Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T03:42:53.987Z Has data issue: false hasContentIssue false

17 - Assessment of carotid plaque with intravascular ultrasound

from Morphological plaque imaging

Published online by Cambridge University Press:  03 December 2009

Gastón A. Rodriguez-Granillo
Affiliation:
Erasmus MC, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
Patrick W. Serruys
Affiliation:
Erasmus MC, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
Jonathan Gillard
Affiliation:
University of Cambridge
Martin Graves
Affiliation:
University of Cambridge
Thomas Hatsukami
Affiliation:
University of Washington
Chun Yuan
Affiliation:
University of Washington
Get access

Summary

History

Intravascular ultrasound (IVUS) has a relatively short yet highly prolific history that started in the late 1980s. The vast majority of clinical IVUS has centered on the coronary arteries with very limited studies in the carotid territory. Although this book is mainly focused on carotid disease there are a number of successful coronary IVUS techniques, which could be applied to carotid data.

Early studies already demonstrated that the extension and severity of coronary atherosclerosis might be greatly underestimated with angiography, whereas highly accurate measurements could be obtained using IVUS (Glagov et al., 1987; McPherson et al., 1987; Gussenhoven et al., 1989). Later, plaque characterization by means of the visual assessment was attempted and correlation with histopathology offered questionable results (Gussenhoven et al., 1989a, b; Peters et al., 1994). Moving forward to the core of the past decade, interventional cardiologists sought to find an application of IVUS in the catheterization laboratory. As a result, several studies evaluated the potential of IVUS as an adjunctive tool for guiding percutaneous coronary interventions. IVUS has thereafter aided the evolution of angioplasty providing insights about the morphology of atherosclerotic plaque (Suzuki et al., 1999), the mechanisms involved in the restenotic process (Hoffmann et al., 1996; Shiran et al., 1998; de Feyter et al., 1999; Sheris et al., 2000), the assessment of lesion severity (Abizaid et al., 1998, 1999; Nishioka et al., 1999; Takagi et al., 1999) and complications (Sheris et al., 2000; Degertekin et al., 2003) and the guidance of percutaneous coronary interventions (Schiele et al., 1998; Fitzgerald et al., 2000; Frey et al., 2000; Mudra et al., 2001; Oemrawsingh et al., 2003).

Type
Chapter
Information
Carotid Disease
The Role of Imaging in Diagnosis and Management
, pp. 223 - 234
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abizaid, A., Mintz, G. S., Pichard, A. D., et al. (1998). Clinical, intravascular ultrasound, and quantitative angiographic determinants of the coronary flow reserve before and after percutaneous transluminal coronary angioplasty. American Journal of Cardiology, 82, 423–8.CrossRefGoogle ScholarPubMed
Abizaid, A. S., Mintz, G. S., Mehran, R., et al. (1999). Long-term follow-up after percutaneous transluminal coronary angioplasty was not performed based on intravascular ultrasound findings: importance of lumen dimensions. Circulation, 100, 256–61.CrossRefGoogle Scholar
Ambrose, J. A., Tannenbaum, M. A., Alexopoulos, D., et al. (1988). Angiographic progression of coronary artery disease and the development of myocardial infarction. Journal of the American College of Cardiology, 12, 56–62.CrossRefGoogle ScholarPubMed
Asakura, M., Ueda, Y., Yamaguchi, O., et al. (2001). Extensive development of vulnerable plaques as a pan-coronary process in patients with myocardial infarction: an angioscopic study. Journal of the American College of Cardiology, 37, 1284–8.CrossRefGoogle Scholar
Balk, E. M., Karas, R. H., Jordan, H. S., et al. (2004). Effects of statins on vascular structure and function: A systematic review. American Journal of Medicine, 117, 775–90.CrossRefGoogle ScholarPubMed
Bekeredjian, R., Hardt, S., Just, A., Hansen, A. and Kuecherer, H. (1999). Influence of catheter position and equipment-related factors on the accuracy of intravascular ultrasound measurements. Journal of Invasive Cardiology, 11, 207–12.Google ScholarPubMed
