Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T14:49:52.407Z Has data issue: false hasContentIssue false

5b - Sex/Gender Differences in the Brain and their Relationship to Behavior

from Section 1 - The Underpinnings of Sex and Gender and How to Study Them

Published online by Cambridge University Press:  20 July 2020

Fanny M. Cheung
Affiliation:
The Chinese University of Hong Kong
Diane F. Halpern
Affiliation:
Claremont McKenna College, California
Get access

Summary

Sex difference in the brain is of great interest, because it is believed to reveal the “real” or biologically predetermined basis for differences between men's and women’s behavior. However, current neuroscience research does not support this conception. First, most male/female brain differences are attributable to body size; thus, all brain structures are 10% larger in males, but after accounting for individuals’ total brain volume, sex/gender explains only ~1% of the variance in structural volumes at both the cortical and subcortical level. Other differences, such as higher ratio of gray:white matter and density of interhemispheric connections in women, are also found to be due to brain size rather than sex per se.Second, functional measures of brain activity (fMRI) have not revealed reliable differences in the neural circuits that process verbal, spatial, and emotional information, even though men and women as groups perform differently on such tasks. Finally, it is important to appreciate that brain structure and function are both influenced by experience, or neuroplasticity, so even when small differences are identified, it is not possible to determine whether they were induced by “Nature” (sexually differentiated genes and hormone levels) or “Nurture” (gender enculturation). Overall, measures of brain structure and function exhibit far more overlap than difference between males and females. In spite of much hype, current brain findings do not explain any of the well-described male/female differences in behavior, interests, or mental health.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Readings

Lise Eliot is Professor of Neuroscience at the Chicago Medical School of Rosalind Franklin University.  Her research addresses brain and gender development, especially the role of neuroplasticity in shaping neural circuitry and behavior. She is the author of two books:  What’s going on in there? How the brain and mind develop in the first five years of life (1999) and Pink brain, blue brain: How small differences grow into troublesome gaps (2009). A Chicago native, Eliot received an AB degree magna cum laude in History and Science from Harvard University and a PhD in Cellular Physiology and Biophysics from Columbia University, and she completed a postdoctoral fellowship in the Division of Neuroscience at Baylor College of Medicine.

David, S. P., Naudet, F., Laude, J., Radua, J., Fusar-Poli, P., Chu, I., … Ioannidis, J. P. (2018). Potential reporting bias in neuroimaging studies of sex differencesScientific Reports8(1), 6082. doi:10.1038/s41598–018-23976-1Google Scholar
Eliot, L. (2009).  Pink brain, blue brain: How small differences grow into troublesome gaps – and what we can do about it. New York: Houghton Mifflin Harcourt.Google Scholar
Eliot, L. (2011). The trouble with sex differencesNeuron72(6), 895898. doi:10.1016/j.neuron.2011.12.001Google Scholar
Jäncke, L. (2018). Sex/gender differences in cognition, neurophysiology, and neuroanatomy [version 1; referees: 3 approved]F1000Research 7(F1000 Faculty Rev), 805.CrossRefGoogle ScholarPubMed
Rippon, G. (2019). The gendered brain. London: Bodley Head.Google Scholar
Rippon, G., Jordan-Young, R., Kaiser, A., & Fine, C. (2014). Recommendations for sex/gender neuroimaging research: Key principles and implications for research design, analysis, and interpretationFrontiers in Human Neuroscience8, 650. doi:10.3389/fnhum.2014.00650Google Scholar
Smith, E. S., Junger, J., Derntl, B., & Habel, U. (2015). The transsexual brain – A review of findings on the neural basis of transsexualismNeuroscience & Biobehavioral Reviews59, 251266. doi:10.1016/j.neubiorev.2015.09.008CrossRefGoogle Scholar

References

Agcaoglu, O., Miller, R., Mayer, A. R., Hugdahl, K., & Calhoun, V. D. (2015). Lateralization of resting state networks and relationship to age and gender. NeuroImage, 104, 310325. doi:10.1016/j.neuroimage.2014.09.001Google Scholar
Ahmed, E. I., Zehr, J. L., Schulz, K. M., Lorenz, B. H., DonCarlos, L. L., & Sisk, C. L. (2008). Pubertal hormones modulate the addition of new cells to sexually dimorphic brain regions. Nature Neuroscience, 11, 995997. doi:10.1038/nn.2178Google Scholar
Allen, E. A., Erhardt, E. B., Eswar, D., William, G., Segall, J. M., Silva, R. F., … Calhoun, V. D. (2011). A baseline for the multivariate comparison of resting state networks. Frontiers in Systems Neuroscience, 5, 2. doi:10.3389/fnsys.2011.00002Google Scholar
