Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T15:17:40.897Z Has data issue: false hasContentIssue false

13 - Going the Extra Creative Mile: The Role of Semantic Distance in Creativity – Theory, Research, and Measurement

from Part IV - Memory and Language

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, A. (2013). The promises and perils of the neuroscience of creativity. Frontiers in Human Neuroscience, 7, 246.CrossRefGoogle ScholarPubMed
Abraham, A. (2014). Creative thinking as orchestrated by semantic processing versus cognitive control brain networks. Frontiers in Human Neuroscience, 8, 95.CrossRefGoogle Scholar
Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kröger, S., Schweckendiek, J., … Hermann, C. (2012). Creativity and the brain: Uncovering the neural signature of conceptual expansion. Neuropsychologia, 50, 19061917.CrossRefGoogle ScholarPubMed
Acar, S., & Runco, M. A. (2014). Assessing associative distance among ideas elicited by tests of divergent thinking. Creativity Research Journal, 26, 229238.CrossRefGoogle Scholar
Addis, D. R., Pan, L., Musicaro, R., & Schacter, D. L. (2016). Divergent thinking and constructing episodic simulations. Memory, 24, 19.CrossRefGoogle ScholarPubMed
Anaki, D., & Henik, A. (2003). Is there a “strength effect” in automatic semantic priming? Memory & Cognition, 31, 262272.CrossRefGoogle Scholar
Andrews-Hanna, J. R., Saxe, R., & Yarkoni, T. (2014). Contributions of episodic retrieval and mentalizing to autobiographical thought: Evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses. NeuroImage, 91, 324335.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316, 2952.CrossRefGoogle ScholarPubMed
Arden, R. Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric view. Behavioral Brain Research, 214, 143156.CrossRefGoogle ScholarPubMed
Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., & Christiansen, M. H. (2013). Networks in cognitive science. Trends in Cognitive Sciences, 17, 348360.CrossRefGoogle ScholarPubMed
Barr, N., Pennycook, G., Stolz, J. A., & Fugelsang, J. A. (2014). Reasoned connections: A dual-process perspective on creative thought. Thinking & Reasoning, 21, 6175.CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964.CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795.CrossRefGoogle ScholarPubMed
Beaty, R. E., Kaufman, S. B., Benedek, M., Jung, R. E., Kenett, Y. N., Jauk, E., … Silvia, P. J. (2016). Personality and complex brain networks: The role of openness to experience in default network efficiency. Human Brain Mapping, 37, 773779.CrossRefGoogle ScholarPubMed
Beaty, R. E., & Silvia, P. J. (2012). Why do ideas get more creative over time? An executive interpretation of the serial order effect in divergent thinking tasks. Psychology of Aesthetics, Creativity and the Arts, 6, 309319.CrossRefGoogle Scholar
Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The roles of associative and executive processes in creative cognition. Memory & Cognition, 42, 112.CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 7383.CrossRefGoogle ScholarPubMed
Benedek, M., Konen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity and the Arts, 6, 273281.CrossRefGoogle Scholar
Benedek, M., & Neubauer, A. C. (2013). Revisiting Mednick’s model on creativity-related differences in associative hierarchies. Evidence for a common path to uncommon thought. The Journal of Creative Behavior, 47, 273289.CrossRefGoogle Scholar
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424, 175308.CrossRefGoogle Scholar
Borge-Holthoefer, J., & Arenas, A. (2010). Semantic networks: Structure and dynamics. Entropy, 12, 12641302.CrossRefGoogle Scholar
Bowden, E. M., & Jung-Beeman, M. (2003). One hundred forty-four Compound Remote Associate Problems: Short insight-like problems with one-word solutions. Behavioral Research, Methods, Instruments, and Computers, 35, 634639.CrossRefGoogle Scholar
Budson, A. E., & Price, B. H. (2005). Memory dysfunction. New England Journal of Medicine, 352, 692699.CrossRefGoogle ScholarPubMed
Campbell, D. T. (1960). Blind variation and selective retentions in creative thought as in other knowledge processes. Psychological Review, 67, 380400.CrossRefGoogle ScholarPubMed
