123(2–3), 208216.Google Scholar
Zoon, H. F., Veth, C. P., Arns, M., Drinkenburg, W. H., Talloen, W., Peeters, P. J., & Kenemans, J. L. (2013). EEG alpha power as an intermediate measure between brain-derived neurotrophic factor Val66Met and depression severity in patients with major depressive disorder. Journal of Clinical Neurophysiology, 30(3), 261267.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×