Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-02T21:42:02.072Z Has data issue: false hasContentIssue false

Chapter 2 - PET probes for oncology

from Part I - General concepts of PET and PET/CT imaging

Published online by Cambridge University Press:  05 September 2012

Victor H. Gerbaudo
Affiliation:
Brigham and Women's Hospital, Harvard Medical School
Get access

Summary

Introduction

Although current clinical PET imaging of cancer predominantly utilizes the glycolysis probe, 18F-fluorodeoxyglucose (FDG), a large effort is being made to discover, develop and clinically implement novel PET probes to evaluate other aspects of the tumor microenvironment and cancer cell biology. In this chapter, we discuss the major areas of novel PET probe development with emphasis on those probes that have been implemented in clinical studies and may be in routine use in some PET imaging centers. We have structured each section with an introduction to the significance of the targeted biological process, a brief description of the synthesis of the probe, and a summary of the reported clinical applications. It is shown that PET probes represent a growing armamentarium for use in diagnosing and monitoring treatment of human tumors.

Significance

D-glucose is metabolized in normal living cells via glycolysis, a 10-step process ultimately forming two molecules each of pyruvate, NADH, ATP, H+, and water. In normal tissue, pyruvate is generally oxidized to CO2 in the mitochondria to form an additional 34 molecules of ATP. Tumors exhibit enhanced glycolysis and conversion of pyruvate to lactate even in the presence of oxygen. This phenomenon was first noted by Warburg (1) and recently linked to expression of the M2 splice isoform of pyruvate kinase (2). As a consequence of decreased ATP production, glucose uptake is increased to meet the energy requirements of rapid cell division. The upregulation of glucose uptake in tumor tissue relative to normal tissue provides an effective means for differentiating a variety of cancers including lymphoma (Hodgkin’s and non-Hodgkin’s), colorectal, head and neck, breast, lung, and melanoma. Largely due to their biochemical association with tumor viability, glucose-derived PET probes have been studied for over 30 years and represent one of the most clinically utilized classes of radiopharmaceuticals.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Warburg, OOn the origin of cancer cellsScience 1956 123 309CrossRefGoogle ScholarPubMed
Christofk, HRVander Heiden, MGHarris, MHThe M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growthNature 2008 452 230CrossRefGoogle ScholarPubMed
Phelps, MPET: Molecular Imaging and its Biological ApplicationsNew YorkSpringer 2004CrossRefGoogle Scholar
Williams, GKolodny, GMSuppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate dietAm J Roentgenol 2008 190 W151CrossRefGoogle ScholarPubMed
Hamacher, KCoenen, HHStocklin, GEfficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitutionJ Nucl Med 1986 27 235Google ScholarPubMed
Jeong, SYLee, KSShin, KMEfficacy of PET/CT in the characterization of solid or partly solid solitary pulmonary nodulesLung Cancer 2008 61 186CrossRefGoogle ScholarPubMed
Stumpe, KDUrbinelli, MSteinert, HCWhole-body positron emission tomography using fluorodeoxyglucose for staging of lymphoma: effectiveness and comparison with computed tomographyEur J Nucl Med 1998 25 721CrossRefGoogle ScholarPubMed
Moog, FKotzerke, JReske, SNFDG PET can replace bone scintigraphy in primary staging of malignant lymphomaJ Nucl Med 1999 40 1407Google ScholarPubMed
Haberkorn, UStrauss, LGDimitrakopoulou, APET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapyJ Nucl Med 1991 32 1485Google ScholarPubMed
Singhal, TNarayanan, TKJain, VMukherjee, JMantil, J11C-L-methionine positron emission tomography in the clinical management of cerebral gliomasMol Imaging Biol 2008 10 1CrossRefGoogle ScholarPubMed
