Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T09:36:08.895Z Has data issue: false hasContentIssue false

Chapter 3 - Hereditary Gynecologic Cancer Predisposition Syndromes

Published online by Cambridge University Press:  23 October 2024

Laurie J. Mckenzie
Affiliation:
University of Texas MD Anderson Cancer Center, Houston
Denise R. Nebgen
Affiliation:
University of Texas MD Anderson Cancer Center, Houston
Get access

Summary

A small but important fraction of cancer are primarily due to a hereditary cancer predisposition, and their diagnosis has significant clinical implications for both index cases and their families. Germline BRCA1BRCA/2 pathogenic variants (PVs) can lead to the Hereditary Breast and Ovarian Cancer (HBOC) Syndrome and identification of both germline and somatic BRCA1/BRCA2 PVs have important treatment implications. In addition, endometrial cancer is closely associated with inherited PVs in the mismatch repair (MMR) genes which leads to Lynch syndrome. Both HBOC and Lynch syndrome affect around 1:300 people, most of whom are undiagnosed. Genetic panel testing is crucial to identifying PV carriers, before a sentinel cancer, who can then be offered prophylactic interventions such as risk reducing salpingo-oophorectomy (RRSO). Within this chapter we discuss the most common hereditary cancer syndromes associated with gynecological cancer. These include HBOC, Lynch syndrome, the moderate penetrant genes including RAD51C, RAD51D, BRIP1, PALB2, and ATM as well as rarer hereditary cancer syndromes including Cowden syndrome (PTEN), DICER1, Rhabdoid Tumor Predisposition syndrome (SMARCB1, SMARCA4) and Peutz-Jeghers syndrome (STK11).

Type
Chapter
Information
Caring for the Female Cancer Patient
Gynecologic Considerations
, pp. 38 - 59
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Siegel, R. L., Miller, K. D., Fuchs, H. E., Jemal, A. Cancer statistics, 2022. CA Cancer J Clin. 2022 Jan;72(1):733. doi: 10.3322/caac.21708. Epub 2022 Jan 12. PMID: 35020204.CrossRefGoogle Scholar
Walsh, T., Casadei, S., Lee, M. K., et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(44):18032–7.CrossRefGoogle ScholarPubMed
Henrikson, N. B., Morrison, C. C., Blasi, P. R., et al. Behavioral counseling for skin cancer prevention: Evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2018;319(11):1143–57.CrossRefGoogle ScholarPubMed
Aune, D., Navarro Rosenblatt, D. A., Chan, D. S., et al. Anthropometric factors and endometrial cancer risk: a systematic review and dose-response meta-analysis of prospective studies. Ann Oncol. 2015;26(8):1635–48.CrossRefGoogle Scholar
Petrucelli, N., Daly, M. B., Pal, T. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. In: Adam, M. P., Everman, D. B., Mirzaa, G. M., et al., editors. GeneReviews((R)). GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2023. PMID: 20301425.Google Scholar
Ryan, N. A. J., McMahon, R., Tobi, S., et al. The proportion of endometrial tumours associated with Lynch syndrome (PETALS): A prospective cross-sectional study. PLoS Med. 2020;17(9):e1003263.CrossRefGoogle ScholarPubMed
Chao, E. C., Astbury, C., Deignan, J. L., et al. Incidental detection of acquired variants in germline genetic and genomic testing: A points to consider statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23(7):1179–84.CrossRefGoogle ScholarPubMed
Joo, L., Bradley, C. C., Lin, S. H., Scheet, P. A., Nead, K. T. Causes of clonal hematopoiesis: A review. Curr Oncol Rep. 2023; 25(3):211–20.CrossRefGoogle ScholarPubMed
Shah, P. D. Polygenic risk scores for breast cancer: Can they deliver on the promise of precision medicine? JAMA Netw Open. 2021;4(8):e2119333.CrossRefGoogle ScholarPubMed