Allen, L. S., & Gorski, R. A. (1991). Sexual dimorphism of the anterior commissure and massa intermedia of the human brain. Journal of Comparative Neurology, 312(1), 97104. doi:10.1002/cne.903120108Google Scholar
Allen, L. S., & Gorski, R. A. (1992). Sexual orientation and the size of the anterior commissure in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 89(15), 71997202. doi:10.1073/pnas.89.15.7199Google Scholar
Anderson, N. E., Harenski, K. A., Harenski, C. L., Koenigs, M. R., Decety, J., Calhoun, V. D., & Kiehl, K. A. (2019). Machine learning of brain gray matter differentiates sex in a large forensic sample. Human Brain Mapping, 40, 14961506. doi:10.1002/hbm.24462Google Scholar
Andreano, J. M., & Cahill, L. (2009). Sex influences on the neurobiology of learning and memory. Learning & Memory, 16(4), 248266. doi:10.1101/lm.918309Google Scholar
Ball, G. F., Balthazart, J., & McCarthy, M. M. (2014). Is it useful to view the brain as a secondary sexual characteristic? Neuroscience & Biobehavioral Reviews, 46, 628638. doi:10.1016/j.neubiorev.2014.08.009Google Scholar
Bishop, K. M., & Wahlsten, D. (1997). Sex differences in the human corpus callosum: Myth or reality? Neuroscience & Biobehavioral Reviews, 21(5), 581601. doi:10.1016/S0149–7634(96)00049-8Google Scholar
Biswal, B. B., Mennes, M., Zuo, X., Gohel, S., Kelly, C., Smith, S. M., … Milham, M. P. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 47344739. doi:10.1073/pnas.0911855107CrossRefGoogle ScholarPubMed
Breedlove, S. M. (1992). Sexual dimorphism in the vertebrate nervous system. Journal of Neuroscience, 12(11), 41334142. doi:10.1523/JNEUROSCI.12-11-04133.1992Google Scholar
Breedlove, S. M., & Arnold, A. P. (1983). Hormonal control of a developing neuromuscular system. II. Sensitive periods for the androgen-induced masculinization of the rat spinal nucleus of the bulbocavernosus. Journal of Neuroscience, 3(2), 424432. doi:10.1523/JNEUROSCI.03-02-00424.1983Google Scholar
Brizendine, L. (2010). The male brain. New York: Bantam.Google Scholar
Buss, D. M., & Schmitt, D. P. (1993). Sexual strategies theory: An evolutionary perspective on human mating. Psychological Review, 100(2), 204232. doi:10.1037/0033-295X.100.2.204Google Scholar
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365376. doi:10.1038/nrn3475Google Scholar
Chaplin, T. M., & Aldao, A. (2013). Gender differences in emotion expression in children: A meta-analytic review. Psychological Bulletin, 139, 735765. doi:10.1037/a0030737Google Scholar
Choi, M., Kim, J., Yeon, H., Choi, J., Park, J., Jun, J., … Chung, S. (2011). Effects of gender and age on anterior commissure volume. Neuroscience Letters, 500(2), 9294. doi:10.1016/j.neulet.2011.06.010CrossRefGoogle ScholarPubMed
Cooke, B. M., Tabibnia, G., & Breedlove, S. M. (1999). A brain sexual dimorphism controlled by adult circulating androgens. Proceedings of the National Academy of Sciences of the United States of America, 96(13), 75387540. doi:10.1073/pnas.96.13.7538Google Scholar
Cosgrove, K. P., Mazure, C. M., & Staley, J. K. (2007). Evolving knowledge of sex differences in brain structure, function, and chemistry. Biological Psychiatry, 62(8), 847855. doi:10.1016/j.biopsych.2007.03.001Google Scholar
Coupé, P., Catheline, G., Lanuza, E., & Manjón, J. V. (2017). Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis. Human Brain Mapping, 38(11), 55015518. doi:10.1002/hbm.23743CrossRefGoogle ScholarPubMed
Damle, N. R., Ikuta, T., John, M., Peters, B. D., DeRosse, P., Malhotra, A. K., & Szeszko, P. R. (2017). Relationship among interthalamic adhesion size, thalamic anatomy and neuropsychological functions in healthy volunteers. Brain Structure & Function, 222(5), 21832192. doi:10.1007/s00429–016-1334-6CrossRefGoogle ScholarPubMed
David, S. P., Naudet, F., Laude, J., Radua, J., Fusar-Poli, P., Chu, I., … Ioannidis, J. P. (2018). Potential reporting bias in neuroimaging studies of sex differences. Scientific Reports, 8(1), 6082. doi:10.1038/s41598–018-23976-1CrossRefGoogle ScholarPubMed
de la Grandmaison, G. L., Clairand, I., & Durigon, M. (2001). Organ weight in 684 adult autopsies: New tables for a caucasoid population. Forensic Science International, 119(2), 149154. doi:10.1016/S0379–0738(00)00401-1Google Scholar
de Vries, G. J. (2004). Minireview: Sex differences in adult and developing brains: Compensation, compensation, compensation. Endocrinology, 145(3), 10631068. doi:10.1210/en.2003-1504Google Scholar
de Vries, G. J., & Södersten, P. (2009). Sex differences in the brain: The relation between structure and function. Hormones and Behavior, 55(5), 589596. doi:10.1016/j.yhbeh.2009.03.012CrossRefGoogle ScholarPubMed
Del Giudice, M., Booth, T., & Irwing, P. (2012). The distance between Mars and Venus: Measuring global sex differences in personality. PloS One, 7(1), e29265. doi:10.1371/journal.pone.0029265Google Scholar
DeLacoste-Utamsing, C., & Holloway, R. L. (1982). Sexual dimorphism in the human corpus callosum. Science (New York), 216(4553), 14311432. doi:10.1126/science.7089533Google Scholar