Langstrom, BLundqvist, H.The preparation of 11C-methyl iodide and its use in the synthesis of 11C-methyl-L-methionineInt J Appl Radiat Isot 1976 27 357CrossRefGoogle ScholarPubMed
Comar, DCartron, JMaziere, MMarazano, CLabelling and metabolism of methionine-methyl-11 CEur J Nucl Med 1976 1 11CrossRefGoogle ScholarPubMed
Davis, JYano, YCahoon, JBudinger, TFPreparation of 11C-methyl iodide and L-[S-methyl-11C]methionine by an automated continuous flow processInt J Appl Radiat Isot 1982 33 363CrossRefGoogle Scholar
Pascali, CBogni, AIwata, RHigh efficiency preparation of L-[S-methyl-11C]methionine by on-column [11C]methylation on C18 Sep-PakJ Label Comp Radiopharm 1999 42 7153.0.CO;2-3>CrossRefGoogle Scholar
Gomez, VGispert, JDAmador, VLlop, JNew method for routine production of L-[methyl-11C]methionine: in loop synthesisJ Label Comp Radiopharm 2008 51 83CrossRefGoogle Scholar
Leskinen-Kallio, SLindholm, PLapela, MJoensuu, HNordman, EImaging of head and neck tumors with positron emission tomography and [11C]methionineInt J Radiat Oncol Biol Phys 1994 30 1195CrossRefGoogle Scholar
Lindholm, PLeskinen, SNågren, KCarbon-11-methionine PET imaging of malignant melanomaJ Nucl Med 1995 36 1806Google ScholarPubMed
Leskinen-Kallio, SRuotsalainen, UNågren, KTeräs, MJoensuu, HUptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin’s lymphoma: a PET studyJ Nucl Med 1991 32 1211Google ScholarPubMed
Macapinlac, HAHumm, JLAkhurst, TDifferential metabolism and pharmacokinetics of L-[1-(11)C]-methionine and 2-[(18)F] fluoro-2-deoxy-D-glucose (FDG) in androgen independent prostate cancerClin Positron Imaging 1999 2 173CrossRefGoogle Scholar
Lindholm, PLapela, MNågren, KPreliminary study of carbon-11 methionine PET in the evaluation of early response to therapy in advanced breast cancerNucl Med Commun 2009 30 30CrossRefGoogle ScholarPubMed
Firnau, GGarnett, ESSourkes, TLMissala, K(18F) Fluoro-Dopa: a unique gamma emitting substrate for Dopa decarboxylaseExperientia 1975 31 1254CrossRefGoogle ScholarPubMed
Namavari, MBishop, ASatyamurthy, NBida, GBarrio, JRRegioselective radiofluorodestannylation with [18F]F2 and [18F]CH3COOF: a high yield synthesis of 6-[18F]Fluoro-L-dopaInt J Rad Appl Instrum A 1992 43 989CrossRefGoogle Scholar
Lemaire, CDamhaut, PPlenevaux, AComar, D.Enantioselective synthesis of 6-[fluorine-18]-fluoro-L-dopa from no-carrier-added fluorine-18-fluorideJ Nucl Med 1994 35 1996Google ScholarPubMed
Becherer, AKaranikas, GSzabó, MBrain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionineEur J Nucl Med Mol Imaging 2003 30 1561CrossRefGoogle Scholar
Chen, WSilverman, DHDelaloye, S18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracyJ Nucl Med 2006 47 904Google ScholarPubMed
Becherer, ASzabó, MKaranikas, GImaging of advanced neuroendocrine tumors with (18)F-FDOPA PETJ Nucl Med 2004 45 1161Google ScholarPubMed
Wester, HJHerz, MWeber, WSynthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imagingJ Nucl Med 1999 40 205Google Scholar
Oldendorf, WHBrain uptake of radiolabeled amino acids, amines, and hexoses after arterial injectionAm J Physiol 1971 221 1629Google ScholarPubMed
Zuhayra, MAlfteimi, AForstner, CVNew approach for the synthesis of [18F]fluoroethyltyrosine for cancer imaging: simple, fast, and high yielding automated synthesisBioorg Med Chem 2009 17 7441CrossRefGoogle Scholar
Pöpperl, GKreth, FWHerms, JAnalysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods?J Nucl Med 2006 47 393Google ScholarPubMed
Floeth, FWPauleit, DSabel, MPrognostic value of O-(2–18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade gliomaJ Nucl Med 2007 48 519CrossRefGoogle Scholar
Pauleit, DFloeth, FHamacher, KO-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomasBrain 2005 128 678CrossRefGoogle ScholarPubMed
Pöpperl, GGötz, CRachinger, WValue of O-(2-[18F]fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent gliomaEur J Nucl Med Mol Imaging 2004 31 1464CrossRefGoogle Scholar