Chan, K. Y., & Vitevitch, M. S. (2010). Network structure influences speech production. Cognitive Science, 34, 685697.CrossRefGoogle ScholarPubMed
Chwilla, D. J., & Kolk, H. H. J. (2002). Three-step priming in lexical decision. Memory & Cognition, 30, 217225.CrossRefGoogle ScholarPubMed
Coane, J. H., & Balota, D. A. (2011). Face (and nose) priming for book: The malleability of semantic memory. Experimental Psychology, 58, 6270.CrossRefGoogle ScholarPubMed
Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82, 407428.CrossRefGoogle Scholar
Davies, M. (2009). The 385+ million word Corpus of Contemporary American English (1990–2008+): Design, architecture, and linguistic insights. International Journal of Corpus Linguistics, 14, 159190.CrossRefGoogle Scholar
De Deyne, S., Kenett, Y. N., Anaki, D., Faust, M., & Navarro, D. J. (2016). Large-scale network representations of semantics in the mental lexicon. In Jones, M. N. (Ed.), Big data in cognitive science: From methods to insights (pp. 174–202). New York, NY: Psychology Press.Google Scholar
De Deyne, S., Navarro, D. J., & Storms, G. (2013). Associative strength and semantic activation in the mental lexicon: evidence from continued word associations. In Proceedings of the 35th Annual Conference of the Cognitive Science Society. Berlin, Germany.Google Scholar
De Deyne, S., & Storms, G. (2008). Word association: Network and semantic properties. Behavior Research Methods, 40, 213231.CrossRefGoogle ScholarPubMed
De Deyne, S., Verheyen, S., & Storms, G. (2016). Structure and organization of the mental lexicon: A network approach derived from syntactic dependency relations and word associations. In Mehler, A., Blanchard, P., Job, B., & Banish, S. (Eds.), Towards a theoretical framework for analyzing complex linguistic networks (pp. 4779). New York, NY: Springer.CrossRefGoogle Scholar
Den-Heyer, K., & Briand, K. (1986). Priming single digit numbers: Automatic spreading activation dissipates as a function of semantic distance. American Journal of Psychology, 99, 315340.CrossRefGoogle Scholar
Dennis, S. (2007). How to use the LSA website. In Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (Eds.), Handbook of latent semantic analysis (pp. 5770). Englewood Cliffs, NJ: Lawrence Erlbaum.Google Scholar
Faust, M. (2012). Thinking outside the left box: The role of the right hemisphere in novel metaphor comprehension. In Faust, M. (Ed.), Advances in the neural substrates of language: Toward a synthesis of basic science and clinical research (pp. 425448). Malden, MA: Wiley Blackwell.Google Scholar
Forthmann, B., Gerwig, A., Holling, H., Çelik, P., Storme, , , M., & Lubart, T. (2016). The be-creative effect in divergent thinking: The interplay of instruction and object frequency. Intelligence, 57, 2532.CrossRefGoogle Scholar
Gabora, L. (2010). Revenge of the “neurds”: Characterizing creative thought in terms of the structure and dynamics of memory. Creativity Research Journal, 22, 113.CrossRefGoogle Scholar
Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465.CrossRefGoogle ScholarPubMed
Green, A. E. (2016). Creativity, within reason: Semantic distance and dynamic state creativity in relational thinking and reasoning. Current Directions in Psychological Science, 25, 2835.CrossRefGoogle Scholar
Green, A. E., Cohen, M. S., Raab, H. A., Yedibalian, C. G., & Gray, J. R. (2015). Frontopolar activity and connectivity support dynamic conscious augmentation of creative state. Human Brain Mapping, 36, 923934.CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2010). Connecting long distance: Semantic distance in analogical reasoning modulates frontopolar cortex activity. Cerebral Cortex, 20, 7076.CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2012). Neural correlates of creativity in analogical reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 264272.Google ScholarPubMed
Green, A. E., Spiegel, K. A., Giangrande, E. J., Weinberger, A. B., Gallagher, N. M., & Turkeltaub, P. E. (2017). Thinking cap plus thinking zap: tDCS of frontopolar cortex improves creative analogical reasoning and facilitates conscious augmentation of state creativity in verb generation. Cerebral Cortex, 27, 26282639.Google ScholarPubMed
