Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T19:00:34.578Z Has data issue: false hasContentIssue false

Part II - Imagery-Based Forms of the Imagination

Published online by Cambridge University Press:  26 May 2020

Anna Abraham
Affiliation:
University of Georgia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Albright, T. D. (2012). On the Perception of Probable Things: Neural Substrates of Associative Memory, Imagery, and Perception. Neuron, 74(2), 227245.CrossRefGoogle ScholarPubMed
Allport, G. W. (1924). Eidetic Imagery. British Journal of Psychology, 15, 99120.Google Scholar
Bergmann, J., Genc, E., Kohler, A., Singer, W., and Pearson, J. (2016). Smaller Primary Visual Cortex Is Associated with Stronger, but Less Precise Mental Imagery. Cerebral Cortex, 26(9), 38383850.CrossRefGoogle ScholarPubMed
Brascamp, J. W., Knapen, T. H. J., Kanai, R., van Ee, R., and van den Berg, A. V. (2007). Flash Suppression and Flash Facilitation in Binocular Rivalry. Journal of Vision, 7(12), 1212.Google Scholar
Carrasco, M., Ling, S., and Read, S. (2004). Attention Alters Appearance. Nature Neuroscience, 7(3), 308313.Google Scholar
Chang, S., and Pearson, J. (2018). The Functional Effects of Prior Motion Imagery and Motion Perception. Cortex, 105, 8396.CrossRefGoogle ScholarPubMed
Chiou, R., Rich, A. N., Rogers, S., and Pearson, J. (2018). Exploring the Functional Nature of Synaesthetic Colour – Dissociations from Colour Perception and Imagery. Cognition, 177, 107121.CrossRefGoogle ScholarPubMed
Egeth, H. E., and Yantis, S. (1997). Visual Attention: Control, Representation, and Time Course. Annual Review of Psychology, 48(1), 269297.Google Scholar
Galton, F. (1880). I.—Statistics of Mental Imagery. Mind, 19, 301318.Google Scholar
Goebel, R., Khorram-Sefat, D., Muckli, L., Hacker, H., and Singer, W. (1998). The Constructive Nature of Vision: Direct Evidence from Functional Magnetic Resonance Imaging Studies of Apparent Motion and Motion Imagery. The European Journal of Neuroscience, 10(5), 15631573.Google Scholar
Gray, C. R., and Gummerman, K. (1975). The Enigmatic Eidetic Image: A Critical Examination of Methods, Data, and Theories. Psychological Bulletin, 82(3), 383407.CrossRefGoogle ScholarPubMed
Haber, R. N. (1979). Twenty Years of Haunting Eidetic Imagery: Where’s the Ghost? Behavioral and Brain Sciences, 2(4), 583594.CrossRefGoogle Scholar
Ishai, A., and Sagi, D. (1995). Common Mechanisms of Visual Imagery and Perception. Science, 268(5218), 17721774.Google Scholar
Ishai, A., Ungerleider, L. G., and Haxby, J. V. (2000). Distributed Neural Systems for the Generation of Visual Images. Neuron, 28(3), 979990.Google Scholar
Jacobs, C., Schwarzkopf, D. S., and Silvanto, J. (2018). Visual Working Memory Performance in Aphantasia. Cortex, 105, 6173.CrossRefGoogle ScholarPubMed
Keogh, R., and Pearson, J. (2011). Mental Imagery and Visual Working Memory. PLoS ONE, 6(12), e29221.Google Scholar
Keogh, R., and Pearson, J. (2014). The Sensory Strength of Voluntary Visual Imagery Predicts Visual Working Memory Capacity. Journal of Vision, 14(12), 77.CrossRefGoogle ScholarPubMed
Keogh, R., and Pearson, J. (2018). The Blind Mind: No Sensory Visual Imagery in Aphantasia. Cortex, 105, 5360.Google Scholar
Koenig-Robert, R., and Pearson, J. (2019). Decoding the Contents and Strength of Imagery before Volitional Engagement. Scientific Reports, 9(1), 3504.Google Scholar
Kosslyn, S. M. (1973). Scanning Visual Images: Some Structural Implications. Perception & Psychophysics, 14(1), 9094.Google Scholar
Kosslyn, S. M. (2005). Mental Images and the Brain. Cognitive Neuropsychology, 22(3), 333347.Google Scholar
Laeng, B., and Sulutvedt, U. (2014). The Eye Pupil Adjusts to Imaginary Light. Psychological Science: a Journal of the American Psychological Society / APS, 25(1), 188197.CrossRefGoogle ScholarPubMed
Lewis, D. E., O’Reilly, M. J., Khuu, S. K., and Pearson, J. (2013). Conditioning the Mind’s Eye: Associative Learning with Voluntary Mental Imagery. Clinical Psychological Science, 1(4), 390400.Google Scholar
Maróthi, R., and Kéri, S. (2018). Enhanced Mental Imagery and Intact Perceptual Organization in Schizotypal Personality Disorder. Psychiatry Research, 259, 433438.Google Scholar
Meng, M., Remus, D. A., and Tong, F. (2005). Filling-in of Visual Phantoms in the Human Brain. Nature Neuroscience, 8(9), 12481254.Google Scholar
Mohr, H. M., Linder, N. S., Dennis, H., and Sireteanu, R. (2011). Orientation-Specific Aftereffects to Mentally Generated Lines. Perception, 40(3), 272290.CrossRefGoogle ScholarPubMed
Morina, N., Leibold, E., and Ehring, T. (2013). Vividness of General Mental Imagery Is Associated with the Occurrence of Intrusive Memories. Journal of Behavior Therapy and Experimental Psychiatry, 44(2), 221226.Google Scholar
Morris, T., Spittle, M., and Watt, A. P. (2005). Imagery in Sport. Champaign, IL: Human Kinetics Books.Google Scholar
Naselaris, T., Olman, C. A., Stansbury, D. E., Ugurbil, K., and Gallant, J. L. (2015). A Voxel-Wise Encoding Model for Early Visual Areas Decodes Mental Images of Remembered Scenes. NeuroImage, 105, 215228.CrossRefGoogle ScholarPubMed
Pearson, J. (2014). New Directions in Mental-Imagery Research: The Binocular-Rivalry Technique and Decoding fMRI Patterns. Current Directions in Psychological Science, 23(3), 178183.Google Scholar
Pearson, J., Clifford, C. W. G., and Tong, F. (2008). The Functional Impact of Mental Imagery on Conscious Perception. Current Biology: CB, 18(13), 982986.Google Scholar
Pearson, J., and Keogh, R. (2019). Redefining Visual Working Memory: A Cognitive-Strategy, Brain-Region Approach. Current Directions in Psychological Science, 28(3), 266273.CrossRefGoogle Scholar
Pearson, J., and Kosslyn, S. M. (2015). The Heterogeneity of Mental Representation: Ending the Imagery Debate. Proceedings of the National Academy of Sciences, 112(33), 1008910092.CrossRefGoogle ScholarPubMed
Pearson, J., Naselaris, T., Holmes, E. A., and Kosslyn, S. M. (2015). Mental Imagery: Functional Mechanisms and Clinical Applications. Trends in Cognitive Sciences, 19(10), 590602.Google Scholar
Pearson, J., Rademaker, R. L., and Tong, F. (2011). Evaluating the Mind’s Eye: The Metacognition of Visual Imagery. Psychological Science, 22(12), 15351542.Google Scholar