Pauleit, DStoffels, GSchaden, WPET with O-(2–18F-Fluoroethyl)-L-Tyrosine in peripheral tumors: first clinical resultsJ Nucl Med 2005 46 411Google Scholar
Shoup, TMOlson, JHoffman, JMSynthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumorsJ Nucl Med 1999 40 331Google Scholar
Schuster, DMVotaw, JRNieh, PTInitial experience with the radiotracer anti-1-amino-3–18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinomaJ Nucl Med 2007 48 56Google ScholarPubMed
Jani, ABFox, THWhitaker, DSchuster, DMCase study of anti-1-amino-3-F-18 fluorocyclobutane-1-carboxylic acid (anti-[F-18] FACBC) to guide prostate cancer radiotherapy target designClin Nucl Med 2009 34 279CrossRefGoogle ScholarPubMed
Bading, JRShields, AFImaging of cell proliferation: status and prospectsJ Nucl Med 2008;49 2 64S
Mankoff, DAShields, AFKrohn, KAPET imaging of cellular proliferationRadiol Clin North Am 2005 43 153CrossRefGoogle ScholarPubMed
Grierson, JRShields, AFRadiosynthesis of 3′-deoxy-3′-[(18)F]fluorothymidine: [(18)F]FLT for imaging of cellular proliferation in vivoNucl Med Biol 2000 27 143CrossRefGoogle ScholarPubMed
Martin, SJEisenbarth, JAWagner-Utermann, UA new precursor for the radiosynthesis of [18F]FLTNucl Med Biol 2002 29 263CrossRefGoogle Scholar
Buck, AKHalter, GSchirrmeister, HImaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDGJ Nucl Med 2003 44 1426Google ScholarPubMed
Buck, AKBommer, MStilgenbauer, SMolecular imaging of proliferation in malignant lymphomaCancer Res 2006 66 11055CrossRefGoogle ScholarPubMed
Choi, SJKim, JSKim, JH[18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumorsEur J Nucl Med Mol Imaging 2005 32 653CrossRefGoogle ScholarPubMed
Kenny, LMVigushin, DMAl-Nahhas, AQuantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methodsCancer Res 2005 65 10104CrossRefGoogle Scholar
Kameyama, RYamamoto, YIzuishi, KDetection of gastric cancer using 18F-FLT PET: comparison with 18F-FDG PETEur J Nucl Med Mol Imaging 2009 36 382CrossRefGoogle ScholarPubMed
Sugiyama, MSakahara, HSato, KEvaluation of 3′-deoxy-3′-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in miceJ Nucl Med 2004 45 1754Google ScholarPubMed
Waldherr, CMellinghoff, IKTran, CMonitoring antiproliferative responses to kinase inhibitor therapy in mice with 3′-deoxy-3′-18F-fluorothymidine PETJ Nucl Med 2005 46 114Google ScholarPubMed
Sun, HSloan, AMangner, TJImaging DNA synthesis with [18F]FMAU and positron emission tomography in patients with cancerEur J Nucl Med Mol Imaging 2005 32 15CrossRefGoogle ScholarPubMed
Tu, ZXu, JJones, LAFluorine-18-labeled benzamide analogues for imaging the sigma2 receptor status of solid tumors with positron emission tomographyJ Med Chem 2007 50 3194CrossRefGoogle ScholarPubMed
Hayes, MJMoss, SEAnnexins and diseaseBiochem Biophys Res Commun 2004 322 1166CrossRefGoogle ScholarPubMed
Belhocine, TSteinmetz, NHustinx, RIncreased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosisClin Cancer Res 2002 8 2766Google ScholarPubMed
Murakami, YTakamatsu, HTaki, J18F-labelled annexin V: a PET tracer for apoptosis imagingEur J Nucl Med Mol Imaging 2004 31 469CrossRefGoogle ScholarPubMed
Reshef, AShirvan, AWaterhouse, RNMolecular imaging of neurovascular cell death in experimental cerebral stroke by PETJ Nucl Med 2008 49 1520CrossRefGoogle ScholarPubMed
Kurhanewicz, JVigneron, DBHricak, HThree-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolutionRadiology 1996 198 795CrossRefGoogle ScholarPubMed
Ronen, SMRushkin, EDegani, HLipid metabolism in T47D human breast cancer cells: 31P and 13C-NMR studies of choline and ethanolamine uptakeBiochim Biophys Acta 1991 1095 5CrossRefGoogle ScholarPubMed
Onodera, KOkubo, AYasumoto, K31P nuclear magnetic resonance analysis of lung cancer: the perchloric acid extract spectrumJpn J Cancer Res 1986 77 1201Google ScholarPubMed