Demeter, S., Ringo, J. L., & Doty, R. W. (1988). Morphometric analysis of the human corpus callosum and anterior commissure. Human Neurobiology, 6(4), 219226.Google Scholar
Driesen, N. R., & Raz, N. (1995). The influence of sex, age, and handedness on corpus callosum morphology: A meta-analysis. Psychobiology, 23(3), 240247.CrossRefGoogle Scholar
Dunbar, R. I., & Shultz, S. (2007). Evolution in the social brain. Science (New York), 317(5843), 13441347. doi:10.1126/science.1145463CrossRefGoogle ScholarPubMed
Else-Quest, N. M., Higgins, A., Allison, C., & Morton, L. C. (2012). Gender differences in self-conscious emotional experience: A meta-analysis. Psychological Bulletin, 138, 947981. doi:10.1037/a0027930Google Scholar
Filipek, P. A., Richelme, C., Kennedy, D. N., & Caviness Jr, V. S. (1994). The young adult human brain: An MRI-based morphometric analysis. Cerebral Cortex, 4(4), 344360. doi:10.1093/cercor/4.4.344Google Scholar
Filkowski, M. M., Olsen, R. M., Duda, B., Wanger, T. J., & Sabatinelli, D. (2017). Sex differences in emotional perception: Meta analysis of divergent activation. NeuroImage, 147, 925933. doi:10.1016/j.neuroimage.2016.12.016Google Scholar
Finkel, E. J., & Eastwick, P. W. (2015). Attachment and pairbonding. Current Opinion in Behavioral Sciences, 3, 711. doi:10.1016/j.cobeha.2014.12.006Google Scholar
Flynn, J. R. (2012). Are we getting smarter? Rising IQ in the twenty-first century. Cambridge: Cambridge University Press.Google Scholar
Forstmeier, W. (2011). Women have relatively larger brains than men: A comment on the misuse of general linear models in the study of sexual dimorphism. Anatomical Record, 294(11), 18561863. doi:10.1002/ar.21423CrossRefGoogle Scholar
Frick, A., Möhring, W., & Newcombe, N. S. (2014). Development of mental transformation abilities. Trends in Cognitive Sciences, 18(10), 536542. doi:10.1016/j.tics.2014.05.011Google Scholar
Frost, J. A., Binder, J. R., Springer, J. A., Hammeke, T. A., Bellgowan, P. S. F., Rao, S. M., & Cox, R. W. (1999). Language processing is strongly left lateralized in both sexes: Evidence from functional MRI. Brain, 122(2), 199208. doi:10.1093/brain/122.2.199Google Scholar
Garcia-Falgueras, A., & Swaab, D. F. (2008). A sex difference in the hypothalamic uncinate nucleus: Relationship to gender identity. Brain: A Journal of Neurology, 131(12), 31323146. doi:10.1093/brain/awn276Google Scholar
Garcia-Garcia, I., Kube, J., Gaebler, M., Horstmann, A., Villringer, A., & Neumann, J. (2016). Neural processing of negative emotional stimuli and the influence of age, sex and task-related characteristics. Neuroscience & Biobehavioral Reviews, 68, 773793. doi:10.1016/j.neubiorev.2016.04.020CrossRefGoogle ScholarPubMed
Geary, D. C. (2000). Evolution and proximate expression of human paternal investment. Psychological Bulletin, 126, 5577. doi:10.1037/0033-2909.126.1.55Google Scholar
Geng, X., Li, G., Lu, Z., Gao, W., Wang, L., Shen, D., … Gilmore, J. H. (2017). Structural and maturational covariance in early childhood brain development. Cerebral Cortex, 27(3), 17951807. doi:10.1093/cercor/bhw022Google Scholar
Geschwind, N., & Galaburda, A. M. (1985a). Cerebral lateralization: Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Archives of Neurology, 42(5), 428459. doi:10.1001/archneur.1985.04060050026008Google Scholar
Geschwind, N., & Galaburda, A. M. (1985b). Cerebral lateralization: Biological mechanisms, associations, and pathology: II. A hypothesis and a program for research. Archives of Neurology, 42(6), 521552. doi:10.1001/archneur.1985.04060060019009Google Scholar
Geschwind, N., & Galaburda, A. M. (1985c). Cerebral lateralization: Biological mechanisms, associations, and pathology: III. A hypothesis and a program for research. Archives of Neurology, 42(7), 634654. doi:10.1001/archneur.1985.04060070024012CrossRefGoogle Scholar
Giedd, J. N., Castellanos, F. X., Rajapakse, J. C., Vaituzis, A. C., & Rapoport, J. L. (1997). Sexual dimorphism of the developing human brain. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 21(8), 11851201. doi:10.1016/S0278–5846(97)00158-9Google Scholar
Giedd, J. N., Vaituzis, A. C., Hamburger, S. D., Lange, N., Rajapakse, J. C., Kaysen, D., … Rapoport, J. L. (1996). Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: Ages 4–18 years. Journal of Comparative Neurology, 366(2), 223230. https://doi:10.1002/(SICI)1096-9861(19960304)366:23.0.CO;2-73.0.CO;2-7>CrossRefGoogle ScholarPubMed
Goldstein, J. M., Seidman, L. J., Horton, N. J., Makris, N., Kennedy, D. N., Caviness Jr., V. S., … Tsuang, M. T. (2001). Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cerebral Cortex, 11(6), 490497. doi:10.1093/cercor/11.6.490Google Scholar
Gong, G., He, Y., & Evans, A. C. (2011). Brain connectivity: Gender makes a difference. Neuroscientist, 17(5), 575591. doi:10.1177/1073858410386492CrossRefGoogle ScholarPubMed
Gould, S. J. (1996). The Mismeasure of Man. New York: W. W. Norton & Company.Google Scholar