Griffiths, T. L., Steyvers, M., & Firl, A. (2007). Google and the mind: Predicting fluency with PageRank. Psychological Science, 18, 10691076.CrossRefGoogle ScholarPubMed
Gruszka, A., & Necka, E. (2002). Priming and acceptance of close and remote associations by creative and less creative people. Creativity Research Journal, 14, 193205.CrossRefGoogle Scholar
Hahn, L. W. (2008). Overcoming the limitations of single-response free associations. Electronic Journal of Integrative Biosciences, 5, 2536.Google Scholar
Hass, R. W. (2016). Conceptual Expansion During Divergent Thinking. Paper presented at the Proceedings of the 38th Annual Meeting of the Cognitive Science Society, Austin, TX.Google Scholar
Howard, M. W., & Kahana, M. J. (2002). When does semantic similarity help episodic retrieval? Journal of Memory and Language, 46, 8598.CrossRefGoogle Scholar
Hutchison, K. A., Balota, D. A., Cortese, M. J., & Watson, J. M. (2008). Predicting semantic priming at the item level. The Quarterly Journal of Experimental Psychology, 61, 10361066.CrossRefGoogle ScholarPubMed
Jauk, E., Benedek, M., & Neubauer, A. C. (2014). The road to creative achievement: A latent variable model of ability and personality predictors. European Journal of Personality, 28, 95105.CrossRefGoogle ScholarPubMed
Jones, M. N., Willits, J., & Dennis, S. (2015). Models of semantic memory. In Busemeyer, J. & Townsend, J. (Eds.), Oxford handbook of mathematical and computational psychology (pp. 232254). New York, NY: Oxford University Press.Google Scholar
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 330.CrossRefGoogle ScholarPubMed
Kajić, I., Gosmann, , Stewart, J., Wennekers, T. C., , T., & Eliasmith, C. (2016). Towards a cognitively realistic representation of word associations. Paper presented at the proceedings of the 38th Annual Meeting of the Cognitive Science Society, Austin, TX.Google Scholar
Kajić, I., & Wennekers, T. (2015). Neural network model of semantic processing in the remote associates test. Paper presented at the Workshop on Cognitive Computation: Integrating Neural and Symbolic Approaches, 29th Annual Conference on Neural Information Processing Systems (NIPS 2015), Montreal, Canada.Google Scholar
Kenett, Y. N., Anaki, D., & Faust, M. (2014). Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience, 8, 407.CrossRefGoogle ScholarPubMed
Kenett, Y. N., Levi, E., Anaki, D., & Faust, M. (2017). The semantic distance task: Quantifying semantic distance with semantic network path length. Journal of Experimental Psychology: Learning, Memory, & Cognition. doi:10.1037/xlm0000391.Google ScholarPubMed
Kenett, Y. N., Beaty, R. E., Silvia, P. J., Anaki, D., & Faust, M. (2016). Structure and flexibility: Investigating the relation between the structure of the mental lexicon, fluid intelligence, and creative achievement. Psychology of Aesthetics, Creativity, and the Arts, 10(4), 377–388.CrossRefGoogle Scholar
Kenett, Y. N., Kenett, D. Y., Ben-Jacob, E., & Faust, M. (2011). Global and local features of semantic networks: Evidence from the Hebrew mental lexicon. PLoS ONE, 6, e23912.CrossRefGoogle ScholarPubMed
Kim, H. (2016). Default network activation during episodic and semantic memory retrieval: A selective meta-analytic comparison. Neuropsychologia, 80, 3546.CrossRefGoogle ScholarPubMed
Kröger, S., Rutter, , Hill, B., Windmann, H., Hermann, S., , C., & Abraham, A. (2013). An ERP study of passive creative conceptual expansion using a modified alternate uses task. Brain Research, 1527, 189198.CrossRefGoogle ScholarPubMed
Kröger, S., Rutter, , Stark, B., Windmann, R., Hermann, S., , C., & Abraham, A. (2012). Using a shoe as a plant pot: Neural correlates of passive conceptual expansion. Brain Research, 1430, 5261.CrossRefGoogle ScholarPubMed
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211240.CrossRefGoogle Scholar
Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25, 259284.CrossRefGoogle Scholar
Lee, C. S., & Therriault, D. J. (2013). The cognitive underpinnings of creative thought: A latent variable analysis exploring the roles of intelligence and working memory in three creative thinking processes. Intelligence, 41, 306320.CrossRefGoogle Scholar
