Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T18:54:15.556Z Has data issue: false hasContentIssue false

24 - Between Rigor and Applications: Developments in the Concept of Function in Mathematical Analysis

from Part V - Mathematics, Astronomy, and Cosmology Since the Eighteenth Century

Published online by Cambridge University Press:  28 March 2008

Mary Jo Nye
Affiliation:
Oregon State University
Get access

Summary

In this chapter I shall illustrate some of the general trends in the development of mathematical analysis by considering its most basic element: the concept of function. I shall show that its development was shaped both by applications in various domains, such as mechanics, electrical engineering, and quantum mechanics, and by foundational issues in pure mathematics, such as the striving for rigor in nineteenth-century analysis and the structural movement of the twentieth century. In particular, I shall concentrate on two great changes in the concept of function: first, the change from analytic-algebraic expressions to Dirichlet’s concept of a variable depending on another variable in an arbitrary way, and second, the invention of the theory of distributions. We shall see that it is characteristic of both of the new concepts that they were initiated in a nonrigorous way in connection with various applications, and that they were generally accepted and widely used only after a new basic trend in the foundation of mathematics had made them natural and rigorous. However, the two conceptual transformations differ in one important respect: The first change had a revolutionary character in that Dirichlet’s concept of function completely replaced the earlier one. Furthermore, some of the analytic expressions, such as divergent power series, which eighteenth-century mathematicians considered as functions, were considered as meaningless by their nineteenth-century successors. The concept of distributions, on the other hand, is a generalization of the concept of function in the sense that most functions (the locally integrable functions) can be considered distributions. Moreover, the theory of distributions builds upon the ordinary theory of functions, so that the theory of functions is neither superfluous nor meaningless.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, Niels Henrik, “Untersuchung über die Reihe …,” Journal für die reine und angewandte Mathematik, 1 (1826)Google Scholar
Bernkopf, Michael, “The Development of Function Spaces with Particular Reference to their Origins in Integral Equation Theory,” Archive for History of Exact Sciences, 3 (1966).CrossRefGoogle Scholar
Birkhoff, G. and Kreyszig, E., “The Establishment of Functional Analysis,” Historia Mathematica, 11 (1984).CrossRefGoogle Scholar
Bôcher, Maxime, “On Harmonic Functions in Two Dimensions,” Proceedings of the American Academy of Science, 41 (1905–6).Google Scholar
Bottazzini, Umberto, The Higher Calculus (New York: Springer Verlag, 1986)Google Scholar
Cauchy, Augustin Louis, Cours d’analyse de l’Ecole Royale Polytechnique, ire Partie. Analyse Algebrique (Paris, 1821)Google Scholar
Cauchy, Augustin Louis, “Mémoire sur les fonctions continuées ou discontinuées,” Comptes Rendus de l’Académie des Sciences, Paris, 18 (1844)Google Scholar
Cauchy, Augustin Louis, Résumé des leçons données a l’école royale polytechnique sur le calcul infinitesimal. Tome premier (Paris, 1823)Google Scholar
Courant, Richard and Hilbert, David, Methoden der Mathematischen Physik, vol. 1 (Berlin: Springer Verlag, 1924).CrossRefGoogle Scholar
d’Alembert, Jean Rond, “Recherches sur la courbe que forme une corde tendue mise en vibration,” Mém. Acad. Sci. Berlin, 3 (1747).Google Scholar
d’Alembert, Jean Rond, “Addition au mémoire sur la courbe que forme une corde tendue mise en vibration,” Mém. Acad. Sci. Berlin, 6 (1750).Google Scholar
Dedekind, Richard, Stetigkeit und irrationale Zahlen (Braunschweig, 1872)Google Scholar
Dieudonné, Jean, History of Functional Analysis (Amsterdam: North Holland 1981)Google Scholar
Dirac, Paul A. M., The Principles of Quantum Mechanics (Oxford: Clarendon Press, 1930).Google Scholar
Dirichlet, Johann Peter Gustav Lejeune, “Über die Darstellung ganz willkürlicher Funktionen durch sinus-und cosinus-Reihen,” Repertorium der Physik, 1 (1837)Google Scholar
Dirichlet, , “Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre les limites données,” Journal für die reine und angewandte Mathematik, 4 (1829).Google Scholar
Dugac, Pierre, “Eléments d’analyse de Karl Weierstrass,” Archive for History of Exact Sciences, 10 (1973), esp..CrossRefGoogle Scholar