Grön, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W. (2000). Brain activation during human navigation: Gender-different neural networks as substrate of performance. Nature Neuroscience, 3(4), 404. doi:10.1038/73980Google Scholar
Guadalupe, T., Zwiers, M. P., Wittfeld, K., Teumer, A., Vasquez, A. A., Hoogman, M., … van Bokhoven, H. (2015). Asymmetry within and around the human planum temporale is sexually dimorphic and influenced by genes involved in steroid hormone receptor activity. Cortex, 62, 4155. doi:10.1016/j.cortex.2014.07.015Google Scholar
Gur, R. C., Gunning-Dixon, F., Bilker, W. B., & Gur, R. E. (2002). Sex differences in temporo-limbic and frontal brain volumes of healthy adults. Cerebral Cortex, 12(9), 9981003. doi:10.1093/cercor/12.9.998CrossRefGoogle ScholarPubMed
Gur, R. E., & Gur, R. C. (2016). Sex differences in brain and behavior in adolescence: Findings from the Philadelphia neurodevelopmental cohort. Neuroscience & Biobehavioral Reviews, 70, 159170. doi:10.1016/j.neubiorev.2016.07.035Google Scholar
Hall, J. A. (1978). Gender effects in decoding nonverbal cues. Psychological Bulletin, 85, 845857. doi:10.1037/0033-2909.85.4.845Google Scholar
Halpern, D. F. (2012). Sex differences in cognitive abilities (4th ed.). New York: Psychology Press.Google Scholar
Hamann, S. (2005). Sex differences in the responses of the human amygdala. Neuroscientist, 11(4), 288293. doi:10.1177/1073858404271981Google Scholar
Hamann, S., Herman, R. A., Nolan, C. L., & Wallen, K. (2004). Men and women differ in amygdala response to visual sexual stimuli. Nature Neuroscience, 7(4), 411416. doi:10.1038/nn1208Google Scholar
Hänggi, J., Buchmann, A., Mondadori, C. R. A., Henke, K., Jäncke, L., & Hock, C. (2010). Sexual dimorphism in the parietal substrate associated with visuospatial cognition independent of general intelligence. Journal of Cognitive Neuroscience, 22(1), 139155. doi:10.1162/jocn.2008.21175Google Scholar
Hänggi, J., Fovenyi, L., Liem, F., Meyer, M., & Jäncke, L. (2014). The hypothesis of neuronal interconnectivity as a function of brain size – A general organization principle of the human connectome. Frontiers in Human Neuroscience, 8, 915. doi:10.3389/fnhum.2014.00915CrossRefGoogle Scholar
Highley, J. R., Esiri, M. M., McDonald, B., Roberts, H. C., Walker, M. A., & Crow, T. J. (1999). The size and fiber composition of the anterior commissure with respect to gender and schizophrenia. Biological Psychiatry, 45(9), 11201127. doi:10.1016/S0006–3223(98)00323-0Google Scholar
Hiscock, M., Inch, R., Hawryluk, J., Lyon, P. J., & Perachio, N. (1999). Is there a sex difference in human laterality? III. An exhaustive survey of tactile laterality studies from six neuropsychology journals. Journal of Clinical and Experimental Neuropsychology, 21(1), 1728. doi:10.1076/jcen.21.1.17.944Google Scholar
Hiscock, M., Inch, R., Jacek, C., Hiscock-Kalil, C., & Kalil, K. M. (1994). Is there a sex difference in human laterality? I. An exhaustive survey of auditory laterality studies from six neuropsychology journals. Journal of Clinical and Experimental Neuropsychology, 16(3), 423435. doi:10.1080/01688639408402653Google Scholar
Hiscock, M., Israelian, M., Inch, R., Jacek, C., & Hiscock-Kalil, C. (1995). Is there a sex difference in human laterality? II. an exhaustive survey of visual laterality studies from six neuropsychology journals. Journal of Clinical and Experimental Neuropsychology, 17(4), 590610. doi:10.1080/01688639508405148Google Scholar
Hiscock, M., Perachio, N., & Inch, R. (2001). Is there a sex difference in human laterality? IV. An exhaustive survey of dual-task interference studies from six neuropsychology journals. Journal of Clinical & Experimental Neuropsychology, 23(2), 137148. doi:10.1076/jcen.23.2.137.1206Google Scholar
Hoppe, C., Fliessbach, K., Stausberg, S., Stojanovic, J., Trautner, P., Elger, C. E., & Weber, B. (2012). A key role for experimental task performance: Effects of math talent, gender and performance on the neural correlates of mental rotation. Brain and Cognition, 78(1), 1427. doi:10.1016/j.bandc.2011.10.008Google Scholar
Hugdahl, K., Thomsen, T., & Ersland, L. (2006). Sex differences in visuo-spatial processing: An fMRI study of mental rotation. Neuropsychologia, 44(9), 15751583. doi:10.1016/j.neuropsychologia.2006.01.026CrossRefGoogle ScholarPubMed
Hyde, J. S. (2005). The gender similarities hypothesis. American Psychologist, 60, 581592. doi:10.1037/0003-066X.60.6.581Google Scholar
Hyde, J. S. (2014). Gender similarities and differences. Annual Review of Psychology, 65(1), 373398. doi:10.1146/annurev-psych-010213-115057Google Scholar
Hyde, J. S., & Linn, M. C. (1988). Gender differences in verbal ability: A meta-analysis. Psychological Bulletin, 104, 5369. doi:10.1037/0033-2909.104.1.53Google Scholar
Ihnen, S. K. Z., Church, J. A., Petersen, S. E., & Schlaggar, B. L. (2009). Lack of generalizability of sex differences in the fMRI BOLD activity associated with language processing in adults. NeuroImage, 45(3), 10201032. doi:10.1016/j.neuroimage.2008.12.034CrossRefGoogle ScholarPubMed