Madore, K. P., Addis, D. R., & Schacter, D. L. (2015). Creativity and memory: Effects of an episodic-specificity induction on divergent thinking. Psychological Science, 26, 14611468.CrossRefGoogle ScholarPubMed
Mandera, P., Keuleers, E., & Brysbaert, M. (2015). How useful are corpus-based methods for extrapolating psycholinguistic variables? The Quarterly Journal of Experimental Psychology, 68, 16231342.CrossRefGoogle ScholarPubMed
Mandera, P., Keuleers, E., & Brysbaert, M. (2017). Explaining human performance in psycholinguistic tasks with models of semantic similarity based on prediction and counting: A review and empirical validation. Journal of Memory and Language, 92, 5776.CrossRefGoogle Scholar
Martindale, C. (1995). Creativity and connectionism. In Smith, S. M., Ward, T. B., & Finke, R. A. (Eds.), The creative cognition approach (pp. 249268). Cambridge, MA: The MIT Press.Google Scholar
Mayseless, N., Eran, A., & Shamay-Tsoory, S. G. (2015). Generating original ideas: The neural underpinning of originality. NeuroImage, 116, 232239.CrossRefGoogle ScholarPubMed
McRae, K., & Jones, M. N. (2013). Semantic memory. In Reisberg, D. (Ed.), The Oxford handbook of cognitive psychology (pp. 206219). Oxford: Oxford University Press.Google Scholar
Mednick, M. T., Mednick, S. A., & Jung, C. C. (1964). Continual association as a function of level of creativity and type of verbal stimulus. Journal of Abnormal and Social Psychology, 69, 511515.CrossRefGoogle ScholarPubMed
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220232.CrossRefGoogle ScholarPubMed
Mendelsohn, G. A. (1976). Associative and attentional processes in creative performance 1. Journal of Personality, 44, 341369.CrossRefGoogle Scholar
Nelson, D. L., McEvoy, C. L., & Dennis, S. (2000). What is free association and what does it measure? Memory & Cognition, 28, 887899.CrossRefGoogle ScholarPubMed
Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (2004). The University of South Florida free association, rhyme, and word fragment norms. Behavior Research Methods, Instruments, & Computers, 36, 402407.CrossRefGoogle ScholarPubMed
Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 3645.CrossRefGoogle Scholar
Olteţeanu, A.-M., & Falomir, Z. (2015). comRAT-C: A computational compound Remote Associates Test solver based on language data and its comparison to human performance. Pattern Recognition Letters, 67, 8190.CrossRefGoogle Scholar
Olteţeanu, A.-M., & Falomir, Z. (2016). Object replacement and object composition in a creative cognitive system. Towards a computational solver of the Alternative Uses Test. Cognitive Systems Research, 39, 1532.CrossRefGoogle Scholar
Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8, 976987.CrossRefGoogle Scholar
Prabhakaran, R., Green, A. E., & Gray, J. R. (2014). Thin slices of creativity: Using single-word utterances to assess creative cognition. Behavior Research Methods, 46, 641659.CrossRefGoogle ScholarPubMed
Radel, R., Davranche, K., Fournier, M., & Dietrich, A. (2015). The role of (dis)inhibition in creativity: Decreased inhibition improves idea generation. Cognition, 134, 110120.CrossRefGoogle ScholarPubMed
Recchia, G., & Jones, M. (2009). More data trumps smarter algorithms: Comparing pointwise mutual information with latent semantic analysis. Behavior Research Methods, 41, 647656.CrossRefGoogle ScholarPubMed
Rossman, E., & Fink, A. (2010). Do creative people use shorter association pathways? Personality and Individual Differences, 49, 891895.CrossRefGoogle Scholar
Rubinsten, O., Anaki, D., Henik, A., Drori, S., & Farn, I. (2005). Norms to free associations in Hebrew. In Henik, A., Rubinsten, O., & Anaki, D. (Eds.), Word norms in Hebrew (pp. 1735). Beer-Sheva: Ben-Gurion University.Google Scholar
Runco, M. A., & Acar, S. (2012). Divergent thinking as an indicator of creative potential. Creativity Research Journal, 24, 6675.CrossRefGoogle Scholar
Rutter, B., Kröger, S., Hill, , Windmann, H., Hermann, S., , C., & Abraham, A. (2012). Can clouds dance? Part 2: An ERP investigation of passive conceptual expansion. Brain and Cognition, 80, 301310.CrossRefGoogle ScholarPubMed