Berceli, S. A., Warty, V. S., Sheppeck, R. A., et al. (1990). Hemodynamics and low density lipoprotein metabolism. Rates of low density lipoprotein incorporation and degradation along medial and lateral walls of the rabbit aorto-iliac bifurcation. Arteriosclerosis, 10, 686–94.CrossRefGoogle Scholar
Blessing, E., Hausmann, D., Sturm, M., et al. (1999). Intravascular ultrasound and stent implantation: intraobserver and interobserver variability. American Heart Journal, 137, 368–71.CrossRefGoogle ScholarPubMed
Burke, A. P., Farb, A., Malcom, G. T., et al. (1997). Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. New England Journal of Medicine, 336, 1276–82.CrossRefGoogle ScholarPubMed
Burke, A. P., Kolodgie, F. D., Farb, A., et al. (2001). Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation, 103, 934–40.CrossRefGoogle Scholar
Burke, A. P., Kolodgie, F. D., Farb, A., Weber, D. and Virmani, R. (2002). Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation, 105, 297–303.CrossRefGoogle ScholarPubMed
Burleigh, M. C., Briggs, A. D., Lendon, C. L., et al. (1992). Collagen types I and III, collagen content, GAGs and mechanical strength of human atherosclerotic plaque caps: span-wise variations. Atherosclerosis, 96, 71–81.CrossRefGoogle ScholarPubMed
Carlier, S., Kakadiaris, I. A., Dib, N., et al. (2005). Vasa vasorum imaging: a new window to the clinical detection of vulnerable atherosclerotic plaques. Current Atherosclerosis Reports, 7, 164–9.CrossRefGoogle ScholarPubMed
Clark, D. J., Lessio, S., O'Donoghue, M., Schainfeld, R. and Rosenfield, K. (2004). Safety and utility of intravascular ultrasound-guided carotid artery stenting. Catheterization and Cardiovascular Intervention, 63, 355–62.CrossRefGoogle ScholarPubMed
Davies, M. J., Richardson, P. D., Woolf, N., Katz, D. R. and Mann, J. (1993). Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. British Heart Journal, 69, 377–81.CrossRefGoogle ScholarPubMed
Feyter, P. J., Kay, P., Disco, C. and Serruys, P. W. (1999). Reference chart derived from post-stent-implantation intravascular ultrasound predictors of 6-month expected restenosis on quantitative coronary angiography. Circulation, 100, 1777–83.CrossRefGoogle ScholarPubMed
Korte, C. L., Steen, A. F., Cespedes, E. I. and Pasterkamp, G. (1998). Intravascular ultrasound elastography in human arteries: initial experience in vitro. Ultrasound in Medicine and Biology, 24, 401–8.CrossRefGoogle ScholarPubMed
Korte, C. L., Carlier, S. G., Mastik, F., et al. (2002). Morphological and mechanical information of coronary arteries obtained with intravascular elastography; feasibility study in vivo. European Heart Journal, 23, 405–13.CrossRefGoogle ScholarPubMed
Winter, S. A. H. I., Hamers, R., Feyter, P. J., et al. (2003). Computer assisted three-dimensional plaque characterization in ultracoronary ultrasound studies. Computers in Cardiology, 30, 73–6.Google Scholar
Degertekin, M., Serruys, P. W., Tanabe, K., et al. (2003). Long-term follow-up of incomplete stent apposition in patients who received sirolimus-eluting stent for de novo coronary lesions: an intravascular ultrasound analysis. Circulation, 108, 2747–50.CrossRefGoogle Scholar
Falk, E., Shah, P. K. and Fuster, V. (1995). Coronary plaque disruption. Circulation, 92, 657–71.CrossRefGoogle ScholarPubMed
Fang, J. C., Kinlay, S., Beltrame, J., et al. (2002). Effect of vitamins C and E on progression of transplant-associated arteriosclerosis: a randomised trial. Lancet, 359, 1108–13.CrossRefGoogle Scholar
Felton, C. V., Crook, D., Davies, M. J. and Oliver, M. F. (1997). Relation of plaque lipid composition and morphology to the stability of human aortic plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 1337–45.CrossRefGoogle ScholarPubMed
Fishbein, M. C. and Siegel, R. J. (1996). How big are coronary atherosclerotic plaques that rupture?Circulation, 94, 2662–6.CrossRefGoogle ScholarPubMed
Fitzgerald, P. J., Oshima, A., Hayase, M., et al. (2000). Final results of the Can Routine Ultrasound Influence Stent Expansion (CRUISE) study. Circulation, 102, 523–30.CrossRefGoogle ScholarPubMed