Im, K., Lee, J., Lyttelton, O., Kim, S. H., Evans, A. C., & Kim, S. I. (2008). Brain size and cortical structure in the adult human brain. Cerebral Cortex, 18(9), 21812191. doi:10.1093/cercor/bhm244Google Scholar
Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, T. D., Elliott, M. A., Ruparel, K., … Verma, R. (2014). Sex differences in the structural connectome of the human brain. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 823828. doi:10.1073/pnas.1316909110Google Scholar
Jäncke, L., Mérillat, S., Liem, F., & Hänggi, J. (2015). Brain size, sex, and the aging brain. Human Brain Mapping, 36(1), 150169. doi:10.1002/hbm.22619CrossRefGoogle ScholarPubMed
Joel, D. (2011). Male or female? Brains are intersex. Frontiers in Integrative Neuroscience, 5(57), 15. doi:10.3389/fnint.2011.00057CrossRefGoogle ScholarPubMed
Joel, D., Berman, Z., Tavor, I., Wexler, N., Gaber, O., Stein, Y., … Assaf, Y. (2015). Sex beyond the genitalia: The human brain mosaic. Proceedings of the National Academy of Sciences of the United States of America, 112(50), 1546815473. doi:10.1073/pnas.1509654112Google Scholar
Joel, D., Persico, A., Salhov, M., Berman, Z., Oligschläger, S., Meilijson, I., & Averbuch, A. (2018). Analysis of human brain structure reveals that the brain “types” typical of males are also typical of females, and vice versa. Frontiers in Human Neuroscience, 12, 399. doi:10.3389/fnhum.2018.00399Google Scholar
Kansaku, K., Yamaura, A., & Kitazawa, S. (2000). Sex differences in lateralization revealed in the posterior language areas. Cerebral Cortex, 10(9), 866872. doi:10.1093/cercor/10.9.866Google Scholar
Keller, K., & Menon, V. (2009). Gender differences in the functional and structural neuroanatomy of mathematical cognition. NeuroImage, 47(1), 342352. doi:10.1016/j.neuroimage.2009.04.042CrossRefGoogle ScholarPubMed
Kokras, N., & Dalla, C. (2014). Sex differences in animal models of psychiatric disorders. British Journal of Pharmacology, 171(20), 45954619. doi:10.1111/bph.12710CrossRefGoogle ScholarPubMed
Koscik, T., O’Leary, D., Moser, D. J., Andreasen, N. C., & Nopoulos, P. (2009). Sex differences in parietal lobe morphology: Relationship to mental rotation performance. Brain and Cognition, 69(3), 451459. doi:10.1016/j.bandc.2008.09.004Google Scholar
Kucian, K., von Aster, M., Loenneker, T., Dietrich, T., Mast, F. W., & Martin, E. (2007). Brain activation during mental rotation in school children and adults. Journal of Neural Transmission, 114(5), 675686. doi:10.1007/s00702–006-0604-5Google Scholar
Lasco, M. S., Jordan, T. J., Edgar, M. A., Petito, C. K., & Byne, W. (2002). A lack of dimorphism of sex or sexual orientation in the human anterior commissure. Brain Research, 936(1–2), 9598. doi:10.1016/S0006–8993(02)02590-8Google Scholar
Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., … Giedd, J. N. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage, 36(4), 10651073. doi:10.1016/j.neuroimage.2007.03.053CrossRefGoogle ScholarPubMed
Leonard, C. M., Towler, S., Welcome, S., Halderman, L. K., Otto, R., Eckert, M. A., & Chiarello, C. (2008). Size matters: Cerebral volume influences sex differences in neuroanatomy. Cerebral Cortex, 18(12), 29202931. doi:10.1093/cercor/bhn052Google Scholar
Liu, H., Stufflebeam, S. M., Sepulcre, J., Hedden, T., & Buckner, R. L. (2009). Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. PNAS Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20,49920,503. doi:10.1073/pnas.0908073106Google Scholar
Lotze, M., Domin, M., Gerlach, F. H., Gaser, C., Lueders, E., Schmidt, C. O., & Neumann, N. (2019). Novel findings from 2,838 adult brains on sex differences in gray matter brain volume. Scientific Reports, 9(1), 1671. doi:10.1038/s41598–018-38239-2Google Scholar
Luders, E., Gaser, C., Narr, K. L., & Toga, A. W. (2009). Why sex matters: Brain size independent differences in gray matter distributions between men and women. Journal of Neuroscience, 29(45), 14,26514,270. doi:10.1523/JNEUROSCI.2261-09.2009Google Scholar
Luders, E., Narr, K. L., Zaidel, E., Thompson, P. M., & Toga, A. W. (2006). Gender effects on callosal thickness in scaled and unscaled space. NeuroReport, 17(11), 11031106. doi:10.1097/01.wnr.0000227987.77304.ccGoogle Scholar
Luders, E., Toga, A. W., & Thompson, P. M. (2014). Why size matters: Differences in brain volume account for apparent sex differences in callosal anatomy: The sexual dimorphism of the corpus callosum. NeuroImage, 84, 820824. doi:10.1016/j.neuroimage.2013.09.040Google Scholar
Lynn, R. (1999). Sex differences in intelligence and brain size: A developmental theory. Intelligence, 27(1), 112. doi:10.1016/S0160–2896(99)00009-4Google Scholar
Maeda, Y., & Yoon, S. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue Spatial Visualization Tests: Visualization of rotations (PSVT:R). Educational Psychology Review, 25(1), 6994. doi:10.1007/s10648–012-9215-xGoogle Scholar
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 43984403. doi:10.1073/pnas.070039597Google Scholar
