Book contents
- Frontmatter
- Contents
- Contributors
- Preface
- Acknowledgements
- 1 Introduction to Carnivora
- 2 Phylogeny of the Carnivora and Carnivoramorpha, and the use of the fossil record to enhance understanding of evolutionary transformations
- 3 Phylogeny of the Viverridae and ‘Viverrid-like’ feliforms
- 4 Molecular and morphological evidence for Ailuridae and a review of its genera
- 5 The influence of character correlations on phylogenetic analyses: a case study of the carnivoran cranium
- 6 What's the difference? A multiphasic allometric analysis of fossil and living lions
- 7 Evolution in Carnivora: identifying a morphological bias
- 8 The biogeography of carnivore ecomorphology
- 9 Comparative ecomorphology and biogeography of Herpestidae and Viverridae (Carnivora) in Africa and Asia
- 10 Ecomorphological analysis of carnivore guilds in the Eocene through Miocene of Laurasia
- 11 Ecomorphology of North American Eocene carnivores: evidence for competition between Carnivorans and Creodonts
- 12 Morphometric analysis of cranial morphology in pinnipeds (Mammalia, Carnivora): convergence, ecology, ontogeny, and dimorphism
- 13 Tiptoeing through the trophics: geographic variation in carnivoran locomotor ecomorphology in relation to environment
- 14 Interpreting sabretooth cat (Carnivora; Felidae; Machairodontinae) postcranial morphology in light of scaling patterns in felids
- 15 Cranial mechanics of mammalian carnivores: recent advances using a finite element approach
- Index
- Plates
- References
15 - Cranial mechanics of mammalian carnivores: recent advances using a finite element approach
Published online by Cambridge University Press: 05 July 2014
- Frontmatter
- Contents
- Contributors
- Preface
- Acknowledgements
- 1 Introduction to Carnivora
- 2 Phylogeny of the Carnivora and Carnivoramorpha, and the use of the fossil record to enhance understanding of evolutionary transformations
- 3 Phylogeny of the Viverridae and ‘Viverrid-like’ feliforms
- 4 Molecular and morphological evidence for Ailuridae and a review of its genera
- 5 The influence of character correlations on phylogenetic analyses: a case study of the carnivoran cranium
- 6 What's the difference? A multiphasic allometric analysis of fossil and living lions
- 7 Evolution in Carnivora: identifying a morphological bias
- 8 The biogeography of carnivore ecomorphology
- 9 Comparative ecomorphology and biogeography of Herpestidae and Viverridae (Carnivora) in Africa and Asia
- 10 Ecomorphological analysis of carnivore guilds in the Eocene through Miocene of Laurasia
- 11 Ecomorphology of North American Eocene carnivores: evidence for competition between Carnivorans and Creodonts
- 12 Morphometric analysis of cranial morphology in pinnipeds (Mammalia, Carnivora): convergence, ecology, ontogeny, and dimorphism
- 13 Tiptoeing through the trophics: geographic variation in carnivoran locomotor ecomorphology in relation to environment
- 14 Interpreting sabretooth cat (Carnivora; Felidae; Machairodontinae) postcranial morphology in light of scaling patterns in felids
- 15 Cranial mechanics of mammalian carnivores: recent advances using a finite element approach
- Index
- Plates
- References
Summary
Introduction
Analyses of functional morphology typically apply phenomenological methodologies, where investigators seek to identify links between morphological and ecological data, or mechanistic approaches, where engineering principles are applied to explain how and why particular morphologies are associated with specific behaviours and ecologies. Often these two are combined within a comparative context.
Although there is certainly debate over basic assumptions and the degree to which structure might be expected to predict function (Gould, 2002), for the majority of biologists, determining relationships between form and function is fundamental to understanding the evolution of behaviours and ecologies, the nature of morphological convergence, and the prediction of habitus in living and extinct taxa.
With respect to the mammalian carnivore skull, numerous studies invoking a range of phenomenological and mechanistic approaches have identified some correspondence between these variables (Savage, 1977; Buckland-Wright, 1978; Radinsky, 1981a, 1981b; Werdelin, 1986; Van Valkenburgh, 1989; Therrien, 2005a; Wroe et al., 2005; Christiansen and Wroe, 2007; Wroe and Milne, 2007). However, the degree to which any skull might be optimised for feeding is not well understood. The vertebrate skull is not simply a food- processing mechanism, it also houses major sensory and neural apparatuses (Dumont et al., 2005), and, in mammalian carnivores, it may be subject to considerable external stresses generated in the subjugation and killing of prey (Preuschoft and Witzel, 2004). Consequently, skull morphology may represent compromise between various competing influences (Hylander et al., 1991; Preuschoft and Witzel, 2004). Identifying such compromise is difficult to achieve using traditional methods.
- Type
- Chapter
- Information
- Carnivoran EvolutionNew Views on Phylogeny, Form and Function, pp. 466 - 485Publisher: Cambridge University PressPrint publication year: 2010
References
- 7
- Cited by