Frey, A. W., Hodgson, J. M., Muller, C., Bestehorn, H. P. and Roskamm, H. (2000). Ultrasound-guided strategy for provisional stenting with focal balloon combination catheter: results from the randomized Strategy for Intracoronary Ultrasound-guided PTCA and Stenting (SIPS) trial. Circulation, 102, 2497–502.CrossRefGoogle ScholarPubMed
Fuessl, R. T., Kranenberg, E., Kiausch, U., et al. (2001). Vascular remodeling in atherosclerotic coronary arteries is affected by plaque composition. Coronary Artery Disease, 12, 91–7.CrossRefGoogle ScholarPubMed
Gaster, A. L., Korsholm, L., Thayssen, P., Pedersen, K. E. and Haghfelt, T. H. (2001). Reproducibility of intravascular ultrasound and intracoronary Doppler measurements. Catheterization and Cardiovascular Interventions, 53, 449–58.CrossRefGoogle ScholarPubMed
Glagov, S., Weisenberg, E., Zarins, C. K., Stankunavicius, R. and Kolettis, G. J. (1987). Compensatory enlargement of human atherosclerotic coronary arteries. New England Journal of Medicine, 316, 1371–5.CrossRefGoogle ScholarPubMed
Grodin, C. M, Dyrda, I., Pasternac, A., et al. (1974). Discrepancies between cineangiographic and postmortem findings in patients with coronary artery disease and recent myocardial revascularization. Circulation, 49, 703–9.CrossRefGoogle Scholar
Guedes, A., Keller, P. F., L'Allier, P. L., et al. (2005). Long-term safety of intravascular ultrasound in nontransplant, nonintervened, atherosclerotic coronary arteries. Journal of the American College of Cardiology, 45, 559–64.CrossRefGoogle ScholarPubMed
Gussenhoven, W. J., Essed, C. E., Frietman, P., et al. (1989). Intravascular echographic assessment of vessel wall characteristics: a correlation with histology. International Journal of Cardiovascular Imaging, 4, 105–16.CrossRefGoogle ScholarPubMed
Gussenhoven, E. J., Essed, C. E., Frietman, P., et al. (1989a). Intravascular ultrasonic imaging: histologic and echographic correlation. European Journal of Vascular Surgery, 3, 571–6.CrossRefGoogle Scholar
Gussenhoven, E. J., Essed, C. E., Lancee, C. T., et al. (1989b). Arterial wall characteristics determined by intravascular ultrasound imaging: an in vitro study. Journal of the American College of Cardiology, 14, 947–52.CrossRefGoogle Scholar
Hibi, K., Ward, M. R., Honda, Y., et al. (2005). Impact of different definitions on the interpretation of coronary remodeling determined by intravascular ultrasound. Catheterization and Cardiovascular Intervention, 65, 233–9.CrossRefGoogle ScholarPubMed
Hoffmann, R., Mintz, G. S., Dussaillant, G. R., et al. (1996). Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation, 94, 1247–54.CrossRefGoogle ScholarPubMed
Hong, M. K., Mintz, G. S., Lee, C. W., et al. (2004). Comparison of coronary plaque rupture between stable angina and acute myocardial infarction: a three-vessel intravascular ultrasound study in 235 patients. Circulation, 110, 928–33.CrossRefGoogle ScholarPubMed
Hong, M. K., Mintz, G. S., Lee, C. W., et al. (2005). The site of plaque rupture in native coronary arteries: a three-vessel intravascular ultrasound analysis. Journal of the American College of Cardiology, 46, 261–5.CrossRefGoogle ScholarPubMed
Irace, C., Cortese, C., Fiaschi, E., et al. (2004). Wall shear stress is associated with intima-media thickness and carotid atherosclerosis in subjects at low coronary heart disease risk. Stroke, 35, 464–8.CrossRefGoogle ScholarPubMed
Jeremias, A., Huegel, H., Lee, D. P., et al. (2000). Spatial orientation of atherosclerotic plaque in non-branching coronary artery segments. Atherosclerosis, 152, 209–15.CrossRefGoogle ScholarPubMed
Kaazempur-Mofrad, M. R., Isasi, A. G., Younis, H. F., et al. (2004). Characterization of the atherosclerotic carotid bifurcation using Magnetic resonance imaging, finite element modeling, and histology. Annals of Biomedical Engineering, 32, 932–46.CrossRefGoogle ScholarPubMed
Kannel, W. B., Doyle, J. T., McNamara, P. M., Quickenton, P. and Gordon, T. (1975). Precursors of sudden coronary death. Factors related to the incidence of sudden death. Circulation, 51, 606–13.CrossRefGoogle ScholarPubMed
Kawasaki, M., Sano, K., Okubo, M., et al. (2005). Volumetric quantitative analysis of tissue characteristics of coronary plaques after statin therapy using three-dimensional integrated backscatter intravascular ultrasound. Journal of the American College of Cardiology, 45, 1946–53.CrossRefGoogle ScholarPubMed