Martínez, K., Janssen, J., Pineda-Pardo, J. Á., Carmona, S., Román, F. J., Alemán-Gómez, Y., … Santarnecchi, E. (2017). Individual differences in the dominance of interhemispheric connections predict cognitive ability beyond sex and brain size. NeuroImage, 155, 234244. doi:10.1016/j.neuroimage.2017.04.029Google Scholar
Marwha, D., Halari, M., & Eliot, L. (2017). Meta-analysis reveals a lack of sexual dimorphism in human amygdala volume. NeuroImage, 147, 282294. doi:10.1016/j.neuroimage.2016.12.021Google Scholar
McCarthy, M. M. (2015). In Toga, A. W. (Ed.), Brain sex differences. Waltham: Academic Press. doi:10.1016/B978–0-12-397025-1.00196-2Google Scholar
McCarthy, M. M., Arnold, A. P., Ball, G. F., Blaustein, J. D., & de Vries, G. J. (2012). Sex differences in the brain: The not so inconvenient truth. Journal of Neuroscience, 32(7), 22412247. doi:10.1523/JNEUROSCI.5372-11.2012Google Scholar
McDowell, M. A., Fryar, C. D., Ogden, C. L., & Flegal, K. M. (2008). Anthropometric reference data for children and adults: United States, 2003–2006. National Health Statistics Reports, 10, 148.Google Scholar
McEwen, B. S., & Milner, T. A. (2017). Understanding the broad influence of sex hormones and sex differences in the brain. Journal of Neuroscience Research, 95(1–2), 2439. doi:10.1002/jnr.23809CrossRefGoogle ScholarPubMed
McGlone, J. (1980). Sex differences in human brain asymmetry: A critical survey. Behavioral & Brain Sciences, 3(2), 215. doi:10.1017/S0140525X00004398Google Scholar
Mechelli, A., Friston, K. J., Frackowiak, R. S., & Price, C. J. (2005). Structural covariance in the human cortex. Journal of Neuroscience, 25(36), 83038310. doi:10.1523/JNEUROSCI.0357-05.2005Google Scholar
Metzler-Baddeley, C., Caeyenberghs, K., Foley, S., & Jones, D. K. (2016). Task complexity and location specific changes of cortical thickness in executive and salience networks after working memory training. NeuroImage, 130, 4862. doi:10.1016/j.neuroimage.2016.01.007Google Scholar
Morange-Majoux, F., & Devouche, E. (2014). Social encouragement can influence manual preference in 6 month-old-infants. Frontiers in Psychology, 5, 1225. doi:10.3389/fpsyg.2014.01225Google Scholar
Ohnishi, T., Matsuda, H., Hirakata, M., & Ugawa, Y. (2006). Navigation ability dependent neural activation in the human brain: An fMRI study. Neuroscience Research, 55(4), 361369. doi:10.1016/j.neures.2006.04.009Google Scholar
Pakkenberg, B., & Gundersen, H. J. (1997). Neocortical neuron number in humans: Effect of sex and age. Journal of Comparative Neurology, 384(2), 312320. doi:10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-KGoogle Scholar
Paus, T. (2010). Sex differences in the human brain: A developmental perspective. Progress in Brain Research, 186, 1328. doi:10.1016/B978–0-444-53630-3.00002-6Google Scholar
Pedersen, P. M., Vinter, K., & Olsen, T. S. (2004). Aphasia after stroke: Type, severity and prognosis. The Copenhagen aphasia study. Cerebrovascular Diseases (Basel, Switzerland), 17(1), 3543. doi:10.1159/000073896Google Scholar
Peters, M., Jäncke, L., Staiger, J. F., Schlaug, G., Huang, Y., & Steinmetz, H. (1998). Unsolved problems in comparing brain sizes in Homo sapiens. Brain & Cognition, 37(2), 254285. doi:10.1006/brcg.1998.0983Google Scholar
Pfannkuche, K. A., Bouma, A., & Groothuis, T. G. G. (2009). Does testosterone affect lateralization of brain and behaviour? A meta-analysis in humans and other animal species. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 364(1519), 929942. doi:10.1098/rstb.2008.0282Google Scholar
Pietschnig, J., Penke, L., Wicherts, J. M., Zeiler, M., & Voracek, M. (2015). Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean? Neuroscience & Biobehavioral Reviews, 57, 411432. doi:10.1016/j.neubiorev.2015.09.017Google Scholar
Pintzka, C. W. S., Hansen, T. I., Evensmoen, H. R., & Håberg, A. K. (2015). Marked effects of intracranial volume correction methods on sex differences in neuroanatomical structures: A HUNT MRI study. Frontiers in Neuroscience, 9, 238. doi:10.3389/fnins.2015.00238CrossRefGoogle Scholar
Plowman, E., Hentz, B., & Ellis, C. (2012). Post-stroke aphasia prognosis: A review of patient-related and stroke-related factors. Journal of Evaluation in Clinical Practice, 18(3), 689694. doi:10.1111/j.1365-2753.2011.01650.xGoogle Scholar
Potvin, O., Dieumegarde, L., & Duchesne, S. (2018a). Corrigendum to “Normative morphometric data for cerebral cortical areas over the lifetime of the adult human brain’” [NeuroImage 156 (2017) 315–339]. NeuroImage, 183, 996998. doi:S1053–8119(18)30804-8Google Scholar
Potvin, O., Mouiha, A., Dieumegarde, L., & Duchesne, S. (2018b). Corrigendum to “Normative data for subcortical regional volumes over the lifetime of the adult human brain” [NeuroImage 137 (2016) 9–20]. NeuroImage, 183, 994. doi:10.1016/j.neuroimage.2018.09.020Google Scholar