Yanagawa, TWatanabe, HInoue, TCarbon-11 choline positron emission tomography in musculoskeletal tumors: comparison with fluorine-18 fluorodeoxyglucose positron emission tomographyJ Comput Assist Tomogr 2003 27 175CrossRefGoogle ScholarPubMed
Torizuka, TKanno, TFutatsubashi, MImaging of gynecologic tumors: comparison of (11)C-choline PET with (18)F-FDG PETJ Nucl Med 2003 44 1051Google ScholarPubMed
Kuo, YTLi, CWChen, CYIn vivo proton magnetic resonance spectroscopy of large focal hepatic lesions and metabolite change of hepatocellular carcinoma before and after transcatheter arterial chemoembolization using 3.0-T MR scannerJ Magn Reson Imaging 2004 19 598CrossRefGoogle ScholarPubMed
Alger, JRFrank, JABizzi, AMetabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PETRadiology 1990 177 633CrossRefGoogle ScholarPubMed
Glunde, KSerkova, NJTherapeutic targets and biomarkers identified in cancer choline phospholipid metabolismPharmacogenomics 2006 7 1109CrossRefGoogle ScholarPubMed
Hara, TKosaka, NShinoura, NKondo, TPET imaging of brain tumor with [methyl-11C]cholineJ Nucl Med 1997 38 842Google Scholar
Hara, TKosaka, NKishi, HPET imaging of prostate cancer using carbon-11-cholineJ Nucl Med 1998 39 990Google ScholarPubMed
DeGrado, TRColeman, REWang, SSynthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancerCancer Res 2001 61 110Google ScholarPubMed
Hara, TKosaka, NKishi, HDevelopment of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imagingJ Nucl Med 2002 43 187Google ScholarPubMed
Hara, TYuasa, MAutomated synthesis of [11C]choline, a positron-emitting tracer for tumor imagingAppl Radiat Isot 1999 50 531CrossRefGoogle Scholar
Reischl, GBieg, CSchmiedl, OSolbach, CMachulla, HJHighly efficient automated synthesis of [(11)C]choline for multi dose utilizationAppl Radiat Isot 2004 60 835CrossRefGoogle Scholar
Kotzerke, JGschwend, JENeumaier, BPET for prostate cancer imaging: still a quandary or the ultimate solution?J Nucl Med 2002 43 200Google ScholarPubMed
de Jong, IJPruim, JElsinga, PHVaalburg, WMensink, HJ11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancerEur Urol 2003 44 32CrossRefGoogle ScholarPubMed
Jager, PLQue, THVaalburg, WCarbon-11 choline or FDG-PET for staging of oesophageal cancer?Eur J Nucl Med 2001 28 1845CrossRefGoogle ScholarPubMed
Pieterman, RMQue, THElsinga, PHComparison of (11)C-choline and (18)F-FDG PET in primary diagnosis and staging of patients with thoracic cancerJ Nucl Med 2002 43 167Google ScholarPubMed
Khan, NOriuchi, NNinomiya, HPositron emission tomographic imaging with 11C-choline in differential diagnosis of head and neck tumors: comparison with 18F-FDG PETAnn Nucl Med 2004 18 409CrossRefGoogle ScholarPubMed
Kobori, OKirihara, YKosaka, NHara, TPositron emission tomography of esophageal carcinoma using (11)C-choline and (18)F-fluorodeoxyglucose: a novel method of preoperative lymph node stagingCancer 1999 86 16383.0.CO;2-U>CrossRefGoogle ScholarPubMed
Tuncel, MSouvatzoglou, MHerrmann, K[(11)C]Choline positron emission tomography/computed tomography for staging and restaging of patients with advanced prostate cancerNucl Med Biol 2008 35 689CrossRefGoogle ScholarPubMed
Liu, DHutchinson, OCOsman, SUse of radiolabelled choline as a pharmacodynamic marker for the signal transduction inhibitor geldanamycinBr J Cancer 2002 87 783CrossRefGoogle ScholarPubMed
Breeuwsma, AJPruim, JJongen, MMIn vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancerEur J Nucl Med Mol Imaging 2005 32 668CrossRefGoogle Scholar
Ramirez de Molina, AGallego-Ortega, DSarmentero-Estrada, JCholine kinase as a link connecting phospholipid metabolism and cell cycle regulation: implications in cancer therapyInt J Biochem Cell Biol 2008 40 1753CrossRefGoogle ScholarPubMed
Nimmagadda, SGlunde, KPomper, MGBhujwalla, ZMPharmacodynamic markers for choline kinase down-regulation in breast cancer cellsNeoplasia 2009 11 477CrossRefGoogle ScholarPubMed
Bansal, AShuyan, WHara, THarris, RADegrado, TRBiodisposition and metabolism of [(18)F]fluorocholine in 9L glioma cells and 9L glioma-bearing fisher ratsEur J Nucl Med Mol Imaging 2008 35 1192CrossRefGoogle Scholar
