Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T00:22:41.586Z Has data issue: false hasContentIssue false

Chapter 52 - Magnetic resonance spectroscopy in pediatric white matter disease

from Section 8 - Pediatrics

Published online by Cambridge University Press:  05 March 2013

Jonathan H. Gillard
Affiliation:
University of Cambridge
Adam D. Waldman
Affiliation:
Imperial College London
Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Introduction

Magnetic resonance spectroscopy (MRS) provides in vivo information into the metabolic alterations occurring during the different stages of white matter (WM) diseases. Inborn metabolic/genetic disorders are considered here, while the acquired, mainly inflammatory or hypoxic–ischemic conditions, are addressed in Chs. 28, 30, and 48.

This chapter describes metabolic characteristics as shown by MRS of WM caused primarily by hereditary conditions (leukodystrophies; Table 52.1). The classification of leukoencephalopathies used here is based on the concept of hypomyelination and demyelination (Table 52.2). Some of these disorders are discussed in Chs. 30 and 53.

Several comprehensive reviews on this topic are available. Most publications deal with individual disease entities and will be referred to in the respective sections.

Lysosomal disorders

Metachromatic leukodystrophy

Metachromatic leukodystrophy (MLD, MIM #250100) is an autosomal recessive lysosomal storage disorder caused by mutations in the gene ARSA on chromosome 22q13.31-qter. A deficiency of arylsulfatase A leads to accumulation of cerebroside sulfates in cerebral WM and peripheral nerves.

Type
Chapter
Information
Clinical MR Neuroimaging
Physiological and Functional Techniques
, pp. 806 - 822
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