Rutter, B., Kröger, S., Stark, , Schweckendiek, R., Windmann, J., Hermann, S., , C., & Abraham, A. (2012). Can clouds dance? Neural correlates of passive conceptual expansion using a metaphor processing task: Implications for creative cognition. Brain and Cognition, 78, 114122.CrossRefGoogle ScholarPubMed
Schilling, M. A. (2005). A “small-world” network model of cognitive insight. Creativity Research Journal, 17, 131154.CrossRefGoogle Scholar
Shapira-Lichter, I., Oren, N., Jacob, Y., Gruberger, M., & Hendler, T. (2013). Portraying the unique contribution of the default mode network to internally driven mnemonic processes. Proceedings of the National Academy of Sciences, 110, 49504955.CrossRefGoogle ScholarPubMed
Silvia, P. J., Beaty, R. E., & Nusbaum, E. C. (2013). Verbal fluency and creativity: General and specific contributions of broad retrieval ability (Gr) factors to divergent thinking. Intelligence, 41, 328340.CrossRefGoogle Scholar
Simmons, S., & Estes, Z. (2006). Using latent semantic analysis to estimate similarity. In Proceedings of the 28th Annual Meeting of the Cognitive Science Society, Austin, TX.Google Scholar
Simonton, D. K. (2010). Creative thought as blind-variation and selective-retention: Combinatorial models of exceptional creativity. Physics of Life Reviews, 7, 190194.CrossRefGoogle ScholarPubMed
Simonton, D. K. (2013). Creative thought as blind variation and selective retention: Why creativity is inversely related to sightedness. Journal of Theoretical and Philosophical Psychology, 33, 253266.CrossRefGoogle Scholar
Simonton, D. K. (2015). On praising convergent thinking: Creativity as blind variation and selective retention. Creativity Research Journal, 27, 262270.CrossRefGoogle Scholar
Smith, S. M., & Ward, T. B. (2012). Cognition and the creation of ideas. In Holyoak, K. M., & Morrison, R. G. (Eds.), Oxford handbook of thinking and reasoning (pp. 456474). Oxford: Oxford University Press.CrossRefGoogle Scholar
Sowden, P. T., Pringle, A., & Gabora, L. (2014). The shifting sands of creative thinking: Connections to dual-process theory. Thinking & Reasoning, 21, 4060.CrossRefGoogle Scholar
Steyvers, M., Shiffrin, R. M., & Nelson, D. L. (2004). Word association spaces for predicting semantic similarity effects in episodic memory. In Healy, A. F. (Ed.), Experimental cognitive psychology and its applications: Festchrift in honor of Lyle Bourne, Walter Kintsch, and Thomas Landauer (pp. 237249). Washington, DC: American Psychological Association.Google Scholar
Steyvers, M., & Tenenbaum, J. B. (2005). The large scale structure of semantic networks: Statistical analysis and a model of semantic growth. Cognitive Science, 29, 4178.CrossRefGoogle Scholar
Van Petten, C. (2014). Examining the N400 semantic context effect item-by-item: Relationship to corpus-based measures of word co-occurrence. International Journal of Psychophysiology, 94, 407419.CrossRefGoogle ScholarPubMed
Vitevitch, M. S. (2008). What can graph theory tell us about word learning and lexical retrieval? Journal of Speech Language and Hearing Research, 51, 408422.CrossRefGoogle ScholarPubMed
Vitevitch, M. S., Chan, K. Y., & Goldstein, R. (2014). Insights into failed lexical retrieval from network science. Cognitive Psychology, 68, 132.CrossRefGoogle ScholarPubMed
Vitevitch, M. S., Chan, K. Y., & Roodenrys, S. (2012). Complex network structure influences processing in long-term and short-term memory. Journal of Memory and Language, 67, 3044.CrossRefGoogle ScholarPubMed
Ward, T. B. (1994). Structured imagination: The role of category structure in exemplar generation. Cognitive Psychology, 27, 140.CrossRefGoogle Scholar
Wirth, M., Jann, K., Dierks, T., Federspiel, A., Wiest, R., & Horn, H. (2011). Semantic memory involvement in the default mode network: A functional neuroimaging study using independent component analysis. NeuroImage, 54, 30573066.CrossRefGoogle ScholarPubMed
Zabelina, D. L., Saporta, A., & Beeman, M. (2015). Flexible or leaky attention in creative people? Distinct patterns of attention for different types of creative thinking. Memory & Cognition, 44, 488498.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×