Pearson, J., and Westbrook, F. (2015). Phantom Perception: Voluntary and Involuntary Non-Retinal Vision. Trends in Cognitive Sciences, 19(5), 278284.Google Scholar
Perky, C. W. (1910). An Experimental Study of Imagination. The American Journal of Psychology, 21(3), 422452.Google Scholar
Pylyshyn, Z. (2001). Is the Imagery Debate Over? If So, What Was It About? In Depoux, E (ed.), Language, Brain, and Cognitive Development: Essays in Honor of Jacques Mehler. Cambridge, MA: MIT Press, 5983.Google Scholar
Ranganath, C., and D’Esposito, M. (2005). Directing the Mind’s Eye: Prefrontal, Inferior and Medial Temporal Mechanisms for Visual Working Memory. Current Opinion in Neurobiology, 15(2), 175182.Google Scholar
Sasaki, Y., and Watanabe, T. (2004). The Primary Visual Cortex Fills in Color. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 1825118256.Google Scholar
Schlack, A., and Albright, T. D. (2007). Remembering Visual Motion: Neural Correlates of Associative Plasticity and Motion Recall in Cortical Area MT. Neuron, 53(6), 881890.Google Scholar
Schlegel, A., Kohler, P. J., Fogelson, S. V., et al. (2013). Network Structure and Dynamics of the Mental Workspace. Proceedings of the National Academy of Sciences, 110(40), 1627716282.CrossRefGoogle ScholarPubMed
Shepard, R. N., and Metzler, J. (1971). Mental Rotation of Three-Dimensional Objects. Science, 171(3972), 701703.CrossRefGoogle ScholarPubMed
Shine, J. M., Keogh, R., O’Callaghan, C., et al. (2014). Imagine That: Elevated Sensory Strength of Mental Imagery in Individuals with Parkinson’s Disease and Visual Hallucinations. Proceedings of the Royal Society B: Biological Sciences, 282(1798), 20142047.Google Scholar
Slotnick, S. D., Thompson, W. L., and Kosslyn, S. M. (2005). Visual Mental Imagery Induces Retinotopically Organized Activation of Early Visual Areas. Cerebral Cortex, 15(10), 15701583.Google Scholar
Stokes, M., Thompson, R., Cusack, R., and Duncan, J. (2009). Top-Down Activation of Shape-Specific Population Codes in Visual Cortex During Mental Imagery. Journal of Neuroscience, 29(5), 15651572.Google Scholar
Stromeyer, C. F., and Psotka, J. (1970). The Detailed Texture of Eidetic Images. Nature, 225(5230), 346349.Google Scholar
Tanaka, Y., and Sagi, D. (1998). A Perceptual Memory for Low-Contrast Visual Signals. Proceedings of the National Academy of Sciences of the United States of America, 95(21), 1272912733.Google Scholar
Tartaglia, E. M., Bamert, L., Mast, F. W., and Herzog, M. H. (2009). Human Perceptual Learning by Mental Imagery. Current Biology: CB, 19(24), 20812085.Google Scholar
Thirion, B., Duchesnay, E., Hubbard, E., et al. (2006). Inverse Retinotopy: Inferring the Visual Content of Images from Brain Activation Patterns. NeuroImage, 33(4), 11041116.Google Scholar
Yomogida, Y. (2004). Mental Visual Synthesis Is Originated in the Fronto-temporal Network of the Left Hemisphere. Cerebral Cortex, 14(12), 13761383.Google Scholar

References

Agnew, M. (1922). The Auditory Imagery of Great Composers. Psychological Monographs, 31(1), 279.Google Scholar
Aranosian, C. M. (1981). Musical Creativity: The Stream of Consciousness in Composition, Improvisation, and Education. Imagination, Cognition and Personality, 1(1), 6788.Google Scholar
Arora, S., Aggarwal, R., Sirimanna, P., et al. (2011). Mental Practice Enhances Surgical Technical Skills: A Randomized Controlled Study. Annals of Surgery, 253(2), 265270.CrossRefGoogle ScholarPubMed
Bailes, F. A. (2002). Musical Imagery: Hearing and Imagining Music. Sheffield, UK: University of Sheffield, PhD thesis.Google Scholar
Bailes, F. A. (2006). The Use of Experience-Sampling Methods to Monitor Musical Imagery in everyday life. Musicae Scientiae, 10, 173190.Google Scholar
Bailes, F. A. (2007a). Timbre as an Elusive Component of Imagery for Music. Empirical Musicology Review, 2, 2134.Google Scholar
Bailes, F. A. (2007b). The Prevalence and Nature of Imagined Music in the Everyday Lives of Music Students. Psychology of Music, 35, 555570.Google Scholar
Bailes, F. A. (2015). Music in Mind? An Experience Sampling Study of What and When, Towards an Understanding of Why. Psychomusicology: Music, Mind and Brain, 25(1), 5868.Google Scholar
Bailes, F., Bishop, L., Stevens, C. J., and Dean, R. T. (2012). Mental Imagery for Musical Changes in Loudness. Frontiers in Psychology, 3 (Dec).Google Scholar
Baird, B., Smallwood, J., Mrazek, M. D., et al. (2012). Inspired by Distraction: Mind-Wandering Facilitates Creative Incubation. Psychological Science, 23, 11171122.Google Scholar
Bangert, M., Peschel, T., Schlaug, G., et al. (2006). Shared Networks for Auditory and Motor Processing in Professional Pianists: Evidence from fMRI Conjunction. NeuroImage, 30(3), 917926.Google Scholar
Baruss, I., and Wammes, M. (2009). Characteristics of Spontaneous Musical Imagery. Journal Of Consciousness Studies, 16(1), 3761.Google Scholar
Beaman, C. P., and Williams, T. I. (2010). Earworms (Stuck Song Syndrome): Towards a Natural History of Intrusive Thoughts. British Journal of Psychology, 101, 637653.Google Scholar
Beaman, C. P., and Williams, T. I. (2013). Individual Differences in Mental Control Predict Involuntary Musical Imagery. Musicae Scientiae, 17, 398409.Google Scholar
Beaty, R. E., Burgin, C. J., Nusbaum, E. C., et al. (2013). Music to the Inner Ears: Exploring Individual Differences in Musical Imagery. Consciousness and Cognition, 22(4), 11631173.CrossRefGoogle Scholar
Bishop, L., Bailes, F., and Dean, R. T. (2013a). Musical Expertise and the Ability to Imagine Loudness. PLoS ONE, 8(2).Google Scholar
Bishop, L., Bailes, F., and Dean, R. T. (2013b). Musical Imagery and the Planning of Dynamics and Articulation During Performance. Music Perception: An Interdisciplinary Journal, 31(2), 97117.Google Scholar
Blood, A. J., and Zatorre, R. J. (2001). Intensely Pleasurable Responses to Music Correlate with Activity in Brain Regions Implicated in Reward and Emotion. Proceedings of the National Academy of Sciences, 98(20), 1181811823.Google Scholar
Brown, S. (2006). The Perpetual Music Track: The Phenomenon of Constant Musical Imagery. Journal of Consciousness Studies, 13(6), 4362.Google Scholar