van der Knaap, MS, Valk, J. Magnetic Resonance of Myelination and Myelin Disorders, 3rd edn. Berlin: Springer, 2005.CrossRefGoogle Scholar
van der Knaap, MS, van der Grond, J, Luyten, PR, et al. 1H and 31P magnetic resonance spectroscopy of the brain in degenerative cerebral disorders. Ann Neurol 1992 31: 202–211.CrossRefGoogle ScholarPubMed
Tzika, AA, Vigneron, DB, Ball, WS, et al. Localized proton MR spectroscopy of the brain in children. J Magn Reson Imaging 1993; 3: 719–729.CrossRefGoogle ScholarPubMed
Frahm, J, Hanefeld, F.Localized proton magnetic resonance spectroscopy of brain disorders in childhood. In Magnetic Resonance Spectroscopy and Imaging in Neurochemistry, ed. Bachelard, HSNew York: Plenum Press, 1997, pp. 329–402.CrossRefGoogle Scholar
Cecil, KM, Kos, RS.Magnetic resonance spectroscopy and metabolic imaging in white matter diseases and pediatric disorders. Top Magn Reson Imaging 2006; 17: 275–293.CrossRefGoogle ScholarPubMed
Kingsley, PB, Shah, TC, Woldenberg, R.Identification of diffuse and focal brain lesions by clinical magnetic resonance spectroscopy. NMR Biomed. 2006; 19: 435–462.CrossRefGoogle ScholarPubMed
Bizzi, A, Castelli, G, Bugiani, M, et al. Classification of childhood white matter disorders using proton MR spectroscopic imaging. AJNR Am J Neuroradiol 2008; 29: 1270–1275.CrossRefGoogle ScholarPubMed
Grodd, W, Krageloh-Mann, I, Klose, U, et al. Metabolic and destructive brain disorders in children: findings with localized proton MR spectroscopy. Radiology 1991; 181: 173–181.CrossRefGoogle ScholarPubMed
von Figura K, Gieselmann V, Jaeken, J.Metachromatic leukodystrophy. In The Metabolic and Molecular Bases of Inherited Disease, 8th edn, Scriver, CR, Beaudet, AL, Sly, WS, Valle, D, eds. New York: McGraw-Hill, 2001, pp. 3695–3724.Google Scholar
Kruse, B, Hanefeld, F, Christen, HJ, et al. Alterations of brain metabolites in metachromatic leukodystrophy as detected by localized proton magnetic resonance spectroscopy in vivo. J Neurol 1993; 241: 68–74.CrossRefGoogle ScholarPubMed
Brand, A, Richter-Landsberg, C, Leibfritz, D.Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 1993; 15: 289–298.CrossRefGoogle ScholarPubMed
Wenger, DA, Suzuki, K, Suzuki, Y, Suzuki, K.Galactosylceramide lipidosis: globoid cell leukodystrophy (Krabbe disease). In The Metabolic and Molecular Bases of Inherited Disease, 8th edn, Scriver, CR, Beaudet, AL, Sly, WS, Valle, D, eds. New York: McGraw-Hill, 2001, pp. 3669–3693.Google Scholar
Finelli, DA, Tarr, RW, Sawyer, RN, et al. Deceptively normal MR in early infantile Krabbe disease. AJNR Am J Neuroradiol 1994; 15: 167–171.Google ScholarPubMed
Zarifi, MK, Tzika, AA, Astrakas, LG, et al. Magnetic resonance spectroscopy and magnetic resonance imaging findings in Krabbe’s disease. J Child Neurol 2001; 16: 522–526.CrossRefGoogle ScholarPubMed
Farina, L, Bizzi, A, Finocchiaro, G, et al. MR imaging and proton MR spectroscopy in adult Krabbe disease. AJNR Am J Neuroradiol 2000, 21: 1478–1482.Google ScholarPubMed
Brockmann, K, Dechent, P, Wilken, B, et al. Proton MRS profile of cerebral metabolic abnormalities in Krabbe disease. Neurology 2003; 60: 819–825.CrossRefGoogle ScholarPubMed
Moser, HW, Smith, KD, Watkins, PA, et al. X-linked adrenoleukodystrophy. In The Metabolic and Molecular Bases of Inherited DiseaseScriver, CR, Beaudet, AL, 8th edn, Sly, WS, Valle, D, eds. New York: McGraw-Hill, 2001, pp. 3257–3301.Google Scholar
Loes, DJ, Hite, S, Moser, H, et al. Adrenoleukodystrophy: a scoring method for brain MR observations. AJNR Am J Neuroradiol 1994; 15: 1761–1766.Google ScholarPubMed
Peters, C, Charnas, LR, Tan, Y, et al. Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. Blood 2004; 104: 881–888.CrossRefGoogle ScholarPubMed
Kruse, B, Barker, PB, van Zijl, PC, et al. Multislice proton magnetic resonance spectroscopic imaging in X-linked adrenoleukodystrophy. Ann Neurol 1994; 36: 595–608.CrossRefGoogle ScholarPubMed
Eichler, FS, Barker, PB, Cox, C, et al. Proton MR spectroscopic imaging predicts lesion progression on MRI in X-linked adrenoleukodystrophy. Neurology 2002; 58: 901–907.CrossRefGoogle ScholarPubMed
Eichler, FS, Itoh, R, Barker, PB, et al. Proton MR spectroscopic and diffusion tensor brain MR imaging in X-linked adrenoleukodystrophy: initial experience. Radiology 2002; 225: 245–252.CrossRefGoogle ScholarPubMed
Pouwels, PJ, Kruse, B, Korenke, GC, et al. Quantitative proton magnetic resonance spectroscopy of childhood adrenoleukodystrophy. Neuropediatrics 1998; 29: 254–264.CrossRefGoogle ScholarPubMed