Kimura, B. J., Russo, R. J., Bhargava, V., et al. (1996). Atheroma morphology and distribution in proximal left anterior descending coronary artery: in vivo observations. Journal of the American College of Cardiology, 27, 825–31.CrossRefGoogle ScholarPubMed
Kolodgie, F. D., Burke, A. P., Farb, A., et al. (2001). The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Current Opinion in Cardiology, 16, 285–92.CrossRefGoogle ScholarPubMed
Kornet, L., Hoeks, A. P., Lambregts, J. and Reneman, R. S. (1999). In the femoral artery bifurcation, differences in mean wall shear stress within subjects are associated with different intima-media thicknesses. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 2933–9.CrossRefGoogle ScholarPubMed
Krams, R., Wentzel, J. J., Oomen, J. A., et al. (1997). Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUltrasound (ANGUltrasound) with computational fluid dynamics. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 2061–5.CrossRefGoogle Scholar
Lee, R. M. K. W. (1984). A critical appraise of the effects of fixation, dehydration and embedding of cell volume. In The Science of Biological Specimen Preparation for Microscopy and Microanalysis, ed. Revel, J. P., Barnard, T. and Haggis, G. H.. IL: Chicago pp. 61–70.Google Scholar
Little, W. C., Constantinescu, M., Applegate, R. J., et al. (1988). Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease?Circulation, 78, 1157–66.CrossRefGoogle ScholarPubMed
Loree, H. M., Kamm, R. D., Stringfellow, R. G. and Lee, R. T. (1992). Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circulation Research, 71, 850–8.CrossRefGoogle ScholarPubMed
Maehara, A., Mintz, G. S., Bui, A. B., et al. (2002). Morphologic and angiographic features of coronary plaque rupture detected by intravascular ultrasound. Journal of the American College of Cardiology, 40, 904–10.CrossRefGoogle ScholarPubMed
Mann, J. M. and Davies, M. J. (1996). Vulnerable plaque. Relation of characteristics to degree of stenosis in human coronary arteries. Circulation, 94, 928–31.CrossRefGoogle ScholarPubMed
Matsuzaki, M., Hiramori, K., Imaizumi, T., et al. (2002). Intravascular ultrasound evaluation of coronary plaque regression by low density lipoprotein-apheresis in familial hypercholesterolemia: the Low Density Lipoprotein-Apheresis Coronary Morphology and Reserve Trial (LACMART). Journal of the American College of Cardiology, 40, 220–7.CrossRefGoogle Scholar
McPherson, D. D., Hiratzka, L. F., Lamberth, W. C., et al. (1987). Delineation of the extent of coronary atherosclerosis by high-frequency epicardial echocardiography. New England Journal of Medicine, 316, 304–9.CrossRefGoogle ScholarPubMed
Mintz, G. S., Painter, J. A., Pichard, A. D., et al. (1995). Atherosclerosis in angiographically “normal” coronary artery reference segments: an intravascular ultrasound study with clinical correlations. Journal of the American College of Cardiology, 25, 1479–85.CrossRefGoogle ScholarPubMed
Mintz, G. S., Kent, K. M., Pichard, A. D., et al. (1997). Contribution of inadequate arterial remodeling to the development of focal coronary artery stenoses. An intravascular ultrasound study. Circulation, 95, 1791–8.CrossRefGoogle ScholarPubMed
Mintz, G. S., Nissen, S. E., Anderson, W. D., et al. (2001). American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUltrasound). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. Journal of the American College of Cardiology, 37, 1478–92.CrossRefGoogle Scholar
Moore, M. P., Spencer, T., Salter, D. M., et al. (1998). Characterisation of coronary atherosclerotic morphology by spectral analysis of radiofrequency signal: in vitro intravascular ultrasound study with histological and radiological validation. Heart, 79, 459–67.CrossRefGoogle ScholarPubMed
Mudra, H., di Mario, C., Jaegere, P., et al. (2001). Randomized comparison of coronary stent implantation under ultrasound or angiographic guidance to reduce stent restenosis (OPTICUltrasound Study). Circulation, 104, 1343–9.CrossRefGoogle Scholar
Naghavi, M., Libby, P., Falk, E., et al. (2003). From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation, 108, 1664–72.CrossRefGoogle Scholar
Nair, A. C. D. and Vince, D. G. (2004). Regularized Autoregressive Analysis of Intravascular Ultrasound Data: Improvement in Spatial Accuracy of Plaque Tissue Maps. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51, 420–31.CrossRefGoogle ScholarPubMed
Nair, A., Kuban, B. D., Tuzcu, E. M., et al. (2002). Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation, 106, 2200–6.CrossRefGoogle ScholarPubMed
Nishioka, T., Amanullah, A. M., Luo, H., et al. (1999). Clinical validation of intravascular ultrasound imaging for assessment of coronary stenosis severity: comparison with stress myocardial perfusion imaging. Journal of the American College of Cardiology, 33, 1870–8.CrossRefGoogle ScholarPubMed
Nissen, S. E., Tsunoda, T., Tuzcu, E. M., et al. (2003). Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. Journal of the American Medical Association, 290, 2292–300.CrossRefGoogle ScholarPubMed
Nissen, S. E., Tuzcu, E. M., Libby, P., et al. (2004a). Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. Journal of the American Medical Association, 292, 2217–25.CrossRefGoogle Scholar
Nissen, S. E., Tuzcu, E. M., Schoenhagen, P., et al. (2004b). Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. Journal of the American Medical Association, 291, 1071–80.CrossRefGoogle Scholar
Oemrawsingh, P. V., Mintz, G. S., Schalij, M. J., et al. (2003). Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenoses: final results of a randomized comparison with angiographic guidance (TULIP Study). Circulation, 107, 62–7.CrossRefGoogle Scholar
Okazaki, S., Yokoyama, T., Miyauchi, K., et al. (2004). Early statin treatment in patients with acute coronary syndrome: demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: the ESTABLISH Study. Circulation, 110, 1061–8.CrossRefGoogle ScholarPubMed
Pasterkamp, G., Wensing, P. J., Post, M. J., et al. (1995). Paradoxical arterial wall shrinkage may contribute to luminal narrowing of human atherosclerotic femoral arteries. Circulation, 91, 1444–9.CrossRefGoogle ScholarPubMed
Pasterkamp, G., Schoneveld, A. H., Wal, A. C., et al. (1998). Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: the remodeling paradox. Journal of the American College of Cardiology, 32, 655–62.CrossRefGoogle ScholarPubMed
Peters, R. J., Kok, W. E., Havenith, M. G., et al. (1994). Histopathologic validation of intracoronary ultrasound imaging. Journal of the American Society of Echocardiography, 7, 230–41.CrossRefGoogle ScholarPubMed
Rasanen, H. T., Manninen, H. I., Vanninen, R. L., et al. (1999). Mild carotid artery atherosclerosis: assessment by 3-dimensional time-of-flight magnetic resonance angiography, with reference to intravascular ultrasound imaging and contrast angiography. Stroke, 30, 827–33.CrossRefGoogle ScholarPubMed
Regar, E. S. J., Giessen, W., Steen, and Serruys, P. W. (2002). Real-time, in-vivo optical coherence tomography of human coronary arteries using a dedicated imaging wire. American Journal of Cardiology, 90, 129H.Google Scholar
Rioufol, G., Finet, G., Ginon, I., et al. (2002). Multiple atherosclerotic plaque rupture in acute coronary syndrome: a three-vessel intravascular ultrasound study. Circulation, 106, 804–8.CrossRefGoogle ScholarPubMed
Rodriguez-Granillo, G. A., García-García, H., McFadden, E., Valgimigli, M., et al. (2005a). In Vivo Intravascular Ultrasound-Derived Thin-Cap Fibroatheroma Detection Using Ultrasound Radio Frequency Data Analysis. Journal of the American College of Cardiology, 46, 2038–42.CrossRefGoogle Scholar
Rodriguez-Granillo, G. A., Serruys, P., McFadden, E., Mieghem, C., et al. (2005b). First-in-man prospective evaluation of temporal changes in coronary plaque composition by in vivo ultrasound radio frequency data analysis: an integrated biomarker and imaging study (IBIS) substudy. Eurointervention, 1, 282–8.Google Scholar
Rodriguez-Granillo, G. A., Serruys, P. W., Garcia-Garcia, H. M., et al. (2005). Coronary artery remodelling is related to plaque composition. Heart, 92, 388–91.CrossRefGoogle ScholarPubMed
Sabate, M., Kay, I. P., Feyter, P. J., et al. (1999). Remodeling of atherosclerotic coronary arteries varies in relation to location and composition of plaque. American Journal of Cardiology, 84, 135–40.CrossRefGoogle ScholarPubMed
Schaar, J. A., Korte, C. L., Mastik, F., et al. (2003). Characterizing vulnerable plaque features with intravascular elastography. Circulation, 108, 2636–41.CrossRefGoogle ScholarPubMed
Schaar, J. A., Muller, J. E., Falk, E., et al. (2004). Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece. European Heart Journal, 25, 1077–82.CrossRefGoogle ScholarPubMed
Schaar, J. A., Regar, E., Mastik, F., et al. (2004). Incidence of high-strain patterns in human coronary arteries: assessment with three-dimensional intravascular palpography and correlation with clinical presentation. Circulation, 109, 2716–19.CrossRefGoogle ScholarPubMed
Schartl, M., Bocksch, W., Koschyk, D. H., et al. (2001). Use of intravascular ultrasound to compare effects of different strategies of lipid-lowering therapy on plaque volume and composition in patients with coronary artery disease. Circulation, 104, 387–92.CrossRefGoogle ScholarPubMed
Schiele, F., Meneveau, N., Vuillemenot, A., et al. (1998). Impact of intravascular ultrasound guidance in stent deployment on 6-month restenosis rate: a multicenter, randomized study comparing two strategies–with and without intravascular ultrasound guidance. RESIST Study Group. REStenosis after Ivus guided STenting. Journal of the American College of Cardiology, 32, 320–8.CrossRefGoogle Scholar
Sheris, S. J., Canos, M. R. and Weissman, N. J. (2000). Natural history of intravascular ultrasound-detected edge dissections from coronary stent deployment. American Heart Journal, 139, 59–63.CrossRefGoogle ScholarPubMed
Shiran, A., Mintz, G. S., Waksman, R., et al. (1998). Early lumen loss after treatment of in-stent restenosis: an intravascular ultrasound study. Circulation, 98, 200–3.CrossRefGoogle Scholar
Slager, C. J. W. J., Gijsen, F. J. H., Schuurbiers, J. C. H., et al. (2005). The role of shear stress in the generation of rupture-prone vulnerable plaques. Nature Clinical Practice, 2, 401–7.Google ScholarPubMed
Smits, P. C., Pasterkamp, G., Quarles van Ufford, M. A., et al. (1999). Coronary artery disease: arterial remodelling and clinical presentation. Heart, 82, 461–4.CrossRefGoogle ScholarPubMed
Suzuki, T., Hosokawa, H., Katoh, O., et al. (1999). Effects of adjunctive balloon angioplasty after intravascular ultrasound-guided optimal directional coronary atherectomy: the result of Adjunctive Balloon Angioplasty After Coronary Atherectomy Study (ABACAS). Journal of the American College of Cardiology, 34, 1028–35.CrossRefGoogle Scholar
Takagi, T., Yoshida, K., Akasaka, T., et al. (1997). Intravascular ultrasound analysis of reduction in progression of coronary narrowing by treatment with pravastatin. American Journal of Cardiology, 79, 1673–6.CrossRefGoogle ScholarPubMed
Takagi, A., Tsurumi, Y., Ishii, Y., et al. (1999). Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation, 100, 250–5.CrossRefGoogle ScholarPubMed
Tardif, J. C., Gregoire, J., L'Allier, P. L., et al. (2004). Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation, 110, 3372–7.CrossRefGoogle ScholarPubMed
Tauth, J., Pinnow, E., Sullebarger, J. T., et al. (1997). Predictors of coronary arterial remodeling patterns in patients with myocardial ischemia. American Journal of Cardiology, 80, 1352–5.CrossRefGoogle ScholarPubMed
Topol, E. J. and Nissen, S. E. (1995). Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation, 92, 2333–42.CrossRefGoogle ScholarPubMed
Tuzcu, E. M., Berkalp, B., Franco, A. C., et al. (1996). The dilemma of diagnosing coronary calcification: angiography versus intravascular ultrasound. Journal of the American College of Cardiology, 27, 832–8.CrossRefGoogle ScholarPubMed
Varnava, A. M., Mills, P. G. and Davies, M. J. (2002). Relationship between coronary artery remodeling and plaque vulnerability. Circulation, 105, 939–43.CrossRefGoogle ScholarPubMed
Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A. and Schwartz, S. M. (2000). Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 1262–75.CrossRefGoogle ScholarPubMed
Wang, J. C., Normand, S. L., Mauri, L. and Kuntz, R. E. (2004). Coronary artery spatial distribution of acute myocardial infarction occlusions. Circulation, 110, 278–84.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×