Byron, T. P., and Fowles, L. C. (2015). Repetition and Recency Increases Involuntary Musical Imagery of Previously Unfamiliar Songs. Psychology of Music, 43(3), 375389.Google Scholar
Chamorro-Premuzic, T., and Furnham, A. (2007). Personality and Music: Can Traits Explain How People Use Music in Everyday Life? British Journal of Psychology, 98(2), 175185.Google Scholar
Chen, J. L., Penhune, V. B., and Zatorre, R. J. (2008). Moving on Time: Brain Network for Auditory-Motor Synchronization Is Modulated by Rhythm Complexity and Musical Training. Journal of Cognitive Neuroscience, 20(2), 226239.Google Scholar
Clynes, M., and Walker, J. (1982). Neurobiologic Functions of Rhythm, Time, and Pulse in Music. In Clynes, M (ed.), Music, Mind, and Brain: The Neuropsychology of Music. New York: Plenum, 171216.Google Scholar
Coffman, D. D. (1990). Effects of Mental Practice, Physical Practice, and Knowledge of Results on Piano Performance. Journal of Research in Music Education, 38(3), 187.Google Scholar
Connolly, C., and Williamon, A. (2004). Mental Skills Training. In Williamon, A (ed.), Music Excellence: Strategies and Techniques to Enhance Performance. Oxford, UK: Oxford University Press, 221242.Google Scholar
Cotter, K. N., Christensen, A. P., and Silvia, P. J. (2018). Understanding Inner Music: A Dimensional Approach to Musical Imagery. Psychology of Aesthetics, Creativity, and the Arts. dx.doi.org/10.1037/aca0000195.Google Scholar
Cotter, K. N., and Silvia, P. J. (2017). Measuring Mental Music: Comparing Retrospective and Experience Sampling Methods for Assessing Musical Imagery. Psychology of Aesthetics, Creativity, and the Arts, 11(3), 335343.Google Scholar
Crowder, R. G. (1989). Imagery for Musical Timbre. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 472.Google Scholar
Davidson-Kelly, K., Schaefer, R. S., Moran, N., and Overy, K. (2015). “Total Inner Memory”: Deliberate Uses of Multimodal Musical Imagery During Performance Preparation. Psychomusicology: Music, Mind, and Brain, 25(1), 83.Google Scholar
Driskell, J. E., Copper, C., and Moran, A. (1994). Does Mental Practice Enhance Performance? Journal of Applied Psychology, 79(4), 481492.Google Scholar
Dunbar, R. (2012). On the Evolutionary Function of Song and Dance. In Bannan, N (ed.), Music, Language and Human Evolution. Oxford, UK: Oxford University Press, 201214.Google Scholar
Eerola, T., Friberg, A., and Bresin, R. (2013). Emotional Expression in Music: Contribution, Linearity, and Additivity of Primary Musical Cues. Frontiers in Psychology, 4, 487.Google Scholar
Farah, M. J., and Smith, A. F. (1983). Perceptual Interference and Facilitation with Auditory Imagery. Perception & Psychophysics, 33(5), 475478.Google Scholar
Farrugia, N., Jakubowski, K., Cusack, R., and Stewart, L. (2015). Tunes Stuck in Your Brain: The Frequency and Affective Evaluation of Involuntary Musical Imagery Correlate with Cortical Structure. Consciousness and Cognition, 35, 6677.Google Scholar
Fine, P. A., Wise, K. J., Goldemberg, R., and Bravo, A. (2015). Performing Musicians’ Understanding of the Terms “Mental Practice” and “Score Analysis”. Psychomusicology: Music, Mind, and Brain, 25(1), 6982.Google Scholar
Fitch, W. T. (2015). Four Principles of Bio-Musicology. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1664), 20140091.Google Scholar
Floridou, G. A. (2016). Investigating the Relationship between Involuntary Musical Imagery and Other Forms of Spontaneous Cognition. London, UK: Goldsmiths, University of London, PhD thesis.Google Scholar
Floridou, G. A., and Müllensiefen, D. (2015). Environmental and Mental Conditions Predicting the Experience of Involuntary Musical Imagery: An Experience Sampling Method Study. Consciousness and Cognition, 33, 472486.Google Scholar
Floridou, G., Williamson, V. J., and Müllensiefen, D. (2012). Contracting Earworms: The Roles of Personality and Musicality. In Cambouropoulos, E, Tsougras, C, Mavromatis, K, and Pastiadis, K, (eds.), Proceedings of ICMPC-ESCOM 12, Thessaloniki, Greece, 302310.Google Scholar
Floridou, G. A., Williamson, V. J., and Stewart, L. (2017). A Novel Indirect Method for Capturing Involuntary Musical Imagery under Varying Cognitive Load. Quarterly Journal of Experimental Psychology, 70(11), 21892199.Google Scholar
Floridou, G. A., Williamson, V. J., Stewart, L., and Müllensiefen, D. (2015). The Involuntary Musical Imagery Scale (IMIS). Psychomusicology: Music, Mind and Brain, 25(1), 2836.Google Scholar
Forster, S., and Lavie, N. (2009). Harnessing the Wandering Mind: The Role of Perceptual Load. Cognition, 111(3), 345355.Google Scholar
Gabrielsson, A., and Lindström, E. (2010). The Role of Structure in the Musical Expression of Emotions. In Juslin, P. N. and Sloboda, J. A. (eds.), Handbook of Music and Emotion: Theory, Research, and Applications. Oxford, UK: Oxford University Press, 367400.Google Scholar
Gelding, R. W., Thompson, W. F., and Johnson, B. W. (2015). The Pitch Imagery Arrow Task: Effects of Musical Training, Vividness, and Mental Control. PLoS ONE, 10(3), e0121809.Google Scholar
Gordon, E. E. (1999). All About Audiation and Music Aptitudes. Music Educators Journal, 86(2), 4144.Google Scholar
Gordon, E. E. (2003). Learning Sequences in Music: Skill, Content, and Patterns. Chicago, IL: GIA Publications.Google Scholar
Gould, D., Voelker, D. F., Damarjian, N., and Greenleaf, C. (2014). Imagery Training for Peak Performance. In van Raalte, J. L. and Brewer, B. W. (eds.), Exploring Sport and Exercise Psychology. 3rd edition. Washington, DC: American Psychological Association, 5582.CrossRefGoogle Scholar
Griffiths, T. D. (2000). Musical Hallucinosis in Acquired Deafness: Phenomenology and Brain Substrate. Brain, 123(10), 20652076.Google Scholar
Hallam, S. (2010). The Power of Music: Its Impact on the Intellectual, Social and Personal Development of Children and Young People. International Journal of Music Education, 28(3), 269289.Google Scholar
Halpern, A. R. (1988). Perceived and Imagined Tempos of Familiar Songs. Music Perception, 6(2), 193202.Google Scholar
Halpern, A. R. (1989). Memory for the Absolute Pitch of Familiar Songs. Memory & Cognition, 17(5), 572581.Google Scholar