Wynn, J., Levinson, E., Koval, C., Ernst, M. E., Chung, W. K. Questioning the validity of clinically available breast cancer polygenic risk scores: Comparison of two labs reveals discrepancies. Fam Cancer. 2022;21(2):125–7.CrossRefGoogle ScholarPubMed
Cobain, E. F., Wu, Y. M., Vats, P., et al. Assessment of clinical benefit of integrative genomic profiling in advanced solid tumors. JAMA Oncol. 2021;7(4):525–33.Google ScholarPubMed
Mandelker, D., Donoghue, M., Talukdar, S., et al. Germline-focussed analysis of tumour-only sequencing: Recommendations from the ESMO Precision Medicine Working Group. Ann Oncol. 2019;30(8):1221–31.CrossRefGoogle ScholarPubMed
Meric-Bernstam, F., Brusco, L., Daniels, M., et al. Incidental germline variants in 1000 advanced cancer on a prospective somatic genomic profiling protocol. Ann Oncol. 2016;27(5):795800.CrossRefGoogle ScholarPubMed
Lincoln, S. E., Nussbaum, R. L., Kurian, A. W., et al. Yield and utility of germline testing following tumor sequencing in patients with cancer. JAMA Netw Open. 2020;3(10):e2019452.CrossRefGoogle ScholarPubMed
Group ABCS. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. British Journal of Cancer. 2000;83(10):1301–8.Google Scholar
Maxwell, K. N., Domchek, S. M., Nathanson, K. L., Robson, M. E. Population frequency of germline BRCA1/2 mutations. Journal of Clinical Oncology. 2016;34(34):4183–5.CrossRefGoogle ScholarPubMed
Pal, T., Permuth-Wey, J., Betts, J. A., et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer. 2005;104(12):2807–16.CrossRefGoogle ScholarPubMed
Thompson, L. H., Schild, D. Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2001;477(1):131–53.CrossRefGoogle ScholarPubMed
Honrado, E., Benítez, J., Palacios, J. Histopathology of BRCA1- and BRCA2-associated breast cancer. Crit Rev Oncol Hematol. 2006;59(1):2739.CrossRefGoogle ScholarPubMed
De Talhouet, S., Peron, J., Vuilleumier, A., et al. Clinical outcome of breast cancer in carriers of BRCA1 and BRCA2 mutations according to molecular subtypes. Scientific Reports. 2020;10(1):7073.CrossRefGoogle ScholarPubMed
Lakhani, S. R., Manek, S., Penault-Llorca, F., et al. Pathology of ovarian cancer in BRCA1 and BRCA2 carriers. Clinical Cancer Research. 2004;10(7):2473–81.CrossRefGoogle ScholarPubMed
Moore, K., Colombo, N., Scambia, G., et al. Maintenance Olaparib in patients with newly diagnosed advanced ovarian cancer. New England Journal of Medicine. 2018;379(26):2495–505.CrossRefGoogle ScholarPubMed
Tattersall, A., Ryan, N., Wiggans, A. J., Rogozińska, E., Morrison, J. Poly(ADP‐ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer. Cochrane Database of Systematic Reviews. 2022;2(2).Google ScholarPubMed
Weinberger, V., Bednarikova, M., Cibula, D., Zikan, M. Serous tubal intraepithelial carcinoma (STIC): Clinical impact and management. Expert Rev Anticancer Ther. 2016;16(12):1311–21.CrossRefGoogle ScholarPubMed
Gasparri, M. L., Bellaminutti, S., Farooqi, A. A., Cuccu, I., Di Donato, V., Papadia, A. Endometrial cancer and BRCA mutations: A systematic review. J Clin Med. 2022;11(11).CrossRefGoogle ScholarPubMed
Kitson, S. J., Bafligil, C., Ryan, N. A. J., et al. BRCA1 and BRCA2 pathogenic variant carriers and endometrial cancer risk: A cohort study. Eur J Cancer. 2020;136:169–75.CrossRefGoogle ScholarPubMed
de Jonge, M. M., de Kroon, C. D., Jenner, D. J., et al. Endometrial cancer risk in women with germline BRCA1 or BRCA2 mutations: Multicenter cohort study. J Natl Cancer Inst. 2021;113(9):1203–11.CrossRefGoogle ScholarPubMed
Smith, E. S., Paula, A. D. C., Cadoo, K. A., et al. Endometrial cancer in BRCA1 or BRCA2 germline mutation carriers: Assessment of homologous recombination DNA repair defects. JCO Precis Oncol. 2019(3):111.CrossRefGoogle ScholarPubMed
