Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T20:05:41.587Z Has data issue: false hasContentIssue false

27 - Spatial cognitive abilities in foraging chimpanzees

Published online by Cambridge University Press:  25 November 2019

Christophe Boesch
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Roman Wittig
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Catherine Crockford
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Linda Vigilant
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Tobias Deschner
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Fabian Leendertz
Affiliation:
Robert Koch-Institut, Germany
Get access

Summary

After observing wild chimpanzees in Taï National Park, Côte d’Ivoire, for years, Professor Christophe Boesch and collaborators noticed behaviours indicating that the chimpanzees knew where they were heading hours before arrival. One can assume that animals living in such complex environments should possess developed cognitive abilities. To study their intelligence in the wild, we followed adult chimpanzees for long consecutive periods and collected detailed behavioural data including measurements of travel direction and distances, and feeding tree properties. We examined their spatial orientation abilities and found they travelled in a goal-directed manner, using different directions to reach the same feeding tree rather than using the same paths, which was consistent with the use of a Euclidean map. The content of their spatiotemporal memory, and revisiting and ranging behaviour, revealed that chimpanzees remembered the characteristics of the feeding trees and feeding experiences, and that the nutrient content of fruit impacted their travel path. Our investigations revealed that chimpanzees used many food-finding strategies, adding pieces to the puzzle of our closest relatives.

Type
Chapter
Information
The Chimpanzees of the Taï Forest
40 Years of Research
, pp. 440 - 450
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asensio, N., Brockelman, W., Malaivijitnond, S. & Reichard, U. (2011). Gibbon travel paths are goal oriented. Animal Cognition, 14, 395405. DOI 10.1007/s10071-010–0374–1CrossRefGoogle ScholarPubMed
Ban, D. S., Boesch, C. & Janmaat, R. L. K. (2014). Taï chimpanzees anticipate revisiting high-valued fruit trees from further distances. Animal Cognition, 17, 13531364. DOI 10.1007/s10071-014–0771–yGoogle Scholar
Ban, D. S., Boesch, C. & Janmaat, R. L. K. (2016). Taï chimpanzees change their travel direction for rare feeding trees with fatty fruits. Animal Behaviour, 118, 135147.Google Scholar
Barrett, L. (1995). Foraging strategies, ranging patterns and territoriality among grey-cheeked mangabeys in Kibale forest, Western Uganda. PhD thesis, University College London.Google Scholar
Beatty, W. W. & Shavalia, D. A. (1980). Spatial memory in rats: Time course of working memory and effect of anesthetics. Behavioral and Neural Biology, 28, 454462.Google Scholar
Boesch, C. & Boesch, H. (1984). Mental map in wild chimpanzees: an analysis of hammer transports for nut cracking. Primates, 25, 160170.Google Scholar
Boesch, C. & Boesch-Achermann, H. (2000). The Chimpanzees of the Taï Forest: Behavioural Ecology and Evolution. Oxford: Oxford University Press.Google Scholar
Boesch, C., Goné Bi, Z. B., Anderson, D. & Stahl, D. (2006). Food choice in Taï chimpanzees: Are cultural differences present? In Hohmann, G., Robbins, M. & Boesch, C. (eds.), Feeding Ecology in Apes and Other Primates (pp. 365399). Cambridge: Cambridge University Press.Google Scholar
Byrne, R. W. (2000). How monkeys find their way: Leadership, coordination, and cognitive maps of African baboons. In Boinski, S. & Garber, P. A. (eds.), On the Move. How and Why Animals Travel in Groups (pp. 491518). Chicago: University of Chicago Press.Google Scholar