Reilly, D., Neumann, D. L., & Andrews, G. (2018). Gender differences in reading and writing achievement: Evidence from the national assessment of educational progress (NAEP). American Psychologist, 74, 445458. doi:10.1037/amp0000356Google Scholar
Ringo, J. L., Doty, R. W., Demeter, S., & Simard, P. Y. (1994). Time is of the essence: A conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cerebral Cortex, 4(4), 331343. doi:10.1093/cercor/4.4.331Google Scholar
Ritchie, S. J., Cox, S. R., Shen, X., Lombardo, M. V., Reus, L. M., Alloza, C., … Neilson, E. (2018). Sex differences in the adult human brain: Evidence from 5216 UK biobank participants. Cerebral Cortex, 28(8), 29592975. doi:10.1093/cercor/bhy109Google Scholar
Roberts, J. E., & Bell, M. A. (2000). Sex differences on a mental rotation task: Variations in electroencephalogram hemispheric activation between children and college students. Developmental Neuropsychology, 17(2), 199223. doi:10.1207/S15326942DN1702_04Google Scholar
Roberts, J. E., & Bell, M. A. (2003). Two- and three-dimensional mental rotation tasks lead to different parietal laterality for men and women. International Journal of Psychophysiology, 50(3), 235246. doi:10.1016/S0167–8760(03)00195-8CrossRefGoogle ScholarPubMed
Ruigrok, A. N. V., Salimi-Khorshidi, G., Lai, M., Baron-Cohen, S., Lombardo, M. V., Tait, R. J., & Suckling, J. (2014). A meta-analysis of sex differences in human brain structure. Neuroscience & Biobehavioral Reviews, 39, 3450. doi:10.1016/j.neubiorev.2013.12.004Google Scholar
Sacher, J., Neumann, J., Okon-Singer, H., Gotowiec, S., & Villringer, A. (2013). Sexual dimorphism in the human brain: Evidence from neuroimaging. Magnetic Resonance Imaging, 31(3), 366375. doi:10.1016/j.mri.2012.06.007Google Scholar
Saini, A. (2017). Inferior: How science got women wrong – and the new research that’s rewriting the story. Boston, MA: Beacon Press.Google Scholar
Sale, M. V., Reid, L. B., Cocchi, L., Pagnozzi, A. M., Rose, S. E., & Mattingley, J. B. (2017). Brain changes following four weeks of unimanual motor training: Evidence from behavior, neural stimulation, cortical thickness, and functional MRI. Human Brain Mapping, 38(9), 47734787. doi:10.1002/hbm.23710Google Scholar
Satterthwaite, T. D., Wolf, D. H., Roalf, D. R., Ruparel, K., Erus, G., Vandekar, S., … Gur, R. C. (2015). Linked sex differences in cognition and functional connectivity in youth. Cerebral Cortex, 25(9), 23832394. doi:10.1093/cercor/bhu036Google Scholar
Schillaci, M. A. (2006). Sexual selection and the evolution of brain size in primates. PLoS One, 1(1), e62. doi:10.1371/journal.pone.0000062Google Scholar
Schöning, S., Engelien, A., Kugel, H., Schäfer, S., Schiffbauer, H., Zwitserlood, P., … Ohrmann, P. (2007). Functional anatomy of visuo-spatial working memory during mental rotation is influenced by sex, menstrual cycle, and sex steroid hormones. Neuropsychologia, 45(14), 32033214. doi:10.1016/j.neuropsychologia.2007.06.011Google Scholar
Sepehrband, F., Lynch, K. M., Cabeen, R. P., Gonzalez-Zacarias, C., Zhao, L., D’arcy, M., … Toga, A. W. (2018). Neuroanatomical morphometric characterization of sex differences in youth using statistical learning. NeuroImage, 172, 217227. doi:10.1016/j.neuroimage.2018.01.065Google Scholar
Sergerie, K., Chochol, C., & Armony, J. L. (2008). The role of the amygdala in emotional processing: A quantitative meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 32(4), 811830. doi:10.1016/j.neubiorev.2007.12.002Google Scholar
Shapiro, L. E., Leonard, C. M., Sessions, C. E., Dewsbury, D. A., & Insel, T. R. (1991). Comparative neuroanatomy of the sexually dimorphic hypothalamus in monogamous and polygamous voles. Brain Research, 541(2), 232240. doi:10.1016/0006-8993(91)91023-TGoogle Scholar
Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Constable, R. T., Skudlarski, P., Fulbright, R. K., … Katz, L. (1995). Sex differences in the functional organization of the brain for language. Nature, 373(6515), 607609. doi:10.1038/373607a0Google Scholar
Simerly, R., Swanson, L., Chang, C., & Muramatsu, M. (1990). Distribution of androgen and estrogen receptor mRNA‐containing cells in the rat brain: An in situ hybridization study. Journal of Comparative Neurology, 294(1), 7695. doi:10.1002/cne.902940107Google Scholar
Sommer, I. E., Aleman, A., Somers, M., Boks, M. P., & Kahn, R. S. (2008). Sex differences in handedness, asymmetry of the planum temporale and functional language lateralization. Brain Research, 1206, 7688. doi:10.1016/j.brainres.2008.01.003Google Scholar
Stanyon, R., & Bigoni, F. (2014). Sexual selection and the evolution of behavior, morphology, neuroanatomy and genes in humans and other primates. Neuroscience & Biobehavioral Reviews, 46, 579590. doi:10.1016/j.neubiorev.2014.10.001Google Scholar
Stevens, J. S., & Hamann, S. (2012). Sex differences in brain activation to emotional stimuli: A meta-analysis of neuroimaging studies. Neuropsychologia, 50(7), 15781593. doi:10.1016/j.neuropsychologia.2012.03.011Google Scholar