Mersch, J., Jackson, M. A., Park, M., et al. Cancer associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer. 2015;121(2):269–75.CrossRefGoogle ScholarPubMed
Kuchenbaecker, K. B., Hopper, J. L., Barnes, D. R., et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–16.CrossRefGoogle ScholarPubMed
PDQ® Cancer Genetics Editorial Board. PDQ BRCA1 and BRCA2. Bethesda, MD: National Cancer Institute. Updated September 3, 2023. www.cancer.gov/about-cancer/causes-prevention/genetics/brca-genes-hp-pdq. Accessed April 4, 2023.Google Scholar
Liu, Y. L., Breen, K., Catchings, A., et al. Risk-reducing bilateral salpingo-oophorectomy for ovarian cancer: A review and clinical guide for hereditary predisposition genes. JCO Oncol Pract. 2022;18(3):201–09.CrossRefGoogle ScholarPubMed
Finch, A. P., Lubinski, J., Moller, P., et al. Impact of oophorectomy on cancer incidence and mortality in women with a BRCA1 or BRCA2 mutation. J Clin Oncol. 2014;32(15):1547–53.CrossRefGoogle ScholarPubMed
Kingsberg, S. A., Larkin, L. C., Liu, J. H. Clinical effects of early or surgical menopause. Obstet Gynecol. 2020;135(4):853–68.CrossRefGoogle ScholarPubMed
Nebgen, D. R., Domchek, S. M., Kotsopoulos, J., et al. Care after premenopausal risk-reducing salpingo-oophorectomy in high-risk women: Scoping review and international consensus recommendations. BJOG. 2023;130(12):1437–50.CrossRefGoogle ScholarPubMed
Kotsopoulos, J., Gronwald, J., Karlan, B. Y., et al. Hormone replacement therapy after oophorectomy and breast cancer risk among BRCA1 mutation carriers. JAMA oncology. 2018;4(8):1059–65.CrossRefGoogle ScholarPubMed
Ross, R. K., Paganini-Hill, A., Wan, P. C., Pike, M. C. Effect of hormone replacement therapy on breast cancer risk: Estrogen versus estrogen plus progestin. JNCI: Journal of the National Cancer Institute. 2000;92(4):328–32.CrossRefGoogle ScholarPubMed
Asi, N., Mohammed, K., Haydour, Q., et al. Progesterone vs. synthetic progestins and the risk of breast cancer: a systematic review and meta-analysis. Systematic Reviews. 2016;5(1):18.CrossRefGoogle ScholarPubMed
Mørch, L. S., Skovlund, C. W., Hannaford, P. C., Iversen, L., Fielding, S., Lidegaard, Ø. Contemporary hormonal contraception and the risk of breast cancer. New England Journal of Medicine. 2017;377(23):2228–39.CrossRefGoogle ScholarPubMed
Conz, L., Mota, B. S., Bahamondes, L., et al. Levonorgestrel-releasing intrauterine system and breast cancer risk: A systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2020;99(8):970–82.CrossRefGoogle Scholar
Silva, F. R., Grande, A. J., Lacerda Macedo, A. C., et al. Meta-analysis of breast cancer risk in levonorgestrel-releasing intrauterine system users. Clin Breast Cancer. 2021;21(6):497508.CrossRefGoogle ScholarPubMed
Lu, K. H., Nebgen, D. R., Norquist, B., et al. TUBectomy with delayed oophorectomy in high risk women to assess the safety of prevention (TUBA-WISP-II) NCT04294927 2019 [22]. Available from: https://clinicaltrials.gov/ct2/show/NCT04294927.Google Scholar
Harmsen, M. G., Arts-de Jong, M., Hoogerbrugge, N., et al. Early salpingectomy (TUbectomy) with delayed oophorectomy to improve quality of life as alternative for risk-reducing salpingo-oophorectomy in BRCA1/2 mutation carriers (TUBA study): A prospective non-randomised multicentre study. BMC Cancer. 2015;15(1):593.CrossRefGoogle ScholarPubMed
Gaba, F., Goyal, S., Marks, D., et al. Surgical decision making in premenopausal BRCA carriers considering risk-reducing early salpingectomy or salpingo-oophorectomy: A qualitative study. Journal of Medical Genetics. 2022;59(2):122.Google ScholarPubMed