Halpern, A. R. (1992). Musical Aspects of Auditory Imagery. In Reisberg, D (ed.), Auditory Imagery. Hillsdale, NJ: Erlbaum, 127.Google Scholar
Halpern, A. R. (2015). Differences in Auditory Imagery Self-Report Predict Neural and Behavioral Outcomes. Psychomusicology: Music, Mind, and Brain, 25(1), 3747.CrossRefGoogle Scholar
Halpern, A. R., and Bartlett, J. C. (2011). The Persistence of Musical Memories: A Descriptive Study of Earworms. Music Perception, 28(4), 425432.Google Scholar
Halpern, A. R., Zatorre, R. J., Bouffard, M., and Johnson, J. A. (2004). Behavioral and Neural Correlates of Perceived and Imagined Musical Timbre. Neuropsychologia, 42(9), 12811292.Google Scholar
Herholz, S. C., Halpern, A. R., and Zatorre, R. J. (2012). Neuronal Correlates of Perception, Imagery, and Memory for Familiar Tunes. Journal of Cognitive Neuroscience, 24(6), 13821397.Google Scholar
Herholz, S. C., Lappe, C., Knief, A., and Pantev, C. (2008). Neural Basis of Music Imagery and the Effect of Musical Expertise. The European Journal of Neuroscience, 28(11), 23522360.CrossRefGoogle ScholarPubMed
Highben, Z., and Palmer, C. (2004). Effects of Auditory and Motor Mental Practice in Memorized Piano Performance. Bulletin of the Council for Research in Music Education, 159, 5865.Google Scholar
Holmes, P. (2005). Imagination in Practice: A Study of the Integrated Roles of Interpretation, Imagery and Technique in the Learning and Memorisation Processes of Two Experienced Solo Performers. British Journal of Music Education, 22(3), 217235.Google Scholar
Hyde, K. L., Lerch, J., Norton, A., et al. (2009). The Effects of Musical Training on Structural Brain Development: A Longitudinal Study. Annals of the New York Academy of Sciences, 1169(1), 182186.Google Scholar
Hyman, I. E., Burland, N. K., Duskin, H. M., et al. (2013). Going Gaga: Investigating, Creating, and Manipulating the Song Stuck in My Head. Applied Cognitive Psychology, 27, 204215.Google Scholar
Hyman, I. E., Cutshaw, K. I., Hall, C. M., et al. (2015). Involuntary to Intrusive: Using Involuntary Musical Imagery to Explore Individual Differences and the Nature of Intrusive Thoughts. Psychomusicology: Music, Mind and Brain, 25(1), 1427.Google Scholar
Intons-Peterson, M. J. (1980). The Role of Loudness in Auditory Imagery. Memory & Cognition, 8(5), 385393. dx.doi.org/10.3758/BF03211134.Google Scholar
Intons-Peterson, M. J. (1992). Components of Auditory Imagery. In Reisberg, D (ed.), Auditory Imagery. Hillsdale, NJ: Lawrence Erlbaum Associates, 4572.Google Scholar
Jakubowski, K., Bashir, Z., Farrugia, N., and Stewart, L. (2018). Involuntary and Voluntary Recall of Musical Memories: A Comparison of Temporal Accuracy and Emotional Responses. Memory and Cognition, 46(5), 741756.Google Scholar
Jakubowski, K., Farrugia, N., Halpern, A. R., Sankarpandi, S. K., and Stewart, L. (2015). The Speed of Our Mental Soundtracks: Tracking the Tempo of Involuntary Musical Imagery in Everyday Life. Memory and Cognition, 43(8), 12291242.Google Scholar
Jakubowski, K., Farrugia, N., and Stewart, L. (2016). Probing Imagined Tempo for Music: Effects of Motor Engagement and Musical Experience. Psychology of Music, 44(6), 12741288.CrossRefGoogle Scholar
Jakubowski, K., Finkel, S., Stewart, L., and Müllensiefen, D. (2017). Dissecting an Earworm: Melodic Features and Song Popularity Predict Involuntary Musical Imagery. Psychology of Aesthetics, Creativity, and the Arts, 11(2), 122135.Google Scholar
Janata, P., and Paroo, K. (2006). Acuity of Auditory Images in Pitch and Time. Perception & Psychophysics, 68(5), 829844.Google Scholar
Keller, P. E. (2012). Mental Imagery in Music Performance: Underlying Mechanisms and Potential Benefits. Annals of the New York Academy of Sciences, 1252, 206213.Google Scholar
Keller, P. E., and Appel, M. (2010). Individual Differences, Auditory Imagery, and the Coordination of Body Movements and Sounds in Musical Ensembles. Music Perception, 28(1), 2746.Google Scholar
Keller, P. E., Dalla Bella, S., and Koch, I. (2010). Auditory Imagery Shapes Movement Timing and Kinematics: Evidence from a Musical Task. Journal of Experimental Psychology: Human Perception and Performance, 36(2), 508513.Google Scholar
Keller, P. E., and Koch, I. (2006). The Planning and Execution of Short Auditory Sequences. Psychonomic Bulletin & Review, 13(4), 711716.Google Scholar
Keller, P. E., and Koch, I. (2008). Action Planning in Sequential Skills: Relations to Music Performance. Quarterly Journal of Experimental Psychology, 61(2), 275291.Google Scholar
Kleber, B., Birbaumer, N., Veit, R., Trevorrow, T., and Lotze, M. (2007). Overt and Imagined Singing of an Italian Aria. NeuroImage, 36(3), 889900.Google Scholar
Koelsch, S. (2014). Brain Correlates of Music-Evoked Emotions. Nature Reviews Neuroscience, 15, 170180.Google Scholar
Kraemer, D. J. M., Macrae, C. N., Green, A. E., and Kelley, W. M. (2005). Musical Imagery: Sound of Silence Activates Auditory Cortex. Nature, 434(7030), 158.Google Scholar
Lancashire, R. (2017). An Experience-Sampling Study to Investigate the Role of Familiarity in Involuntary Musical Imagery Induction. In Harrison, P. M. C. (ed.), Proceedings of the 10th International Conference of Students of Systematic Musicology (SysMus17), London, UK.Google Scholar
Liikkanen, L. A. (2012a). Musical Activities Predispose to Involuntary Musical Imagery. Psychology of Music, 40, 236256.Google Scholar
Liikkanen, L. A. (2012b). Inducing Involuntary Musical Imagery: An Experimental Study. Musicae Scientiae, 16(2), 217234.Google Scholar
Liikkanen, L. A., Jakubowski, K., and Toivanen, J. M. (2015). Catching Earworms on Twitter: Using Big Data to Study Involuntary Musical Imagery. Music Perception, 33(2), 199216.Google Scholar
Limb, C. J., and Braun, A. R. (2008). Neural Substrates of Spontaneous Musical Performance: An fMRI Study of Jazz Improvisation. PLoS one, 3(2), e1679.Google Scholar
Lucas, B. J., Schubert, E., and Halpern, A. R. (2010). Perception of Emotion in Sounded and Imagined Music. Music Perception, 27(5), 399412.Google Scholar
McAdams, S., Winsberg, S., Donnadieu, S., de Soete, G., and Krimphoff, J. (1995). Perceptual Scaling of Synthesized Musical Timbres: Common Dimensions, Specificities, and Latent Subject Classes. Psychological Research, 58(3), 177192.Google Scholar