Iwata, RPascali, CBogni, A[18F]fluoromethyl triflate, a novel and reactive [18F]fluoromethylating agent: preparation and application to the on-column preparation of [18F]fluorocholineAppl Radiat Isot 2002 57 347CrossRefGoogle ScholarPubMed
Kryza, DTadino, VFilannino, MAVilleret, GLemoucheux, LFully automated [18F]fluorocholine synthesis in the TracerLab MX FDG Coincidence synthesizerNucl Med Biol 2008 35 255CrossRefGoogle ScholarPubMed
Pascali, GD'Antonio, LBovone, PGerundini, PAugust, TOptimization of automated large-scale production of [(18)F]fluoroethylcholine for PET prostate cancer imagingNucl Med Biol 2009 36 569CrossRefGoogle Scholar
Bauman, GBelhocine, TKovacs, M(18)F-fluorocholine for prostate cancer imaging: a systematic review of the literatureProstate Cancer Prostatic Dis 2011Google Scholar
Wright, SHWunz, TMWunz, TPA choline transporter in renal brush-border membrane vesicles: energetics and structural specificityJ Membr Biol 1992 126 51CrossRefGoogle ScholarPubMed
Clary, GLTsai, CFGuynn, RWSubstrate specificity of choline kinaseArch Biochem Biophys 1987 254 214CrossRefGoogle ScholarPubMed
Haubner, RWester, HJWeber, WANoninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomographyCancer Res 2001 61 1781Google ScholarPubMed
Haubner, RWester, HJReuning, URadiolabeled alpha(v)beta3 integrin antagonists: a new class of tracers for tumor targetingJ Nucl Med 1999 40 1061Google ScholarPubMed
Haubner, RKuhnast, BMang, C[18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimatesBioconjug Chem 2004 15 61CrossRefGoogle ScholarPubMed
Schnell, OKrebs, BCarlsen, JImaging of integrin alpha(v)beta(3) expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomographyNeuro Oncol 2009 11 861CrossRefGoogle Scholar
Beer, AJNiemeyer, MCarlsen, JPatterns of alphavbeta3 expression in primary and metastatic human breast cancer as shown by 18F-Galacto-RGD PETJ Nucl Med 2008 49 255CrossRefGoogle ScholarPubMed
Beer, AJGrosu, ALCarlsen, J[18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neckClin Cancer Res 2007 13 6610CrossRefGoogle ScholarPubMed
Beer, AJLorenzen, SMetz, SComparison of integrin alphaVbeta3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDGJ Nucl Med 2008 49 22CrossRefGoogle ScholarPubMed
Chen, XPark, RTohme, MMicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using 18F- and 64Cu-labeled RGD peptideBioconjug Chem 2004 15 41CrossRefGoogle ScholarPubMed
Vaupel, PMayer, AHypoxia in cancer: significance and impact on clinical outcomeCancer Metastasis Rev 2007 26 225CrossRefGoogle ScholarPubMed
Krohn, KALink, JMMason, RPMolecular imaging of hypoxiaJ Nucl Med 2008;49 Suppl 2 129S
Lim, JLBerridge, MSAn efficient radiosynthesis of [18F]fluoromisonidazoleAppl Radiat Isot 1993 44 1085CrossRefGoogle Scholar
Lee, STScott, AMHypoxia positron emission tomography imaging with 18f-fluoromisonidazoleSemin Nucl Med 2007 37 451CrossRefGoogle ScholarPubMed
Gagel, BReinartz, PDimartino, EpO(2) Polarography versus positron emission tomography ([(18)F] fluoromisonidazole, [(18)F]-2-fluoro-2′-deoxyglucose). An appraisal of radiotherapeutically relevant hypoxiaStrahlenther Onkol 2004 180 616CrossRefGoogle Scholar
Bentzen, LKeiding, SNordsmark, MTumour oxygenation assessed by 18F-fluoromisonidazole PET and polarographic needle electrodes in human soft tissue tumoursRadiother Oncol 2003 67 339CrossRefGoogle ScholarPubMed
Valk, PEMathis, CAPrados, MDGilbert, JCBudinger, TFHypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazoleJ Nucl Med 1992 33 2133Google ScholarPubMed
Lawrentschuk, NPoon, AMFoo, SSAssessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomographyBJU Int 2005 96 540CrossRefGoogle ScholarPubMed
Gagel, BReinartz, PDemirel, C[18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility studyBMC Cancer 2006 6CrossRefGoogle Scholar