Calvert, J. J. (1985). Food selection by Western gorillas (Gorilla gorilla gorilla) in relation to food chemistry. Oecologia, 65, 236246.Google Scholar
Carlson, B. A., Rothman, J. M. & Mitani, J. C. (2013). Diurnal variation in nutrients and chimpanzee foraging behavior. American Journal of Primatology, 75, 342349.CrossRefGoogle ScholarPubMed
Chapman, C.A., Chapman, L.J., Struhsaker, T.T., Zanne, A.E., Clark, C.J. & Poulsen, J.R. (2005). A long-term evaluation of fruiting phenology: importance of climate change. Journal of Tropical Ecology, 21, 3145.CrossRefGoogle Scholar
Chapman, C.A., Wrangham, R.W., Chapman, L.J., Kennard, D.K. & Zanne, A.E. (1999). Fruit and flower phenology at two sites in Kibale National Park, Uganda. Journal of Tropical Ecology, 15, 189211.Google Scholar
Chivers, J.D. (1998). Measuring food intake in wild animals: primates. Proceedings of the Nutrition Society, 57, 321332.Google Scholar
Cook, R. G., Brown, M. F. & Riley, D. A. (1985). Flexible memory processing by rats: Use of prospective and retrospective information in the radial maze. Animal Behaviour Processes, 11, 453469.Google Scholar
Crawford, M. A. (1992). The role of dietary fatty acids in biology: Their place in the evolution of the human brain. Nutrition Reviews, 50, 311.Google Scholar
Cunningham, E. & Janson, C. (2007). Integrating information about location and value of resources by white-faced saki monkeys (Pithecia pithecia). Animal Cognition, 10, 293304.CrossRefGoogle ScholarPubMed
Dew, J. L. & Boubli, J. P. (2005). Tropical Fruits and Frugivores: The Search for Strong Interactors. Dordrecht: Springer.Google Scholar
Di Fiore, A. & Suarez, S. A. (2007). Route-based travel and shared routes in sympatric spider and woolly monkeys: Cognitive and evolutionary implications. Animal Cognition, 10, 317329.CrossRefGoogle ScholarPubMed
Doran-Sheehy, D. M., Mongo, P., Lodwick, J. & Conklin-Brittain, N. L. (2009). Male and female western gorilla diet: Preferred foods, use of fallback resources, and implications for ape versus old world monkey foraging strategies. American Journal of Physical Anthropology, 140, 727738.Google Scholar
Emlen, J. M. (1966). The role of time and energy in food preference. American Naturalist, 100, 611617.Google Scholar
Fagan, W. F., Lewis, M. A., Auger-Méhé, M., Avgar, T., Benhamou, S., Breed, G., et al. (2013). Spatial memory and animal movement. Ecology Letters, 16, 13161329.Google Scholar
FAO. (2003). Food energy – Methods of analysis and conversion factors. Report of a technical workshop. Food and Nutrition Paper 77. Rome: FAO.Google Scholar
Fleagle, J. G. (1988). Primates: Adaptation and Evolution. San Diego: Academic Press.Google Scholar
Fleagle, J. G. & Reed, K. E. (1996). Comparing primate communities: A multivariate approach. Journal of Human Evolution, 30, 489510.Google Scholar
Frankie, G. W., Baker, H. G. & Opler, P. A. (1974). Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. The Journal of Ecology, 62, 881919.Google Scholar
Ganas, J., Ortmann, S. & Robbins, M. M. (2008). Food preferences of wild mountain gorillas. American Journal of Primatology, 70, 927938.CrossRefGoogle ScholarPubMed
Garber, P. A. (1988). Foraging decisions during nectar-feeding by tamarin monkey (Saguinus mystax and Saguinus fuscicollis). Biotropica, 20, 100106.CrossRefGoogle Scholar
Garber, P. A. (1989). Role of spatial memory in primate foraging patterns: Saguinus mystax and Saguinus fuscicollis. American Journal of Primatology, 19, 203216.CrossRefGoogle ScholarPubMed
Gentry, A. H. (1983). Dispersal ecology and diversity in neotropical forest communities. In Kubitzki, K. (ed.), Dispersal and Distribution (pp. 303314). Berlin: Verlag Paul Parey.Google Scholar
Gill, F. B. (1988). Trapline foraging by hermit hummingbirds: Competition for an undefended, renewable resource. Ecology, 69, 19331942.Google Scholar
Glander, K. E. (1978). Howling monkey feeding behavior and plant secondary compounds: a study of strategies. In Montgomery, G. (ed.), The Ecology of Arboreal Folivores (pp. 561574). Washington, DC: Smithsonian Institution.Google Scholar
Goné Bi, Z. B. (2007). Régime alimentaire des chimpanzés, distribution spatiale et phénologie des plantes dont les fruits sont consommés par les chimpanzés du Parc National de Taï, en Côte d’Ivoire. PhD dissertation, Université de Cocody.Google Scholar
Janmaat, K. R. L., Byrne, R. W. & Zuberbühler, K. (2006). Evidence for a spatial memory of fruiting states of rainforest trees in wild mangabeys. Animal Behaviour, 72, 797807.Google Scholar
Janmaat, K. R. L. & Chancellor, R. L. (2010). Exploring new areas: How important is long-term spatial memory for mangabey (Lophocebus albigena johnstonii) foraging efficiency? International Journal of Primatology, 31,863886.Google Scholar
Janmaat, K. R. L., Chapman, C. A., Meijer, R. & Zuberbühler, K. (2012). The use of fruiting synchrony by foraging mangabey monkeys: A ‘simple tool’ to find fruit. Animal Cognition, 15, 8396.CrossRefGoogle ScholarPubMed
Janson, C. (1998). Experimental evidence for spatial memory in foraging wild capuchin monkeys, Cebus apella. Animal Behaviour, 55, 12291243.Google Scholar
Janson, C. H. (2007). Experimental evidence for route integration and strategic planning in wild capuchin monkeys. Animal Cognition, 10, 341356.Google Scholar
Janson, C. H. & Byrne, R. W. (2007). What wild primates know about resources: Opening up the black box. Animal Cognition, 10, 357367.Google Scholar
Janson, C. H. & Chapman, C. A. (1999). Primate resources and the determination of primate community structure. In Fleagle, J. G., Janson, C. & Reed, K. (eds.), Primate Communities (pp. 237267). Cambridge: Cambridge University Press.Google Scholar
Jenkins, D. J., Wolever, T. M., Rao, A. V., Hegele, R. A., Mitchell, S. J., Ranson, T. P., et al. (1993). Effect on blood lipids of very high intakes of fiber in diets low in saturated fat and cholesterol. New England Journal of Medicine, 329, 2126.Google Scholar
MacKinnon, J. (1974). The behaviour and ecology of wild orang-utans (Pongo pygmaeus). Animal Behaviour, 22, 374.Google Scholar
Martin, P. & Bateson, P. (2007). Measuring Behaviour: An Introductory Guide. Cambridge: Cambridge University Press.Google Scholar
Martin-Ordas, G., Haun, D., Colmenares, F. & Call, J. (2010). Keeping track of time: Evidence for episodic-like memory in great apes. Animal Cognition, 13, 331340.Google Scholar
Matsumoto-Oda, A. & Hayashi, Y. (1999). Nutritional aspects of fruit choice by chimpanzees. Folia Primatologica, 70, 154162.Google Scholar
Maynard, L. A., Loosli, J. K., Hintz, H. F. & Warner, R. G. (1979). Animal Nutrition. New York: McGraw Hill.Google Scholar
Menzel, C. R. & Beck, B. B. (2000). Homing and detour behavior in golden lion tamarin social groups. In Boinski, S. & Garber, P. A. (eds.), On the Move. How and Why Animals Travel in Groups (pp. 299326). Chicago:University of Chicago Press.Google Scholar
Menzel, E. W. (1973). Chimpanzee spatial memory organization. Science, 182, 943945.Google Scholar
Milton, K. (1981). Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. American Anthropologist, 83, 534548.Google Scholar
Milton, K. (2000). Quo vadis? Tactics of food search and group movements in primates and other animals. In Boinski, S. & Garber, P. A. (eds.), On the Move. How and Why Animals Travel in Groups (pp. 375417). Chicago: University of Chicago Press.Google Scholar
Morris, R. G. M. (1981). Spatial localization does not require the presence of local cues. Learn and Motivation, 12, 239260.Google Scholar
Myers, N. (1980). Conversion of Tropical Moist Forests. Washington, DC: National Academy of Sciences.Google Scholar
Normand, E., Ban, S. D. & Boesch, C. (2009). Forest chimpanzees (Pan troglodytes verus) remember the location of numerous fruit trees. Animal Cognition, 12, 797807.Google Scholar
Normand, E. & Boesch, C. (2009). Sophisticated Euclidean maps in forest chimpanzees. Animal Behaviour, 77, 11951201.Google Scholar
Noser, R. & Byrne, R. W. (2007). Travel routes and planning of visits to out-of-sight resources in wild chacma baboons, Papio ursinus.Animal Behaviour, 73, 257266.Google Scholar
O’Keefe, J. & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Oxford University Press.Google Scholar
Remis, M. J. (2002). Food preferences among captive western gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes). International Journal of Primatology, 23, 231249.Google Scholar
Reynolds, V., Plumptre, A. J., Greenham, J. & Harborne, J. (1998). Condensed tannins and sugars in the diet of chimpanzees (Pan troglodytes schweinfurthii) in the Budongo Forest, Uganda. Oecologia, 115, 331336.CrossRefGoogle ScholarPubMed
Richard, A. F. (1985). Primate diets: Patterns and principles. In Richard, A. F. (ed.), Primates in Nature (pp. 163205). New York: W. H. Freeman.Google Scholar
Rogers, M. E., Maisels, F., Williamson, E., Fernandez, M. & Tutin, C. E. G. (1990). Gorilla diet in the Lope Reserve, Gabon: A nutritional analysis. Oecologia, 84, 326339.CrossRefGoogle Scholar
Sayers, K. & Menze, C. R. (2012). Memory and foraging theory: Chimpanzee utilization of optimality heuristics in the rank-order recovery of hidden foods. Animal Behaviour, 84, 795803.Google Scholar
Schoener, T. W. (1971). Theory of feeding strategies. Annual Review of Ecology and Systematics, 2, 369404.Google Scholar
Sigg, J. & Stolba, A. (1981). Home range and daily march in a hamadryas baboon troop. Folia Primatologica, 36, 4075.Google Scholar
Slavin, J. L. (2005). Dietary fiber and body weight. Nutrition, 21, 411418.CrossRefGoogle ScholarPubMed
Terborgh, J. (1986). Community aspects of frugivory in tropical forests. In Estrada, A. & Fleming, T. H. (eds.), Frugivores and Seed Dispersal (pp. 371386). Dordrecht: Dr W. Junk Publishers.CrossRefGoogle Scholar
Thorpe, C. M., Jacova, C. & Wilkie, D. M. (2004). Some pitfalls in measuring memory in animals. Neuroscience and Biobehavioral Reviews, 28, 711718.CrossRefGoogle ScholarPubMed
Tolman, E. C. (1948). Cognitive mapsin rats and men. Psychological Review, 55, 189208.Google Scholar
Valero, A. & Byrne, R. W. (2007). Spider monkey ranging patterns in Mexican subtropical forest: Do travel routes reflect planning? Animal Cognition, 10, 305315.Google Scholar
van Schaik, C. P., van Noordwijk, M. A., De Boer, R. J. & Den Tonkelaar, I. (1983). The effect of group size on time budgets and social behaviour in wild long-tailed macaques (Macaca fascicularis). Behavioral Ecology and Sociobiology, 13, 173181.CrossRefGoogle Scholar
Wrangham, R. W., Conklin-Brittain, N. L. & Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. I. Antifeedants.International Journal of Primatology, 19, 949970.Google Scholar
Zentall, T. R., Steirn, J. N. & Jackson-Smith, P. (1990). Memory strategies in pigeons’ performance of a radial-arm-maze analog task. Journal of Experimental Psychology. Animal Behavior Processes, 16, 358371.CrossRefGoogle Scholar
Zuberbühler, K. & Janmaat, K. R. L. (2010). Foraging cognition in nonhuman primates. In Platt, M. L. & Ghazanfar, A. A. (eds.), Primate Neuroethology (pp. 6483). Oxford: Oxford University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×