McCullough Campbell, S., and Margulis, E. H. (2015). Catching an Earworm Through Movement. Journal of New Music Research, 44(4), 347358.Google Scholar
McDermott, J., and Hauser, M. (2005). The Origins of Music: Innateness, Uniqueness, and Evolution. Music Perception, 23(1), 2959.Google Scholar
McNally-Gagnon, A. (2016). Imagerie musicale involontaire: caractéristiques phénoménologiques et mnésiques. Montreal, Canada: University of Montreal, PhD thesis.Google Scholar
Mountain, R. (2001). Composers and Imagery: Myths and Realities. In Godøy, R. I. and Jörgensen, H (eds.), Musical Imagery. New York, NY: Taylor & Francis, 271288.Google Scholar
Müllensiefen, D., Jones, R., Jilka, S., Stewart, L., and Williamson, V. J. (2014). Individual Differences Predict Patterns in Spontaneous Involuntary Musical Imagery. Music Perception, 31(4), 323338.Google Scholar
North, A. C., Hargreaves, D. J., and Hargreaves, J. J. (2004). Uses of Music in Everyday Life. Music Perception: An Interdisciplinary Journal, 22(1), 4177.Google Scholar
Okada, H., and Matsuoka, K. (1992). Effects of Auditory Imagery on the Detection of a Pure Tone in White Noise: Experimental Evidence of the Auditory Perky Effect. Perceptual and Motor Skills, 74(2), 443448.Google Scholar
Pecenka, N., and Keller, P. E. (2009). Auditory Pitch Imagery and Its Relationship to Musical Synchronization. Annals of the New York Academy of Sciences, 1169, 282286.Google Scholar
Pitt, M. A., and Crowder, R. G. (1992). The Role of Spectral and Dynamic Cues in Imagery for Musical Timbre. Journal of Experimental Psychology. Human Perception and Performance, 18(3), 728738.Google Scholar
Reybrouck, M. (2001). Musical Imagery between Sensory Processing and Ideomotor Simulation. In Godøy, R. I. and Jörgensen, H (eds.), Musical imagery. New York: Taylor & Francis, 117136.Google Scholar
Ross, S. L. (1985). The Effectiveness of Mental Practice in Improving the Performance of College Trombonists. Journal of Research in Music Education, 33(4), 221.Google Scholar
Schaefer, R. S., Desain, P., and Farquhar, J. (2013). Shared Processing of Perception and Imagery of Music in Decomposed EEG. NeuroImage, 70, 317326. dx.doi.org/10.1016/j.neuroimage.2012.12.064.Google Scholar
Sloboda, J. A., O’Neill, S. A., and Ivaldi, A. (2001). Functions of Music in Everyday Life: An Exploratory Study Using the Experience Sampling Method. Musicae Scientiae, 5(1), 932.Google Scholar
Stewart, L., von Kriegstein, K., Warren, J. D., and Griffiths, T. D. (2006). Music and the Brain: Disorders of Musical Listening. Brain, 129(10), 25332553.Google Scholar
Taylor, S., McKay, D., Miguel, E. C., et al. (2014). Musical Obsessions: A Comprehensive Review of Neglected Clinical Phenomena. Journal of Anxiety Disorders, 28(6), 580589.Google Scholar
Teasdale, J. D., Dritschel, B. H., Taylor, M. J., et al. (1995). Stimulus-Independent Thought Depends on Central Executive Resources. Memory & Cognition, 23(5), 551559.Google Scholar
Trusheim, W. H. (1991). Audiation and Mental Imagery: Implications for Artistic Performance. Quarterly Journal of Music Teaching and Learning, 2, 138147.Google Scholar
Weber, R. J., and Brown, S. (1986). Musical Imagery. Music Perception, 3(4), 411426.Google Scholar
Weir, G., Williamson, V. J., and Müllensiefen, D. (2015). Increased Involuntary Musical Mental Activity Is Not Associated with More Accurate Voluntary Musical Imagery. Psychomusicology: Music, Mind, and Brain, 25(1), 4857.Google Scholar
Williams, T. I. (2015). The Classification of Involuntary Musical Imagery: The Case for Earworms. Psychomusicology: Music, Mind and Brain, 25(1), 513.Google Scholar
Williamson, V. J., and Jilka, S. R. (2013). Experiencing Earworms: An Interview Study of Involuntary Musical Imagery. Psychology of Music, 42 (5), 653670.Google Scholar
Williamson, V. J., Jilka, S. R., Fry, J., et al. (2012). How Do Earworms Start? Classifying the Everyday Circumstances of Involuntary Musical Imagery. Psychology of Music, 40(3), 259284.Google Scholar
Williamson, V. J., and Müllensiefen, D. (2012). Earworms from Three Angles. In Cambouropoulos, E, Tsougras, C, Mavromatis, K, and Pastiadis, K, (eds.), Proceedings of ICMPC-ESCOM 12, Thessaloniki, Greece, 11241133.Google Scholar
Zatorre, R. J., and Halpern, A. R. (2005). Mental Concerts: Musical Imagery and Auditory Cortex. Neuron 47(1), 912.Google Scholar
Zatorre, R. J., Halpern, A. R., and Bouffard, M. (2010). Mental Reversal of Imagined Melodies: A Role for the Posterior Parietal Cortex. Journal of Cognitive Neuroscience, 22(4), 775789.Google Scholar
Zatorre, R. J., Halpern, A. R., Perry, D. W., Meyer, E., and Evans, A. C. (1996). Hearing in the Mind’s Ear: A PET Investigation of Musical Imagery and Perception. Journal of Cognitive Neuroscience, 8(1), 2946.Google Scholar

References

Adam, H., and Galinsky, A. D. (2012). Enclothed Cognition. Journal of Experimental Social Psychology, 48(4), 918925.Google Scholar
Beyer, L., Weiss, T., Hansen, E., Wolf, A., and Seidel, A. (1990). Dynamics of Central Nervous Activation during Motor Imagination. International Journal of Psychophysiology, 9, 7580.Google Scholar
Borst, G. (2013). Neural Underpinning of Object Mental Imagery, Spatial Imagery, and Motor Imagery. In Oschner, K. N. and Kosslyn, S (eds.), The Oxford Handbook of Cognitive Neuroscience, Vol 2: The Cutting Edges. Oxford, UK: Oxford University Press, 7487.Google Scholar
Boulton, H., and Mitra, S. (2013). Body Posture Modulates Imagined Arm Movements and Responds to Them. Journal of Neurophysiology, 110, 26172626.Google Scholar
Callow, N., Hardy, L., and Hall, C. (2001). The Effect of a Motivational General-Mastery Imagery Intervention on the Sport Confidence of High-Level Badminton Players. Research Quarterly for Exercise and Sport, 72, 389400.Google Scholar
Callow, N., Roberts, R., and Fawkes, J. Z. (2006). Effects of Dynamic and Static Imagery on Vividness of Imagery, Skiing Performance, and Confidence. Journal of Imagery Research in Sport and Physical Activity, 1, 115.Google Scholar
Callow, N., and Waters, A. (2005). The Effect of Kinesthetic Imagery on the Sport Confidence of Flat-Race Horse Jockeys. Psychology of Sport and Exercise, 6, 443459.Google Scholar