Menon, U., Gentry-Maharaj, A., Burnell, M., et al. Ovarian cancer population screening and mortality after long-term follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): A randomised controlled trial. Lancet. 2021;397(10290):2182–93.CrossRefGoogle ScholarPubMed
Evans, D. G., Gaarenstroom, K. N., Stirling, D., et al. Screening for familial ovarian cancer: Poor survival of BRCA1/2 related cancer. Journal of Medical Genetics. 2009;46(9):593.CrossRefGoogle Scholar
Hogg, R., Friedlander, M. Biology of epithelial ovarian cancer: Implications for screening women at high genetic risk. Journal of Clinical Oncology. 2004;22(7):1315–27.CrossRefGoogle ScholarPubMed
Olivier, R. I., Lubsen-Brandsma, M. A. C., Verhoef, S., van Beurden, M. CA-125 and transvaginal ultrasound monitoring in high-risk women cannot prevent the diagnosis of advanced ovarian cancer. Gynecologic Oncology. 2006;100(1):2026.CrossRefGoogle ScholarPubMed
Rebbeck, T. R., Friebel, T., Lynch, H. T., et al. Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers: The PROSE study group. Journal of Clinical Oncology. 2004;22(6):1055–62.CrossRefGoogle ScholarPubMed
Domchek, S. M. Risk-reducing mastectomy in BRCA1 and BRCA2 mutation carriers: A complex discussion. JAMA. 2019;321(1):27.CrossRefGoogle ScholarPubMed
Cuzick, J., Sestak, I., Forbes, J. F., et al. Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): An international, double-blind, randomised placebo-controlled trial. The Lancet. 2014;383(9922):1041–08.CrossRefGoogle ScholarPubMed
Cuzick, J., Forbes, J. F., Sestak, I., et al. Long-term results of Tamoxifen Prophylaxis for breast cancer: 96-month follow-up of the randomized IBIS-I trial. JNCI: Journal of the National Cancer Institute. 2007;99(4):272–82.CrossRefGoogle ScholarPubMed
Lu, K. H., Broaddus, R. R. Endometrial cancer. N Engl J Med. 2020;383(21):2053–64.CrossRefGoogle ScholarPubMed
Lu, K. H., Dinh, M., Kohlmann, W., et al. Gynecologic cancer as a “sentinel cancer” for women with hereditary nonpolyposis colorectal cancer syndrome. Obstet Gynecol. 2005;105(3):569–74.CrossRefGoogle ScholarPubMed
Ryan, N. A. J., McMahon, R. F. T., Ramchander, N. C., Seif, M. W., Evans, D. G., Crosbie, E. J. Lynch syndrome for the gynaecologist. The Obstetrician & Gynaecologist. 2021;23(1):920.CrossRefGoogle ScholarPubMed
Haraldsdottir, S., Rafnar, T., Frankel, W. L., et al. Comprehensive population-wide analysis of Lynch syndrome in Iceland reveals founder mutations in MSH6 and PMS2. Nature Communications. 2017;8(1):111.CrossRefGoogle ScholarPubMed
Ryan, N. A. J., Glaire, M. A., Blake, D., Cabrera-Dandy, M., Evans, D. G., Crosbie, E. J. The proportion of endometrial cancer associated with Lynch syndrome: A systematic review of the literature and meta-analysis. Genet Med. 2019;21(10):2167–80.CrossRefGoogle ScholarPubMed
Atwal, A., Snowsill, T., Dandy, M. C., et al. The prevalence of mismatch repair deficiency in ovarian cancer: A systematic review and meta-analysis. Int J Cancer. 2022;151(9):1626–39.CrossRefGoogle ScholarPubMed
Tutlewska, K., Lubinski, J., Kurzawski, G. Germline deletions in the EPCAM gene as a cause of Lynch syndrome: Literature review. Hereditary Cancer in Clinical Practice. 2013;11(1):9.CrossRefGoogle ScholarPubMed
Li, G.-M. Mechanisms and functions of DNA mismatch repair. Cell Research. 2008;18(1):8598.CrossRefGoogle ScholarPubMed
Vikas, P., Messersmith, H., Compton, C., et al. Mismatch repair and microsatellite instability testing for immune checkpoint inhibitor therapy: ASCO endorsement of College of American Pathologists guideline. J Clin Oncol. 2023;41(10):1943–8.CrossRefGoogle ScholarPubMed