Hicks, RJRischin, DFisher, RUtility of FMISO PET in advanced head and neck cancer treated with chemoradiation incorporating a hypoxia-targeting chemotherapy agentEur J Nucl Med Mol Imaging 2005 32 1384CrossRefGoogle ScholarPubMed
Grosu, ALSouvatzoglou, MRoper, BHypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancerInt J Radiat Oncol Biol Phys 2007 69 541CrossRefGoogle ScholarPubMed
Lehtio, KOikonen, VNyman, SQuantifying tumour hypoxia with fluorine-18 fluoroerythronitroimidazole ([18F]FETNIM) and PET using the tumour to plasma ratioEur J Nucl Med Mol Imaging 2003 30 101Google ScholarPubMed
Rasey, JSHofstrand, PDChin, LKTewson, TJCharacterization of [18F]fluoroetanidazole, a new radiopharmaceutical for detecting tumor hypoxiaJ Nucl Med 1999 40 1072Google ScholarPubMed
Ziemer, LSEvans, SMKachur, AVNoninvasive imaging of tumor hypoxia in rats using the 2-nitroimidazole 18F-EF5Eur J Nucl Med Mol Imaging 2003 30 259CrossRefGoogle ScholarPubMed
Fujibayashi, YTaniuchi, HYonekura, YCopper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potentialJ Nucl Med 1997 38 1155Google ScholarPubMed
Dehdashti, FGrigsby, PWMintun, MAAssessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response – a preliminary reportInt J Radiat Oncol Biol Phys 2003 55 1233CrossRefGoogle ScholarPubMed
Blau, MNagler, WBender, MAFluorine-18: a new isotope for bone scanningJ Nucl Med 1962 3 332Google ScholarPubMed
Petren-Mallmin, MAndreasson, ILjunggren, OSkeletal metastases from breast cancer: uptake of 18F-fluoride measured with positron emission tomography in correlation with CTSkeletal Radiol 1998 27 72CrossRefGoogle ScholarPubMed
Langsteger, WHeinisch, MFogelman, I.The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breastSemin Nucl Med 2006 36 73CrossRefGoogle ScholarPubMed
Even-Sapir, EMetser, UFlusser, GAssessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CTJ Nucl Med 2004 45 272Google ScholarPubMed
Iagaru, AMittra, EYaghoubi, SSNovel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of malignancy: results of the pilot-phase studyJ Nucl Med 2009 50 501CrossRefGoogle ScholarPubMed
Lippman, MBolan, GHuff, K.The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue cultureCancer Res 1976 36 4595Google ScholarPubMed
Locker, GYHormonal therapy of breast cancerCancer Treat Rev 1998 24 221CrossRefGoogle ScholarPubMed
Donegan, WLPrognostic factors. Stage and receptor status in breast cancerCancer 1992 70 17553.0.CO;2-G>CrossRefGoogle ScholarPubMed
Kumar, R.Targeted functional imaging in breast cancerEur J Nucl Med Mol Imaging 2007 34 346CrossRefGoogle ScholarPubMed
Jonson, SDWelch, MJPET imaging of breast cancer with fluorine-18 radiolabeled estrogens and progestinsQ J Nucl Med 1998 42 8Google ScholarPubMed
Jonson, SDBonasera, TADehdashti, FComparative breast tumor imaging and comparative in vitro metabolism of 16alpha-[18F]fluoroestradiol-17beta and 16beta-[18F]fluoromoxestrol in isolated hepatocytesNucl Med Biol 1999 26 123CrossRefGoogle ScholarPubMed
Kiesewetter, DOKilbourn, MRLandvatter, SWPreparation of four fluorine-18-labeled estrogens and their selective uptakes in target tissues of immature ratsJ Nucl Med 1984 25 1212Google ScholarPubMed
Lim, JLBerridge, MSTewson, TJ 1993
Römer, JFüchtner, FSteinbach, JJohannsen, BAutomated production of 16alpha-[18F]fluoroestradiol for breast cancer imagingNucl Med Biol 1999 26 473CrossRefGoogle ScholarPubMed
Oh, SJChi, DYMosdzianowski, CThe automatic production of 16alpha-[18F]fluoroestradiol using a conventional [18F]FDG module with a disposable cassette systemAppl Radiat Isot 2007 65 676CrossRefGoogle Scholar
Mintun, MAWelch, MJSiegel, BABreast cancer: PET imaging of estrogen receptorsRadiology 1988 169 45CrossRefGoogle ScholarPubMed
Dehdashti, FMortimer, JESiegel, BAPositron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assaysJ Nucl Med 1995 36 1766Google ScholarPubMed