Calvo-Merino Glaser, D. E., Grèzes, J., Passingham, R. E., and Haggard, P. (2005). Action Observation and Acquired Motor Skills: An fMRI Study with Expert Dancers. Cerebral Cortex, 15, 12431249.Google Scholar
Chang, Y., Lee, J. J., Seo, J. H., et al. (2011). Neural Correlates of Motor Imagery for Elite Archers. NMR Biomedicine, 24, 366372.Google Scholar
Collet, C., Di Rienzo, F., El Hoyek, N., and Guillot, A. (2013). Autonomic Nervous System Correlates in Movement Observation and Motor Imagery. Frontiers in Human Neuroscience, 7, 415.Google Scholar
Collet, C., Guillot, A., Lebon, F., MacIntyre, T., and Moran, A. (2011). Measuring Motor Imagery Using Psychometric, Behavioural, and Psychophysiological Tools. Exercise and Sport Sciences Reviews, 39, 8592.CrossRefGoogle ScholarPubMed
Cumming, J., and Williams, S. E. (2012). Imagery: The Role of Imagery in Performance. In Murphy, S (ed.), Handbook of Sport and Performance Psychology. New York, NY: Oxford University Press, 213232.Google Scholar
Debarnot, U., Castellani, E., and Guillot, A. (2012). Selective Delayed Gains Following Motor Imagery of Complex Movements. Archives Italiennes de Biologie, 150, 238250.Google Scholar
Debarnot, U., Castellani, E., Valenza, G., Sebastiani, L., and Guillot, A. (2011). Daytime Naps Improve Motor Imagery Learning. Cognitive and Affective Behavioral Neuroscience, 11, 541550.Google Scholar
Debarnot, U., Creveaux, T., Collet, C., Doyon, J., and Guillot, A. (2009). Sleep Contribution to Motor Memory Consolidation: A Motor Imagery Study. Sleep, 32, 15591565.Google Scholar
Debarnot, U., Maley, L., Rossi, D. D., and Guillot, A. (2010). Motor Interference Does Not Impair the Memory Consolidation of Imagined Movements. Brain and Cognition, 74, 5257.Google Scholar
Debarnot, U., Sperduti, M., Di Rienzo, F., and Guillot, A. (2014). Experts’ Bodies, Experts’ Minds: How Physical and Mental Training Shape the Brain. Frontiers in Human Neuroscience, 8, 280.Google Scholar
Decety, J., Jeannerod, M., Germain, M., and Pastene, J. (1991). Vegetative Response during Imagined Movement Is Proportional to Mental Effort. Behavioural Brain Research, 42, 15.Google Scholar
Decety, J., Perani, D., Jeannerod, M., et al. (1994). Mapping Motor Representations with Positron Emission Tomography. Nature, 371, 600602.Google Scholar
Demougeot, L., and Papaxanthis, C. (2011). Muscle Fatigue Affects Mental Simulation of Action. Journal of Neuroscience, 31, 1071210720.Google Scholar
Deschaumes-Molinaro, C., Dittmar, A., and Vernet-Maury, E. (1992). Autonomic Nervous System Response Patterns Correlate with Mental Imagery. Physiology and Behavior, 51, 10211027.Google Scholar
Di Rienzo, F., Collet, C., Hoyek, N., and Guillot, A. (2012). Selective Effects of Physical Fatigue on Motor Imagery Accuracy. PLoS One, 7, e47207, 111.Google Scholar
Di Rienzo, F., Collet, C., Hoyek, N., and Guillot, A. (2014). Impact of Neurologic Deficits on Motor Imagery: A Systematic Review of Clinical Evaluations. Neuropsychology Review, 24, 116147.Google Scholar
Di Rienzo, F., Debarnot, U., Daligault, D., et al. (2016). Online and Offline Performance Gains Following Motor Imagery: A Comprehensive Review of Behavioral and Neuroimaging Studies. Frontiers in Human Neuroscience, 10, article 315, 115.Google Scholar
Dickstein, R., Gazit-Grunwald, M., Plax, M., Dunsky, A., and Marcovitz, E. (2005). EMG Activity in Selected Target Muscles during Imagery Rising on Tiptoes in Healthy Adults and Poststroke Hemiparetic Patients. Journal of Motor Behavior, 37, 475483.Google Scholar
Doyon, J., and Benali, H. (2005). Reorganization and Plasticity in the Adult Brain during Learning of Motor Skills. Current Opinion in Neurobiology, 15, 161167.Google Scholar
Driskell, J. E., Copper, C., and Moran, A. (1994). Does Mental Practice Enhance Performance? Journal of Applied Psychology, 79, 481492.Google Scholar
Eaves, D. L., Riach, M., Holmes, P. S., and Wright, D. J. (2016). Motor Imagery during Action Observation: A Brief Review of Evidence, Theory and Future Research Opportunities. Frontiers in Neuroscience, 10, 514.CrossRefGoogle ScholarPubMed
Ehrsson, H. H., Geyer, S., and Naito, E. (2003). Imagery of Voluntary Movement of Fingers, Toes and Tongue Activates Corresponding Body-Part-Specific Motor Representations. Journal of Neurophysiology, 90, 33043316.CrossRefGoogle ScholarPubMed
Feltz, D. L., and Landers, D. M. (1983). The Effects of Mental Practice on Motor Skill Learning and Performance: A Meta-Analysis. Journal of Sport and Exercise Psychology, 5, 2557.Google Scholar
Filgueiras, A., Quintas Conde, E. F., and Hall, C. R. (2017). The Neural Basis of Kinesthetic and Visual Imagery in Sports: An ALE Meta-Analysis. Brain Imaging Behaviour, 12, 15131523.Google Scholar
Grangeon, M., Guillot, A., and Collet, C. (2011). Postural Control during Visual and Kinesthetic Motor Imagery. Applied Psychophysiology and Biofeedback, 36, 4756.Google Scholar
Guillot, A., and Collet, C. (2005). Contribution from Neurophysiological and Psychological Methods to the Study of Motor Imagery. Brain Research Review, 50, 387397.Google Scholar
Guillot, A., and Collet, C. (2008). Construction of the Motor Imagery Integrative Model in Sport: A Review and Theoretical Investigation of Motor Imagery Use. International Review of Sport and Exercise Psychology, 1, 3144.Google Scholar
Guillot, A., Collet, C., and Dittmar, A. (2005). Influence of Environmental Context on Motor Imagery Quality. Biology of Sport, 22, 215226.Google Scholar
Guillot, A., Collet, C., Nguyen, V.A., et al. (2009). Brain Activity during Visual versus Kinesthetic Imagery: An fMRI Study. Human Brain Mapping, 30, 21572172.Google Scholar
Guillot, A., Di Rienzo, F., Macintyre, T., Moran, A., and Collet, C. (2012a). Imagining Is Not Doing but Involves Specific Motor Commands: A Review of Experimental Data Related to Motor Inhibition. Frontiers in Human Neuroscience, 6, 122.Google Scholar
Guillot, A., Haguenauer, M., Dittmar, A., and Collet, C. (2005). Effect of a Fatiguing Protocol on Motor Imagery Accuracy. European Journal of Applied Physiology, 95(2–3), 186190.Google Scholar