Ryan, N. A. J., Walker, T. D. J., Bolton, J., et al. Histological and somatic mutational profiles of mismatch repair deficient endometrial tumours of different aetiologies. Cancer (Basel). 2021;13(18).CrossRefGoogle ScholarPubMed
Glaire, M. A., Ryan, N. A., Ijsselsteijn, M. E., et al. Discordant prognosis of mismatch repair deficiency in colorectal and endometrial cancer reflects variation in antitumour immune response and immune escape. The Journal of Pathology. 2022; 257(3):340–51.CrossRefGoogle ScholarPubMed
Ryan, N. A. J., Evans, D. G., Green, K., Crosbie, E. J. Pathological features and clinical behavior of Lynch syndrome-associated ovarian cancer. Gynecologic Oncology. 2017;144(3):491–5.CrossRefGoogle ScholarPubMed
Møller, P. The Prospective Lynch Syndrome Database: Background, design, main results and complete MySQL code. Hereditary Cancer in Clinical Practice. 2022;20(1):37.CrossRefGoogle ScholarPubMed
Mercado, R. C., Hampel, H., Kastrinos, F., et al. Performance of PREMM1,2,6, MMRpredict, and MMRpro in detecting Lynch syndrome among endometrial cancer cases. Genetics in Medicine. 2012;14(7):670–80.CrossRefGoogle ScholarPubMed
Aiyer, K. T. S., Doeleman, T., Ryan, N. A., et al. Validity of a two-antibody testing algorithm for mismatch repair deficiency testing in cancer: A systematic literature review and meta-analysis. Modern Pathology. 2022;35(12):1775–83.CrossRefGoogle Scholar
Paluch-Shimon, S., Cardoso, F., Sessa, C., et al. Prevention and screening in BRCA mutation carriers and other breast/ovarian hereditary cancer syndromes: ESMO Clinical Practice Guidelines for cancer prevention and screening. Ann Oncol. 2016;27(suppl 5):v103–v10.CrossRefGoogle ScholarPubMed
Stoffel, E. M., Mangu, P. B., Gruber, S. B., et al. Hereditary colorectal cancer syndromes: American Society of Clinical Oncology Clinical Practice Guideline Endorsement of the Familial Risk–Colorectal Cancer. European Society for Medical Oncology Clinical Practice Guidelines. Journal of Clinical Oncology. 2014;33(2):209–17.Google Scholar
Schmeler, K. M., Lynch, H. T., Chen, L. M., et al. Prophylactic surgery to reduce the risk of gynecologic cancer in the Lynch syndrome. N Engl J Med. 2006;354(3):261–9.CrossRefGoogle ScholarPubMed
Crosbie, E. J., Ryan, N. A. J., Arends, M. J., et al. The Manchester International Consensus Group recommendations for the management of gynecological cancer in Lynch syndrome. Genet Med. 2019;21(10):2390–400.CrossRefGoogle Scholar
Dominguez-Valentin, M., Seppala, T. T., Engel, C., et al. Risk-reducing gynecological surgery in Lynch syndrome: Results of an international survey from the Prospective Lynch Syndrome Database. J Clin Med. 2020;9(7).CrossRefGoogle ScholarPubMed
Garry, R., Fountain, J., Mason, S., et al. The eVALuate study: Two parallel randomised trials, one comparing laparoscopic with abdominal hysterectomy, the other comparing laparoscopic with vaginal hysterectomy. BMJ. 2004;328(7432):129.CrossRefGoogle ScholarPubMed
de Jong, A. E., Hendriks, Y. M., Kleibeuker, J. H., et al. Decrease in mortality in Lynch syndrome families because of surveillance. Gastroenterology. 2006;130(3):665–71.CrossRefGoogle ScholarPubMed
Jarvinen, H. J., Aarnio, M., Mustonen, H., et al. Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology. 2000;118(5):829–34.CrossRefGoogle ScholarPubMed
Burn, J., Sheth, H., Elliott, F., et al. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: A double-blind, randomised, placebo-controlled trial. The Lancet. 2020;395(10240):1855–63.CrossRefGoogle ScholarPubMed
Seppälä, T. T., Latchford, A., Negoi, I., et al. European guidelines from the EHTG and ESCP for Lynch syndrome: An updated third edition of the Mallorca guidelines based on gene and gender. Br J Surg. 2021;108(5):484–98.CrossRefGoogle ScholarPubMed