Wilken, B, Dechent, P, Brockmann, K, et al. Quantitative proton magnetic resonance spectroscopy of children with adrenoleukodystrophy before and after hematopoietic stem cell transplantation. Neuropediatrics 2003; 34: 237–246.Google ScholarPubMed
Tzika, AA, Ball, WS, Vigneron, DB, et al. Childhood adrenoleukodystrophy: assessment with proton MR spectroscopy. Radiology 1993; 189: 467–480.CrossRefGoogle ScholarPubMed
Oz, G, Tkác, I, Charnas, LR, et al. Assessment of adrenoleukodystrophy lesions by high field MRS in non-sedated pediatric patients. Neurology 2005; 64: 434–441.CrossRefGoogle ScholarPubMed
Moser, HW, Barker, PB.Magnetic resonance spectroscopy: a new guide for the therapy of adrenoleukodystrophy. Neurology 2005; 64: 406–407.CrossRefGoogle ScholarPubMed
Zeviani, M, Di Donato, S.Mitochondrial disorders. Brain 2004; 127: 2153–2172.CrossRefGoogle ScholarPubMed
Lerman-Sagie, T, Leshinsky-Silver, E, Watemberg, N, et al. White matter involvement in mitochondrial diseases. Mol Genet Metab 2005; 84: 127–136.CrossRefGoogle ScholarPubMed
Lin, DD, Crawford, TO, Barker PB. Proton MR spectroscopy in the diagnostic evaluation of suspected mitochondrial disease. AJNR Am J Neuroradiol 2003; 24: 33–41.Google ScholarPubMed
Moroni, I, Bugiani, M, Bizzi, A, et al. Cerebral white matter involvement in children with mitochondrial encephalopathies. Neuropediatrics 2002; 33: 79–85.CrossRefGoogle ScholarPubMed
Brockmann, K, Bjornstad, A, Dechent, P, et al. Succinate in dystrophic white matter: a proton magnetic resonance spectroscopy finding characteristic for complex II deficiency. Ann Neurol 2002; 52: 38–46.CrossRefGoogle ScholarPubMed
van der Knaap, MS, van der Voorn, P, Barkhof, F, et al. A new leukoencephalopathy with brainstem and spinal cord involvement and high lactate. Ann Neurol. 2003; 53: 252–258.CrossRefGoogle ScholarPubMed
Scheper, GC, van der Klok, T, van Andel, RJ, et al. Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet 2007; 39: 534–539.CrossRefGoogle ScholarPubMed
Grodd, W, Krageloh-Mann, I, Petersen, D, et al. In vivo assessment of N-acetylaspartate in brain in spongy degeneration (Canavan’s disease) by proton spectroscopy. Lancet 1990; 336: 437–438.CrossRefGoogle ScholarPubMed
Janson, CG, McPhee, SW, Francis, J, et al. Natural history of Canavan disease revealed by proton magnetic resonance spectroscopy (1H-MRS) and diffusion-weighted MRI. Neuropediatrics 2006; 37: 209–221.CrossRefGoogle ScholarPubMed
Koeppen, AH, Robitaille, Y.Pelizaeus–Merzbacher disease. J Neuropathol Exp Neurol 2002; 61: 747–759.CrossRefGoogle ScholarPubMed
Nezu, A, Kimura, S, Takeshita, S, et al. An MRI and MRS study of Pelizaeus–Merzbacher disease. Pediatr Neurol 1998; 18: 334–337.CrossRefGoogle ScholarPubMed
Spalice, A, Popolizio, T, Parisi, P, et al. Proton MR spectroscopy in connatal Pelizaeus–Merzbacher disease. Pediatr Radiol 2000; 30: 171–175.CrossRefGoogle ScholarPubMed
Takanashi, J, Inoue, K, Tomita, M, et al. Brain N-acetylaspartate is elevated in Pelizaeus–Merzbacher disease with PLP1 duplication. Neurology 2002; 58: 237–241.CrossRefGoogle ScholarPubMed
Pizzini, F, Fatemi, AS, Barker, PB, et al. Proton MR spectroscopic imaging in Pelizaeus–Merzbacher disease. AJNR Am J Neuroradiol 2003; 24:1683–1689.Google Scholar
Hanefeld, F, Brockmann, K, Pouwels, PJW, et al. Quantitative proton MRS of Pelizaeus-Merzbacher disease: evidence for dys- and hypomyelination. Neurology 2005; 65: 701–706.CrossRefGoogle ScholarPubMed
Uhlenberg, B, Schuelke, M, Ruschendorf, F, et al. Mutations in the gene encoding gap junction protein alpha-12 (connexin 46.6) cause Pelizaeus–Merzbacher-like disease. Am J Hum Genet 2004; 75: 251–260.CrossRefGoogle ScholarPubMed
Bugiani, M, Al Shahwan, S, Lamantea, E, et al. GJA12 mutations in children with recessive hypomyelinating leukoencephalopathy. Neurology 2006; 67: 273–279.CrossRefGoogle ScholarPubMed
van der Knaap, MS, Naidu, S, Pouwels, PJ, et al. New syndrome characterized by hypomyelination with atrophy of the basal ganglia and cerebellum. AJNR Am J Neuroradiol 2002; 23: 1466–1474.Google ScholarPubMed
Wolf, NI, Willemsen, MA, Engelke, UF, et al. Severe hypomyelination associated with increased levels of N-acetylaspartylglutamate in CSF. Neurology 2004; 62: 1503–1508.CrossRefGoogle ScholarPubMed
Wolf, NI, Harting, I, Boltshauser, E, et al. Leukoencephalopathy with ataxia, hypodontia, and hypomyelination. Neurology 2005; 64: 1461–1464.CrossRefGoogle ScholarPubMed
Wolf, NI, Harting, I, Innes, AM, et al. Ataxia, delayed dentition and hypomyelination: a novel leukoencephalopathy. Neuropediatrics 2007; 38: 64–70.CrossRefGoogle ScholarPubMed
Brenner, M, Johnson, AB, Boespflug-Tanguy, O, et al. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 2001; 27: 117–120.CrossRefGoogle ScholarPubMed
Hanefeld, FA.Alexander disease: past and present. Cell Mol Life Sci 2004; 61: 2750–2752.CrossRefGoogle ScholarPubMed
van der Knaap, MS, Naidu, S, Breiter, SN, et al. Alexander disease: diagnosis with MR imaging. AJNR Am J Neuroradiol 2001; 22: 541–552.Google ScholarPubMed
Takanashi, J, Sugita, K, Tanabe, Y, et al. Adolescent case of Alexander disease: MR imaging and MR spectroscopy. Pediatr Neurol 1998; 18: 67–70.CrossRefGoogle ScholarPubMed
Bassuk, AG, Joshi, A, Burton, BK, et al. Alexander disease with serial MRS and a new mutation in the glial fibrillary acidic protein gene. Neurology 2003; 61: 1014–1015.CrossRefGoogle Scholar
Brockmann, K, Dechent, P, Meins, M, et al. Cerebral proton magnetic resonance spectroscopy in infantile Alexander disease. J Neurol 2003; 250: 300–306.CrossRefGoogle ScholarPubMed
van der Knaap, MS, Pronk, JC, Scheper, GC.Vanishing white matter disease. Lancet Neurol 2006; 5: 413–423.CrossRefGoogle ScholarPubMed
Hanefeld, F, Holzbach, U, Kruse, B, et al. Diffuse white matter disease in three children: an encephalopathy with unique features on magnetic resonance imaging and proton magnetic resonance spectroscopy. Neuropediatrics 1993; 24: 244–248.CrossRefGoogle Scholar
Brück, W, Herms, J, Brockmann, K, et al. Myelinopathia centralis diffusa (vanishing white matter disease): evidence of apoptotic oligodendrocyte degeneration in early lesion development. Ann Neurol 2001; 50: 532–536.CrossRefGoogle Scholar
Schiffmann, R, Moller, JR, Trapp, BD, et al. Childhood ataxia with diffuse central nervous system hypomyelination. Ann Neurol 1994; 35: 331–340.CrossRefGoogle ScholarPubMed
van der Knaap, MS, Barth, PG, Gabreels FJ, M, et al. A new leukoencephalopathy with vanishing white matter. Neurology 1997; 48: 845–855.CrossRefGoogle Scholar
Fogli, A, Boespflug-Tanguy O. The large spectrum of eIF2B-related diseases. Biochem Soc Trans 2006; 34: 22–29.CrossRefGoogle ScholarPubMed
van der Knaap, MS, Kamphorst, W, Barth, PG, et al. Phenotypic variation in leukoencephalopathy with vanishing white matter. Neurology 1998; 51: 540–547.CrossRefGoogle ScholarPubMed
Tedeschi, G, Schiffmann, R, Barton, NW, et al. Proton magnetic resonance spectroscopic imaging in childhood ataxia with diffuse central nervous system hypomyelination. Neurology 1995; 45: 1526–1532.CrossRefGoogle ScholarPubMed
Dreha-Kulaczewski, SF, Dechent, P, Finsterbusch, J, et al. Early reduction of total N-acetyl-aspartate-compounds in patients with classical vanishing white matter disease. A long-term follow-up MRS study. Pediatr Res 2008; 63: 444–449.Google ScholarPubMed
van der Knaap, MS, Barth, PG, Stroink, H, et al. Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol 1995; 37: 324–334.CrossRefGoogle Scholar
Leegwater, PA, Yuan, BO, van der Steen, J, et al. Mutations of MLC1 (KIAA0027), encoding a putative membrane protein, cause megalencephalic leukoencephalopathy with subcortical cysts. Am J Hum Genet 2001; 68: 831–838.CrossRefGoogle Scholar
Mejaski-Bosnjak, V, Besenski, N, Brockmann, K, et al. Cystic leukoencephalopathy in a megalencephalic child: clinical and magnetic resonance imaging/magnetic resonance spectroscopy findings. Pediatr Neurol 1997; 16: 347–350.CrossRefGoogle Scholar
Brockmann, K, Finsterbusch, J, Terwey, B, et al. Megalencephalic leukoencephalopathy with subcortical cysts in an adult: quantitative proton MR spectroscopy and diffusion tensor MRI. Neuroradiology 2003; 45: 137–142.CrossRefGoogle Scholar
De Stefano, N, Balestri, P, Dotti, MT, et al. Severe metabolic abnormalities in the white matter of patients with vacuolating megalencephalic leukoencephalopathy with subcortical cysts. A proton MR spectroscopic imaging study. J Neurol 2001; 248: 403–409.CrossRefGoogle ScholarPubMed
Tu, YF, Chen, CY, Huang, CC, et al. Vacuolating megalencephalic leukoencephalopathy with mild clinical course validated by diffusion tensor imaging and MR spectroscopy. AJNR Am J Neuroradiol 2004; 25: 1041–1045.Google ScholarPubMed
van der Knaap, MS, Wevers, RA, Struys, EA, et al. Leukoencephalopathy associated with a disturbance in the metabolism of polyols. Ann Neurol. 1999; 46: 925–928.3.0.CO;2-J>CrossRefGoogle Scholar
Huck, JH, Verhoeven, NM, Struys, EA, et al. Ribose-5-phosphate isomerase deficiency: new inborn error in the pentose phosphate pathway associated with a slowly progressive leukoencephalopathy. Am J Hum Genet 2004; 74: 745–751.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×