Stewart-Williams, S., & Thomas, A. G. (2013). The ape that thought it was a peacock: Does evolutionary psychology exaggerate human sex differences? Psychological Inquiry, 24(3), 137168. doi:10.1080/1047840X.2013.804899CrossRefGoogle Scholar
Tan, A., Ma, W., Vira, A., Marwha, D., & Eliot, L. (2016). The human hippocampus is not sexually-dimorphic: Meta-analysis of structural MRI volumes. NeuroImage, 124(Pt A), 350366. doi:10.1016/j.neuroimage.2015.08.050Google Scholar
Thompson, A. E., & Voyer, D. (2014). Sex differences in the ability to recognise non-verbal displays of emotion: A meta-analysis. Cognition and Emotion, 28(7), 11641195. doi:10.1080/02699931.2013.875889Google Scholar
Tomasi, D., & Volkow, N. D. (2012). Gender differences in brain functional connectivity density. Human Brain Mapping, 33(4), 849860. doi:10.1002/hbm.21252CrossRefGoogle ScholarPubMed
Tunç, B., Solmaz, B., Parker, D., Satterthwaite, T. D., Elliott, M. A., Calkins, M. E., … Verma, R. (2016). Establishing a link between sex-related differences in the structural connectome and behaviour. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 371(1688). doi:10.1098/rstb.2015.0111Google Scholar
van Putten, M. J., Olbrich, S., & Arns, M. (2018). Predicting sex from brain rhythms with deep learning. Scientific Reports, 8(1), 3069. doi:10.1038/s41598–018-21495-7Google Scholar
Verde, P., Piccardi, L., Bianchini, F., Guariglia, C., Carrozzo, P., Morgagni, F., & Boccia, M. (2015). Gender differences in navigational memory: Pilots vs. nonpilots. Aerospace Medicine & Human Performance, 86(2), 103111. doi:10.3357/AMHP.4024.2015CrossRefGoogle ScholarPubMed
Verde, P., Piccardi, L., Bianchini, F., Trivelloni, P., Guariglia, C., & Tomao, E. (2013). Gender effects on mental rotation in pilots vs. nonpilots. Aviation, Space & Environmental Medicine, 84(7), 726729. doi:10.3357/ASEM.3466.2013Google Scholar
Voevodskaya, O., Simmons, A., Nordenskjöld, R., Kullberg, J., Ahlström, H., Lind, L., … Westman, E. (2014). The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease. Frontiers in Aging Neuroscience, 6, 264. doi:10.3389/fnagi.2014.00264CrossRefGoogle ScholarPubMed
Voyer, D. (1996). On the magnitude of laterality effects and sex differences in functional lateralities. Laterality: Asymmetries of Body, Brain and Cognition, 1(1), 5184. doi:10.1080/713754209Google Scholar
Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250270. doi:10.1037/0033-2909.117.2.250Google Scholar
Wager, T. D., Phan, K. L., Liberzon, I., & Taylor, S. F. (2003). Valence, gender, and lateralization of functional brain anatomy in emotion: A meta-analysis of findings from neuroimaging. NeuroImage, 19(3), 513531. doi:10.1016/S1053–8119(03)00078-8Google Scholar
Wallentin, M. (2009). Putative sex differences in verbal abilities and language cortex: A critical review. Brain and Language, 108(3), 175183. doi:10.1016/j.bandl.2008.07.001Google Scholar
Watila, M. M., & Balarabe, S. A. (2015). Factors predicting post-stroke aphasia recovery. Journal of the Neurological Sciences, 352(1–2), 1218. doi:10.1016/j.jns.2015.03.020Google Scholar
Wei, W., Chen, C., Dong, Q., & Zhou, X. (2016). Sex differences in gray matter volume of the right anterior hippocampus explain sex differences in three-dimensional mental rotation. Frontiers in Human Neuroscience, 10, 580. doi:10.3389/fnhum.2016.00580Google Scholar
Weiss, E., Siedentopf, C., Hofer, A., Deisenhammer, E., Hoptman, M., Kremser, C., … Delazer, M. (2003). Sex differences in brain activation pattern during a visuospatial cognitive task: A functional magnetic resonance imaging study in healthy volunteers. Neuroscience Letters, 344(3), 169172. doi:10.1016/S0304–3940(03)00406-3Google Scholar
Witelson, S. F., Glezer, I. I., & Kigar, D. L. (1995). Women have greater density of neurons in posterior temporal cortex. Journal of Neuroscience, 15, 34183428. doi:10.1523/JNEUROSCI.15-05-03418.1995Google Scholar
Wood, W., & Eagly, A. H. (2012). Biosocial construction of sex differences and similarities in behavior. In Olson, J. M. & Zanna, M. P. (Eds.), Advances in experimental social psychology (Vol. 46, pp. 55123). London: Elsevier. doi:10.1016/B978–0-12-394281-4.00002-7Google Scholar
Zacks, J. M. (2008). Neuroimaging studies of mental rotation: A meta-analysis and review. Journal of Cognitive Neuroscience, 20(1), 119. doi:10.1162/jocn.2008.20013Google Scholar
Zell, E., Krizan, Z., & Teeter, S. R. (2015). Evaluating gender similarities and differences using metasynthesis. American Psychologist, 70, 1020. doi:10.1037/a0038208Google Scholar
Zhang, C., Dougherty, C. C., Baum, S. A., White, T., & Michael, A. M. (2018). Functional connectivity predicts gender: Evidence for gender differences in resting brain connectivity. Human Brain Mapping, 39, 17651776. doi:10.1002/hbm.23950Google Scholar
Zubiaurre-Elorza, L., Junque, C., Gómez-Gil, E., Segovia, S., Carrillo, B., Rametti, G., & Guillamon, A. (2013). Cortical thickness in untreated transsexuals. Cerebral Cortex, 23(12), 28552862. doi:10.1093/cercor/bhs267Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×