Guillot, A., Hoyek, N., Louis, M., and Collet, C. (2012b). Understanding the Timing of Motor Imagery: Recent Findings and Future Directions. International Review of Sport and Exercise Psychology, 5, 322.Google Scholar
Guillot, A., Lebon, F., and Collet, C. (2010). Electromyographic Activity during Motor Imagery. In Guillot, A and Collet, C (eds.), The Neurophysiological Foundations of Mental and Motor Imagery. New York, NY: Oxford University Press, 8393.Google Scholar
Guillot, A., Moschberger, K., and Collet, C. (2013). Coupling Movement with Imagery as a New Perspective for Motor Imagery Practice. Behavioural Brain Functions 9, 8.Google Scholar
Halpern, A. R. (2012). Dynamic Aspects of Musical Imagery. Annals of New York Academy of Science, 1252, 200205.Google Scholar
Hardwick, R. M., Caspers, S., Eickhoff, S. B., and Swinnen, S. P. (2018). Neural Correlates of Action: Comparing Meta-Analyses of Imagery, Observation, and Execution. Neuroscience and Biobehavioral Reviews, 94, 3144.Google Scholar
Hétu, S., Grégoire, M., Saimpont, A., et al. (2013). The Neural Network of Motor Imagery: An ALE Meta-Analysis. Neuroscience and Biobehavioral Reviews, 37(5), 930949.Google Scholar
Holmes, P. S., and Collins, D. J. (2001). The PETTLEP Approach to Motor Imagery: A Functional Equivalence Model for Sport Psychologists. Journal of Applied Sport Psychology, 13, 6083.Google Scholar
Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C. L., and Doyon, J. (2003). Functional Cerebral Reorganization Following Motor Sequence Learning through Mental Practice with Motor Imagery. NeuroImage, 20, 11711180.Google Scholar
Jackson, P. L., Meltzoff, A. L., and Decety, J. (2006). Neural Circuits Involved in Imitation and Perspective-Taking. NeuroImage, 31, 429439.Google Scholar
Janssen, J. J., and Sheikh, A. A. (1994). Enhancing Athletic Performance through Imagery: An Overview. In: Sheikh, A. A. and Korn, E. R. (eds.), Imagery and Sports Physical Performance. Amityville, NY: Bayood Publishing, 175181.Google Scholar
Jeannerod, M. (1994). The Representing Brain: Neural Correlates of Motor Intention and Imagery. Behavioural Brain Sciences, 17, 187202.Google Scholar
Jeannerod, M. (2001). Neural Simulation of Action: A Unifying Mechanism for Motor Cognition. NeuroImage, 14, S103109.Google Scholar
Jeannerod, M. (2006). Motor Cognition: What Actions Tell to the Self. New York, NY: Oxford University Press.Google Scholar
Jiang, D., Edwards, M. G., Mullins, P., and Callow, N. (2015). The Neural Substrates for the Different Modalities of Movement Imagery. Brain and Cognition, 97, 2231.Google Scholar
Kanthack, T. F. D., Guillot, A., Altimari, L. R., et al. (2016). Selective Efficacy of Static and Dynamic Imagery in Different States of Physical Fatigue. PLoS One, 11, e0149654.Google Scholar
Kanthack, T. F. D., Guillot, A., Clémençon, M., and Di Rienzo, F. (2019). Effect of Physical Fatigue Elicited by Continuous and Intermittent Exercise on Motor Imagery Ability. Submitted for publication.Google Scholar
Lacourse, M. G., Turner, J. A., Randolph-Orr, E., Schandler, S. L., and Cohen, M. J. (2004). Cerebral and Cerebellar Sensorimotor Plasticity Following Motor Imagery-Based Mental Practice of a Sequential Movement. Journal of Rehabilitation Research and Development, 41, 505524.Google Scholar
Lafleur, M. F., Jackson, P. L., Malouin, F., et al. (2002). Motor Learning Produces Parallel Dynamic Functional Changes during the Execution and Imagination of Sequential Foot Movements. NeuroImage, 16, 142157.Google Scholar
Lebon, F., Horn, U., Domin, M., and Lotze, M. (2018). Motor Imagery Training: Kinesthetic Imagery Strategy and Inferior Parietal fMRI Activation. Human Brain Mapping, 39, 18051813.Google Scholar
Lemos, T., Souza, N. S., Horsczaruk, C. H., et al. (2014). Motor Imagery Modulation of Body Sway Is Task-Dependent and Relies on Imagery Ability. Frontiers in Human Neuroscience, 8, 290.Google Scholar
Lorey, B., Bischoff, M., Pilgramm, S., et al. (2009). The Embodied Nature of Motor Imagery: The Influence of Posture and Perspective. Experimental Brain Research, 194, 233243.Google Scholar
Lotze, M., and Halsband, U. (2006). Motor Imagery. Journal of Physiology (Paris), 99, 386395.Google Scholar
Lotze, M., Montoya, P., Erb, M., et al. (1999). Activation of Cortical and Cerebellar Motor Areas during Executed and Imagined Hand Movements: An fMRI Study. Journal of Cognitive Neuroscience, 11, 491501.Google Scholar
Lotze, M., Scheler, G., Tan, H. R., Braun, C., and Birbaumer, N. (2003). The Musician’s Brain: Functional Imaging of Amateurs and Professionals during Performance and Imagery. NeuroImage, 20, 18171829.Google Scholar
Louis, C., Collet, C., and Guillot, A. (2011). Differences in Motor Imagery Times during Aroused and Relaxed Conditions. Journal of Cognitive Psychology, 23, 374382.CrossRefGoogle Scholar
Louis, M., Guillot, A., Maton, S., Doyon, J., and Collet, C. (2008). Effect of Imagined Movement Speed on Subsequent Motor Performance. Journal of Motor Behavior, 40, 117132.Google Scholar
MacIntyre, T. E., Madan, C. R., Moran, A. P., Collet, C., and Guillot, A. (2018). Motor Imagery, Performance and Motor Rehabilitation. Progress in Brain Research, 240, 141159.Google Scholar
Macuga, K. L., and Frey, S. H. (2012). Neural Representations Involved in Observed, Imagined, and Imitated Actions Are Dissociable and Hierarchically Organized. NeuroImage, 59, 27982807.Google Scholar
Miller, E. (1994). Optimal Sports Performance Imagery. In Sheikh, A. A and Korn, E. R. (eds.), Imagery and Sports Physical Performance. Amityville, NY: Bayood Publishing, 175181.Google Scholar
Milton, J., Solodkin, A., Hlustik, P., and Small, S. L. (2007). The Mind of Expert Motor Performance Is Cool and Focused. NeuroImage, 35, 804813.Google Scholar
Mizuguchi, N., Nakata, H., Hayashi, T., et al. (2013). Brain Activity during Motor Imagery of an Action with an Object: A Functional Magnetic Resonance Imaging Study. Neuroscience Research, 76(3), 150155.Google Scholar
Mizuguchi, N., Nakata, H., and Kanosue, K. (2014). Activity of Right Premotor-Parietal Regions Dependent upon Imagined Force Level: An fMRI Study. Frontiers in Human Neuroscience, 8, 810.Google Scholar