Mortimer, JEDehdashti, FSiegel, BAPositron emission tomography with 2-[18F]Fluoro-2-deoxy-D-glucose and 16alpha-[18F]fluoro-17beta-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapyClin Cancer Res 1996 2 933Google Scholar
Mortimer, JEDehdashti, FSiegel, BAMetabolic flare: indicator of hormone responsiveness in advanced breast cancerJ Clin Oncol 2001 19 2797CrossRefGoogle ScholarPubMed
Linden, HMStekhova, SALink, JMQuantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancerJ Clin Oncol 2006 24 2793CrossRefGoogle ScholarPubMed
Tsujikawa, TYoshida, YKudo, TFunctional images reflect aggressiveness of endometrial carcinoma: estrogen receptor expression combined with 18F-FDG PETJ Nucl Med 2009 50 1598CrossRefGoogle ScholarPubMed
Seimbille, YRousseau, JBénard, F18F-labeled difluoroestradiols: preparation and preclinical evaluation as estrogen receptor-binding radiopharmaceuticalsSteroids 2002 67 765CrossRefGoogle ScholarPubMed
Seo, JWComninos, JSChi, DYFluorine-substituted cyclofenil derivatives as estrogen receptor ligands: synthesis and structure-affinity relationship study of potential positron emission tomography agents for imaging estrogen receptors in breast cancerJ Med Chem 2006 49 2496CrossRefGoogle ScholarPubMed
Bonasera, TAO'Neil, JPXu, MPreclinical evaluation of fluorine-18-labeled androgen receptor ligands in baboonsJ Nucl Med 1996 37 1009Google ScholarPubMed
Barrack, ERTindall, DJA critical evaluation of the use of androgen receptor assays to predict the androgen responsiveness of prostatic cancerProg Clin Biol Res 1987 239 155Google ScholarPubMed
Liu, ADence, CSWelch, MJKatzenellenbogen, JAFluorine-18-labeled androgens: radiochemical synthesis and tissue distribution studies on six fluorine-substituted androgens, potential imaging agents for prostatic cancerJ Nucl Med 1992 33 724Google ScholarPubMed
Larson, SMMorris, MGunther, ITumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancerJ Nucl Med 2004 45 366Google ScholarPubMed
Dehdashti, FPicus, JMichalski, JMPositron tomographic assessment of androgen receptors in prostatic carcinomaEur J Nucl Med Mol Imaging 2005 32 344CrossRefGoogle ScholarPubMed
Garg, SDoke, ABlack, KWGarg, PKIn vivo biodistribution of an androgen receptor avid PET imaging agent 7-alpha-fluoro-17 alpha-methyl-5-alpha-dihydrotestosterone ([(18)F]FMDHT) in rats pretreated with cetrorelix, a GnRH antagonistEur J Nucl Med Mol Imaging 2008 35 379CrossRefGoogle ScholarPubMed
Parent, EEDence, CSSharp, TLWelch, MJKatzenellenbogen, JASynthesis and biological evaluation of a fluorine-18-labeled nonsteroidal androgen receptor antagonist, N-(3-[18F]fluoro-4-nitronaphthyl)-cis-5-norbornene-endo-2,3-dicarboxylic imideNucl Med Biol 2006 33 615CrossRefGoogle ScholarPubMed
Parent, EEJenks, CSharp, TWelch, MJKatzenellenbogen, JASynthesis and biological evaluation of a nonsteroidal bromine-76-labeled androgen receptor ligand 3-[76Br]bromo-hydroxyflutamideNucl Med Biol 2006 33 705CrossRefGoogle ScholarPubMed
Bakker, WHKrenning, EPBreeman, WAReceptor scintigraphy with a radioiodinated somatostatin analogue: radiolabeling, purification, biologic activity, and in vivo application in animalsJ Nucl Med 1990 31 1501Google ScholarPubMed
Lamberts, SWBakker, WHReubi, JCKrenning, EPSomatostatin-receptor imaging in the localization of endocrine tumorsN Engl J Med 1990 323 1246CrossRefGoogle ScholarPubMed
Bakker, WHAlbert, RBruns, C[111In-DTPA-D-Phe1]-octreotide, a potential radiopharmaceutical for imaging of somatostatin receptor-positive tumors: synthesis, radiolabeling and in vitro validationLife Sci 1991 49 1583CrossRefGoogle ScholarPubMed
Schmidt, MFischer, EDietlein, MClinical value of somatostatin receptor imaging in patients with suspected head and neck paragangliomasEur J Nucl Med Mol Imaging 2002 29 1571CrossRefGoogle ScholarPubMed
Wild, DMacke, HRWaser, B68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5Eur J Nucl Med Mol Imaging 2005 32CrossRefGoogle ScholarPubMed
Henze, MSchuhmacher, JHipp, PPET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomasJ Nucl Med 2001 42 1053Google Scholar
Eisenwiener, KPPrata, MIBuschmann, INODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumorsBioconjug Chem 2002 13 530CrossRefGoogle Scholar
Junik, RDrobik, PMalkowski, BKobus-Blachnio, KThe role of positron emission tomography (PET) in diagnostics of gastroenteropancreatic neuroendocrine tumours (GEP NET)Adv Med Sci 2006 51 66Google Scholar
Ambrosini, VCastellucci, PRubello, D68Ga-DOTA-NOC: a new PET tracer for evaluating patients with bronchial carcinoidNucl Med Commun 2009 30 281CrossRefGoogle ScholarPubMed
Freesmeyer, MSchulz, SKnosel, TSettmacher, UImaging of somatostatin receptor subtype 2 in advanced hepatocellular carcinoma by 68Ga-DOTATOC PETNuklearmedizin 2009 48 N17Google ScholarPubMed
Wieder, HBeer, AJPoethko, TPET/CT with Gluc-Lys-([(18)F]FP)-TOCA: correlation between uptake, size and arterial perfusion in somatostatin receptor positive lesionsEur J Nucl Med Mol Imaging 2008 35 264CrossRefGoogle ScholarPubMed
Yoshii, YFurukawa, TYoshii, HCytosolic acetyl-CoA synthetase affected tumor cell survival under hypoxia: the possible function in tumor acetyl-CoA/acetate metabolismCancer Sci 2009 100 821CrossRefGoogle ScholarPubMed
Swinnen, JVRoskams, TJoniau, SOverexpression of fatty acid synthase is an early and common event in the development of prostate cancerInt J Cancer 2002 98 19CrossRefGoogle ScholarPubMed
Knowles, LMYang, COsterman, ASmith, JWInhibition of fatty-acid synthase induces caspase-8-mediated tumor cell apoptosis by up-regulating DDIT4J Biol Chem 2008 283 31378CrossRefGoogle ScholarPubMed
Pizer, ESChrest, FJDiGiuseppe, JAHan, WFPharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell linesCancer Res 1998 58 4611Google ScholarPubMed
Shreve, PChiao, PCHumes, HDSchwaiger, MGross, MDCarbon-11-acetate PET imaging in renal diseaseJ Nucl Med 1995 36 1595Google ScholarPubMed
Buchanan, JMHastings, ABNesbett, FBThe role of carboxyl-labeled acetic, propionic, and butyric acids in liver glycogen formationJ Biol Chem 1943 150 413Google Scholar
Pike, VWHorlock, PLBrown, CClark, JCThe remotely-controlled preparation of a 11C-labelled radiopharmaceutical-[1–11C]acetateInt J Appl Radiat Isot 1984 35 623CrossRefGoogle Scholar
Iwata, RIdo, TTada, MColumn extraction method for rapid preparation of [11C]acetic and [11C]palmitic acidsAppl Rad Isot 1995 46 117CrossRefGoogle Scholar
Oyama, NAkino, HKanamaru, H11C-acetate PET imaging of prostate cancerJ Nucl Med 2002 43 181Google ScholarPubMed
Delbeke, DPinson, CW11C-acetate: a new tracer for the evaluation of hepatocellular carcinomaJ Nucl Med 2003 44 222Google ScholarPubMed
Spence, AMMankoff, DAMuzi, MPositron emission tomography imaging of brain tumorsNeuroimaging Clin N Am 2003 13 717CrossRefGoogle ScholarPubMed
Higashi, KUeda, YMatsunari, I11C-acetate PET imaging of lung cancer: comparison with 18F-FDG PET and 99mTc-MIBI SPETEur J Nucl Med Mol Imaging 2004 31 13CrossRefGoogle ScholarPubMed
Sun, ASörensen, JKarlsson, M1-[11C]-acetate PET imaging in head and neck cancer – a comparison with 18F-FDG-PET: implications for staging and radiotherapy planningEur J Nucl Med Mol Imaging 2007 34 651CrossRefGoogle ScholarPubMed
Sakurai, HKaji, MSuemasu, KThymoma of the middle mediastinum: 11C-acetate positron emission tomography imagingAnn Thorac Surg 2009 87 1271CrossRefGoogle ScholarPubMed
Kotzerke, JVolkmer, BGNeumaier, BCarbon-11 acetate positron emission tomography can detect local recurrence of prostate cancerEur J Nucl Med Mol Imaging 2002 29 1380CrossRefGoogle ScholarPubMed
Seppälä, JSeppänen, MArponen, ELindholm, PMinn, HCarbon-11 acetate PET/CT based dose escalated IMRT in prostate cancerRadiother Oncol 2009 93 234CrossRefGoogle ScholarPubMed
Ponde, DEDence, CSOyama, N18F-fluoroacetate: a potential acetate analog for prostate tumor imaging – in vivo evaluation of 18F-fluoroacetate versus 11C-acetateJ Nucl Med 2007 48 420Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×