Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgements
- Introduction
- Part I General Properties of Fields; Scalars and Gauge Fields
- 1 Short Review of Classical Mechanics
- 2 Symmetries, Groups, and Lie algebras; Representations
- 3 Examples: The Rotation Group and SU(2)
- 4 Review of Special Relativity: Lorentz Tensors
- 5 Lagrangeans and the Notion of Field; Electromagnetism as a Field Theory
- 6 Scalar Field Theory, Origins, and Applications
- 7 Nonrelativistic Examples:WaterWaves and Surface Growth
- 8 Classical Integrability: Continuum Limit of Discrete, Lattice, and Spin Systems
- 9 Poisson Brackets for Field Theory and Equations of Motion: Applications
- 10 Classical Perturbation Theory and Formal Solutions to the Equations of Motion
- 11 Representations of the Lorentz Group
- 12 Statistics, Symmetry, and the Spin-Statistics Theorem
- 13 Electromagnetism and the Maxwell Equation; Abelian Vector Fields; Proca Field
- 14 The Energy-Momentum Tensor
- 15 Motion of Charged Particles and ElectromagneticWaves; Maxwell Duality
- 16 The Hopfion Solution and the Hopf Map
- 17 Complex Scalar Field and Electric Current: Gauging a Global Symmetry
- 18 The Noether Theoremand Applications
- 19 Nonrelativistic and Relativistic Fluid Dynamics: Fluid Vortices and Knots
- Part II Solitons and Topology; Non-Abelian Theory
- Part III Other Spins or Statistics; General Relativity
- References
- Index
7 - Nonrelativistic Examples:WaterWaves and Surface Growth
from Part I - General Properties of Fields; Scalars and Gauge Fields
Published online by Cambridge University Press: 04 March 2019
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgements
- Introduction
- Part I General Properties of Fields; Scalars and Gauge Fields
- 1 Short Review of Classical Mechanics
- 2 Symmetries, Groups, and Lie algebras; Representations
- 3 Examples: The Rotation Group and SU(2)
- 4 Review of Special Relativity: Lorentz Tensors
- 5 Lagrangeans and the Notion of Field; Electromagnetism as a Field Theory
- 6 Scalar Field Theory, Origins, and Applications
- 7 Nonrelativistic Examples:WaterWaves and Surface Growth
- 8 Classical Integrability: Continuum Limit of Discrete, Lattice, and Spin Systems
- 9 Poisson Brackets for Field Theory and Equations of Motion: Applications
- 10 Classical Perturbation Theory and Formal Solutions to the Equations of Motion
- 11 Representations of the Lorentz Group
- 12 Statistics, Symmetry, and the Spin-Statistics Theorem
- 13 Electromagnetism and the Maxwell Equation; Abelian Vector Fields; Proca Field
- 14 The Energy-Momentum Tensor
- 15 Motion of Charged Particles and ElectromagneticWaves; Maxwell Duality
- 16 The Hopfion Solution and the Hopf Map
- 17 Complex Scalar Field and Electric Current: Gauging a Global Symmetry
- 18 The Noether Theoremand Applications
- 19 Nonrelativistic and Relativistic Fluid Dynamics: Fluid Vortices and Knots
- Part II Solitons and Topology; Non-Abelian Theory
- Part III Other Spins or Statistics; General Relativity
- References
- Index
Summary
We present examples of nonrelativistic field theories, starting with the nonrelativistic limit of a scalar field with canonical kinetic term. Then we present hydrodynamics, the study of fluids, with the goal of describing water waves. We derive the KdV equation and its soliton from the description of water waves. The KS equation is also described. Finally, we describe surface growth and the KPZ equation.
Keywords
- Type
- Chapter
- Information
- Classical Field Theory , pp. 65 - 73Publisher: Cambridge University PressPrint publication year: 2019