Book contents
- Frontmatter
- Contents
- Contributors
- Preface
- Acknowledgements
- 1 Introduction to Carnivora
- 2 Phylogeny of the Carnivora and Carnivoramorpha, and the use of the fossil record to enhance understanding of evolutionary transformations
- 3 Phylogeny of the Viverridae and ‘Viverrid-like’ feliforms
- 4 Molecular and morphological evidence for Ailuridae and a review of its genera
- 5 The influence of character correlations on phylogenetic analyses: a case study of the carnivoran cranium
- 6 What's the difference? A multiphasic allometric analysis of fossil and living lions
- 7 Evolution in Carnivora: identifying a morphological bias
- 8 The biogeography of carnivore ecomorphology
- 9 Comparative ecomorphology and biogeography of Herpestidae and Viverridae (Carnivora) in Africa and Asia
- 10 Ecomorphological analysis of carnivore guilds in the Eocene through Miocene of Laurasia
- 11 Ecomorphology of North American Eocene carnivores: evidence for competition between Carnivorans and Creodonts
- 12 Morphometric analysis of cranial morphology in pinnipeds (Mammalia, Carnivora): convergence, ecology, ontogeny, and dimorphism
- 13 Tiptoeing through the trophics: geographic variation in carnivoran locomotor ecomorphology in relation to environment
- 14 Interpreting sabretooth cat (Carnivora; Felidae; Machairodontinae) postcranial morphology in light of scaling patterns in felids
- 15 Cranial mechanics of mammalian carnivores: recent advances using a finite element approach
- Index
- Plates
- References
3 - Phylogeny of the Viverridae and ‘Viverrid-like’ feliforms
Published online by Cambridge University Press: 05 July 2014
- Frontmatter
- Contents
- Contributors
- Preface
- Acknowledgements
- 1 Introduction to Carnivora
- 2 Phylogeny of the Carnivora and Carnivoramorpha, and the use of the fossil record to enhance understanding of evolutionary transformations
- 3 Phylogeny of the Viverridae and ‘Viverrid-like’ feliforms
- 4 Molecular and morphological evidence for Ailuridae and a review of its genera
- 5 The influence of character correlations on phylogenetic analyses: a case study of the carnivoran cranium
- 6 What's the difference? A multiphasic allometric analysis of fossil and living lions
- 7 Evolution in Carnivora: identifying a morphological bias
- 8 The biogeography of carnivore ecomorphology
- 9 Comparative ecomorphology and biogeography of Herpestidae and Viverridae (Carnivora) in Africa and Asia
- 10 Ecomorphological analysis of carnivore guilds in the Eocene through Miocene of Laurasia
- 11 Ecomorphology of North American Eocene carnivores: evidence for competition between Carnivorans and Creodonts
- 12 Morphometric analysis of cranial morphology in pinnipeds (Mammalia, Carnivora): convergence, ecology, ontogeny, and dimorphism
- 13 Tiptoeing through the trophics: geographic variation in carnivoran locomotor ecomorphology in relation to environment
- 14 Interpreting sabretooth cat (Carnivora; Felidae; Machairodontinae) postcranial morphology in light of scaling patterns in felids
- 15 Cranial mechanics of mammalian carnivores: recent advances using a finite element approach
- Index
- Plates
- References
Summary
Introduction
The phylogenetic relationships of the extant feliform carnivores, Felidae (cats), Herpestidae (mongooses), Hyaenidae (hyenas and aardwolf), and Viverridae (civets, genets, and oyans), have been debated for a long time, with several proposed hypotheses for the relationships of these families (Flower, 1869; Gregory and Hellman, 1939, see Figure 3.1; Simpson, 1945; Hunt, 1987; Flynn et al., 1988; Wayne et al., 1989; Wozencraft, 1989a; Hunt and Tedford, 1993; Wyss and Flynn, 1993; Veron, 1994). The position of the Viverridae family is still unresolved (see e.g. Gaubert and Veron, 2003; Flynn et al., 2005; Koepfli et al., 2006; Holliday, 2007).
The mongooses were initially included within the Viverridae (Flower, 1869; Mivart, 1882) until Pocock (1916a, 1919) advocated for a family rank, to which he gave the name Mungotidae. Gregory and Hellman (1939) also placed them in a separate family, the Herpestidae Bonaparte, 1845. This separation was not followed by Simpson (1945) and several other authors (e.g. Albignac, 1973; Ewer, 1973; Petter, 1974; Rosevear, 1974; Coetzee, 1977; Kingdon, 1977; Payne et al., 1985; Stains, 1987; Taylor, 1988; Schreiber et al., 1989; Dargel, 1990; Skinner and Smithers, 1990). However, this split has been supported by further studies, based on morphology, chromosomes and molecular data (e.g. Wurster, 1969; Fredga, 1972; Radinsky, 1975; Bugge, 1978; Neff, 1983; Hunt, 1987; Wozencraft, 1984; Hunt and Tedford, 1993; Veron and Catzeflis, 1993; Wyss and Flynn, 1993; Veron, 1994, 1995; Flynn and Nedbal, 1998; Veron and Heard, 2000; Gaubert and Veron, 2003; Veron et al., 2004a; Flynn et al., 2005), and it is now generally accepted that the mongooses should be placed in a separate family, the Herpestidae (see Honacki et al., 1982; Wozencraft, 1989b, 1993, 2005; Gilchrist et al., 2009).
- Type
- Chapter
- Information
- Carnivoran EvolutionNew Views on Phylogeny, Form and Function, pp. 64 - 91Publisher: Cambridge University PressPrint publication year: 2010
References
- 5
- Cited by