Gupta, S., Provenzale, D., Llor, X., et al. NCCN Guidelines Insights: Genetic/familial high-risk assessment: Colorectal, Version 2.2019: Featured updates to the NCCN Guidelines. Journal of the National Comprehensive Cancer Network J Natl Compr Canc Netw. 2019;17(9):1032–41.Google Scholar
Pilarski, R., Burt, R., Kohlman, W., et al. Cowden syndrome and the PTEN hamartoma tumor syndrome: Systematic review and revised diagnostic criteria. J Natl Cancer Inst. 2013;105(21):1607–16.CrossRefGoogle ScholarPubMed
Tischkowitz, M., Colas, C., Pouwels, S., Hoogerbrugge, N., Group, PGD, European Reference Network, G. Cancer Surveillance Guideline for individuals with PTEN hamartoma tumour syndrome. Eur J Hum Genet. 2020;28(10):1387–93.CrossRefGoogle ScholarPubMed
Nemes, K., Bens, S., Bourdeaut, F., et al. Rhabdoid tumor predisposition syndrome. GeneReviews®[Internet]. 2017.Google Scholar
Auguste, A., Blanc-Durand, F., Deloger, M., et al. Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) beyond SMARCA4 mutations: A comprehensive genomic analysis. Cells. 2020;9(6).CrossRefGoogle ScholarPubMed
Lin, D. I., Allen, J. M., Hecht, J. L., et al. SMARCA4 inactivation defines a subset of undifferentiated uterine sarcomas with rhabdoid and small cell features and germline mutation association. Modern Pathology. 2019;32(11):1675–87.CrossRefGoogle ScholarPubMed
Kostov, S., Watrowski, R., Kornovski, Y., et al. Hereditary gynecologic cancer syndromes: A narrative review. Onco Targets Ther. 2022;15:381405.CrossRefGoogle ScholarPubMed
Wagner, A., Aretz, S., Auranen, A., et al. The management of Peutz-Jeghers Syndrome: European Hereditary Tumour Group (EHTG) guideline. J Clin Med. 2021;10(3).CrossRefGoogle ScholarPubMed
Giardiello, F. M., Brensinger, J. D., Tersmette, A. C., et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology. 2000;119(6):1447–53.CrossRefGoogle ScholarPubMed
Resta, N., Pierannunzio, D., Lenato, G. M., et al. Cancer risk associated with STK11/LKB1 germline mutations in Peutz-Jeghers syndrome patients: Results of an Italian multicenter study. Dig Liver Dis. 2013;45(7):606–11.CrossRefGoogle ScholarPubMed
van Lier, M. G. F., Wagner, A., Mathus-Vliegen, E. M. H., et al. High cancer risk in Peutz–Jeghers Syndrome: A systematic review and surveillance recommendations. Official journal of the American College of Gastroenterology | ACG. 2010;105(6):1258–64.Google ScholarPubMed
Zhao, F.-H., Lin, M. J., Chen, F., et al. Performance of high-risk human papillomavirus DNA testing as a primary screen for cervical cancer: A pooled analysis of individual patient data from 17 population-based studies from China. The Lancet Oncology. 2010;11(12):1160–71.CrossRefGoogle ScholarPubMed
González, I. A., Stewart, D. R., Schultz, K. A. P., et al. DICER1 tumor predisposition syndrome: an evolving story initiated with the pleuropulmonary blastoma. Modern Pathology. 2022;35(1):422.CrossRefGoogle ScholarPubMed
Bakhuizen, J. J., Hanson, H., van der Tuin, K., et al. Surveillance recommendations for DICER1 pathogenic variant carriers: A report from the SIOPE Host Genome Working Group and CanGene-CanVar Clinical Guideline Working Group. Fam Cancer. 2021;20(4):337–48.CrossRefGoogle Scholar
The Breast Cancer Risk Assessment Tool. https://bcrisktool.cancer.gov/index.html.Google Scholar
Online Tyrer-Cuzick Model Breast Cancer Risk Evaluation Tool. https://ibis.ikonopedia.com/.Google Scholar
Force, U. S. P. S. T., Davidson, K. W., Barry, M. J., et al. Screening for colorectal cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2021;325(19):1965–77.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×