English, trans. Essays on the Theory of Numbers (New York: Dover, 1963).Google Scholar
Euler, Leonhard, Introductio in analysin infinitorum, vol. 1 (Lausanne, 1748)Google Scholar
Euler, Leonhard, Institutiones calculi differentialis (Petersburg, St., 1755), LEOO, ser. 1, vol. 10, §.Google Scholar
Euler, Leonhard, “De la controverse entre Mrs. Leibniz et Bernoulli sur les logarithmes des nombres négatifs et imaginaires,” Mém. Acad. Sci. Berlin, 5 (1749).Google Scholar
Fourier, Joseph, Théorie analytique de la chaleur (Paris, 1822)Google Scholar
Grabiner, Judith V., The Origins of Cauchy’s Rigorous Calculus (Cambridge, Mass.: MIT Press, 1981).Google Scholar
Hankel, Hermann, Untersuchungen über die unendlich oft oscillirenden und unstetigen Funktionen (Tübingen, 1870)Google Scholar
Heaviside, Oliver, Electromagnetic Theory, vol. 2 (London: Office of “The Electrician,” 1899), §.Google Scholar
Heine, Eduard, “Die Elemente der Funktionenlehre,” Journal für die reine und angewandte Mathematik, 74 (1872).Google Scholar
Hilbert, David, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen (Leipzig: Teubner, 1912).Google Scholar
Jahnke, Hans Niels, “Die algebraische Analysis des 18. Jahrhunderts,” in Geschichte der Analysis, ed. Jahnke, H.N. (Heidelberg: Spektrum, 1999).CrossRefGoogle Scholar
Kline, Morris: Mathematical Thought from Ancient to Modern Times (New York: Oxford University Press, 1972).Google Scholar
Lacroix, Sylvestre François, Traité du calcul différentiel et du calcul intégral. Seconde édition, revue et augmentée, 3 vols. (Paris, 1810–19).Google Scholar
Lagrange, Joseph Louis, Leçons sur le calcul des fonctions (Paris, 1801)Google Scholar
Lagrange, Joseph Louis, Théorie des Fonctions Analytiques (Paris, 1797), 2d ed. 1813Google Scholar
Lagrange, Joseph Louis, “Nouvelles recherches sur la nature et la propagation du son,” Miscellanea Taurenencia, 2 (1760–1)Google Scholar
Lakatos, Imre, Proofs and Refutations: The Logic of Mathematical Discovery, ed. Worrall, J. and Zahar, E. (Cambridge: Cambridge University Press, 1976).CrossRefGoogle Scholar
Leonhard, Euler, “Sur la vibration des cordes,” Mém. Acad. Sci. Berlin, 4 (1748; pub. 1750).Google Scholar
Lützen, Jesper, The Prehistory of the Theory of Distributions (Studies in the History of Mathematics and Physical Sciences 7) (New York: Springer Verlag, 1982).CrossRefGoogle Scholar
Lützen, Jesper, “Heaviside’s Operational Calculus and the Attempts to Rigorize It,” Archive for History of Exact Sciences, 21 (1979).CrossRefGoogle Scholar
Petrini, H., “Les dérivées premiers et secondes du potentiel,” Acta Mathematica, 31 (1908).CrossRefGoogle Scholar
Poincaré, Henri, “La logique et l’intuition dans la science mathématique et dans l’enseignement,” L’enseignement mathématique 1 (1899)Google Scholar
Ravetz, J. R., “Vibrating Strings and Arbitrary Functions,” Logic of Personal Knowledge, Essays Presented to M. Polanyi on His70th Birthday (London: Routledge and Kegan Paul, 1961).Google Scholar
Riemann, Bernhard Georg, “Über die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe,” Anhandlungen der Gesellschaft der Wissenschaft zu Göttingen Mathematische Klasse, 13 (1867; pub. 1868).Google Scholar
Ruthing, Diether, “Some Definitions of the Concept of Function from Joh. Bernoulli to N. Bourbaki,” The Mathematical Intelligencer, 6 (1984).Google Scholar
Schwartz, Laurent, “Généralisation de la notion de fonction, de dérivation, de transformation de Fourier, et applications mathématiques et physiques,” Annales de l’Université de Grenoble. Sect. Sci. Math. Phys., 21 (1945; pub. 1946).Google Scholar
Schwartz, Laurent, Théorie des distributions, vols. 1 and 2 (Paris: Hermann, 1950–1).Google Scholar
Siegmund-Schultze, Reinhard, “Die Anfänge der Funktionalanalysis und ihr Platz im Umwältzungs prozess der Mathematik um 1900,” Archive for History of Exact Sciences, 26 (1982)Google Scholar
Sobolev, Sergei, “Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales,” Matematiceskii Sbornik, 1, no. 43 (1936).Google Scholar
Weyl, Hermann, “Über die Randwertaufgabe der Strahlungstheorie und asymptotische Spectralge-setze,” Journal für die reine und angewandte Mathematik, 143 (1913).Google Scholar
Wiener, Norbert, “The Operational Calculus,” Mathematische Annalen, 95 (1926), esp. §.CrossRefGoogle Scholar
Youschkevich, A. P., “The Concept of Function up to the Middle of the 19th Century,” Archive for History of Exact Sciences, 16 (1976)Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×