Moran, A., Guillot, A., MacIntyre, T., and Collet, C. (2012). Re-imagining Mental Imagery: Building Bridges Between Cognitive and Sport Psychology. British Journal of Psychology, 103, 224247.Google Scholar
Morris, T., Spittle, M., and Perry, C. (2004). Imagery in Sport. In Morris, T and Summers, J (eds.), Sport Psychology: Theory, Applications and Issues. 2nd edition. Brisbane, Australia: Wiley, 344383.Google Scholar
Mulder, T., de Vries, S., and Zijlstra, S. (2005). Observation, Imagination and Execution of an Effortful Movement: More Evidence for a Central Explanation of Motor Imagery. Experimental Brain Research, 163, 344351.Google Scholar
Munroe, K. J., Giacobbi, P. R., Hall, C., and Weinberg, R. (2000). The Four Ws of Imagery Use: Where, When, Why and What. The Sport Psychologist, 14, 119137.Google Scholar
Munzert, J., Lorey, B., and Zentgraf, K. (2009). Cognitive Motor Processes: The Role of Motor Imagery in the Study of Motor Representations. Brain Research Reviews, 60, 306326.Google Scholar
Murphy, S., Nordin, S. M., and Cumming, J. (2008). Imagery in Sport, Exercise and Dance. In Horn, T (ed.), Advances in Sport Psychology. Champaign, IL: Human Kinetics, 306315.Google Scholar
Nedelko, V., Hassa, T., Hamzei, F., Schoenfeld, M. A., and Dettmers, C. (2012). Action Imagery Combined with Action Observation Activates more Corticomotor Regions than Action Observation Alone. Journal of Neurology and Physical Therapy, 36(4), 182188.Google Scholar
O, J., and Hall, C. (2009). A Quantitative Analysis of Athletes’ Voluntary Use of Slow Motion, Real Time, and Fast Motion Images. Journal of Applied Sport Psychology, 21, 1530.Google Scholar
O’Shea, H., and Moran, A. (2017). Does Motor Simulation Theory Explain the Cognitive Mechanisms Underlying Motor Imagery? A Critical Review. Frontiers in Human Neuroscience, 11, 72.Google Scholar
Paivio, A. (1985). Cognitive and Motivational Functions of Imagery in Human Performance. Canadian Journal of Applied Sport Science, 10(4), 22S28S.Google Scholar
Roure, R., Collet, C., Deschaumes-Molinaro, C., et al. (1999). Imagery Quality Estimated by Autonomic Response Is Correlated to Sporting Performance Enhancement. Physiology and Behavior, 66, 6372.Google Scholar
Rozand, V., Lebon, F., Papaxanthis, C., and Lepers, R. (2014). Does a Mental Training Session Induce Neuromuscular Fatigue? Medicine Science in Sports and Exercise, 46, 19811989.Google Scholar
Ruby, P., and Decety, J. (2001). Effect of Subjective Perspective Taking during Simulation of Action: A PET Investigation of Agency. Nature Neuroscience, 4, 546–550.Google Scholar
Sauvage, C., Jissendi, P., Seignan, S., Manto, M., and Habas, C. (2013). Brain Areas Involved in the Control of Speed during a Motor Sequence of the Foot: Real Movement versus Mental Imagery. Journal of Neuroradiology, 40, 267280.Google Scholar
Schmidt, T. T., Ostwald, D., and Blankenburg, F. (2014). Imaging Tactile Imagery: Changes in Brain Connectivity Support Perceptual Grounding of Mental Images in Primary Sensory Cortices. NeuroImage, 98, 216224.Google Scholar
Schuster, C., Hilfiker, R., Amft, O., et al. (2011). Best Practice for Motor Imagery: A Systematic Literature Review on Motor Imagery Training Elements in Five Different Disciplines. BMC Medicine, 9, 75.Google Scholar
Seiler, B. D., Monsma, E. V., and Newman-Norlund, R. D. (2015). Biological Evidence of Imagery Abilities: Intraindividual Differences. Journal of Sport and Exercise Psychology, 37, 421435.Google Scholar
Sharma, N., Jones, P. S., Carpenter, T. A., and Baron, J. C. (2008). Mapping the Involvement of BA 4a and 4p during Motor Imagery. NeuroImage, 41, 9299.Google Scholar
Shirazipour, C. H., Munroe-Chandler, K. J., Loughead, T. M., and Vander Laan, A. G. (2016). The Effect of Image Speed on Novice Golfers’ Performance in a Putting Task. Journal of Imagery Research in Sport and Physical Activity, 11, 112.Google Scholar
Smith, D., Wright, C., Allsopp, A., and Westhead, H. (2007). It’s All in the Mind: PETTLEP-Based Imagery and Sport Performance. Journal of Applied Sport Psychology, 19, 8092.Google Scholar
Solodkin, A., Hlustik, P., Chen, E. E., and Small, S. L. (2004). Fine Modulation in Network Activation during Motor Execution and Motor Imagery. Cerebral Cortex, 14, 12461255.Google Scholar
Stins, J. F., Schneider, I. K., Koole, S. L., and Beek, P. J. (2015). The Influence of Motor Imagery on Postural Sway: Differential Effects of Type of Body Movement and Person Perspective. Advances in Cognitive Psychology, 11(3): 7783.Google Scholar
Taube, W., Mouthon, M., Leukel, C., et al. (2015). Brain Activity during Observation and Motor Imagery of Different Balance Tasks: An fMRI Study. Cortex, 64, 102114.Google Scholar
van der Meulen, M., Allali, G., Rieger, S. W., Assal, F., and Vuilleumier, P. (2014). The Influence of Individual Motor Imagery Ability on Cerebral Recruitment during Gait Imagery. Human Brain Mapping, 35, 455470.Google Scholar
Vogt, S., Di Rienzo, F., Collet, C., Collins, A., and Guillot, A. (2013). Multiple Roles of Motor Imagery during Action Observation. Frontiers in Human Neuroscience, 7.Google Scholar
Wang, Y., and Morgan, W. P. (1992). The Effect of Imagery Perspectives on the Psychophysiological Responses to Imagined Exercise. Behavioural Brain Research, 52(2), 167174.Google Scholar
Wei, G., and Luo, J. (2010). Sport Expert’s Motor Imagery: Functional Imaging of Professional Motor Skills and Simple Motor Skills. Brain Research, 1341, 5262.Google Scholar
Wright, C. J., and Smith, D. (2009). The Effect of PETTLEP Imagery on Strength Performance. International Journal of Sport and Exercise Psychology, 7, 1831.Google Scholar

References

Alais, D., and Burr, D. (2003). The “Flash-Lag” Effect Occurs in Audition and Cross-Modally, Current Biology, 13(1), 5963.Google Scholar
Bakin, J., Nakayama, K., and Gilbert, C. (2000). Visual Responses in Monkey Areas V1 and V2 to Three-Dimensional Surface Configurations. Journal of Neuroscience, 20, 81888198.Google Scholar
Ban, H., Yamamoto, H., Hanakawa, T., et al. (2013). Topographic Representation of an Occluded Object and the Effects of Spatiotemporal Context in Human Early Visual Areas. Journal of Neuroscience, 33, 1699217007.Google Scholar
Beck, J. (2018). Marking the Perception-Cognition Boundary. