Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T10:24:01.897Z Has data issue: false hasContentIssue false

4 - Enzyme-catalyzed reactions

Published online by Cambridge University Press:  05 June 2012

Daniel A. Beard
Affiliation:
Medical College of Wisconsin
Hong Qian
Affiliation:
University of Washington
Get access

Summary

Overview

There is almost no biochemical reaction in a cell that is not catalyzed by an enzyme. (An enzyme is a specialized protein that increases the flux of a biochemical reaction by facilitating a mechanism [or mechanisms] for the reaction to proceed more rapidly than it would without the enzyme.) While the concept of an enzyme-mediated kinetic mechanism for a biochemical reaction was introduced in the previous chapter, this chapter explores the action of enzymes in greater detail than we have seen so far. Specifically, catalytic cycles associated with enzyme mechanisms are examined; non-equilibrium steady state and transient kinetics of enzyme-mediated reactions are studied; an asymptotic analysis of the fast and slow timescales of the Michaelis–Menten mechanism is presented; and the concepts of cooperativity and hysteresis in enzyme kinetics are introduced.

While the majority of these concepts are introduced and illustrated based on single-substrate single-product Michaelis–Menten-like reaction mechanisms, the final section details examples of mechanisms for multi-substrate multi-product reactions. Such mechanisms are the backbone for the simulation and analysis of biochemical systems, from small-scale systems of Chapter 5 to the large-scale simulations considered in Chapter 6. Hence we are about to embark on an entire chapter devoted to the theory of enzyme kinetics.

Type
Chapter
Information
Chemical Biophysics
Quantitative Analysis of Cellular Systems
, pp. 69 - 104
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×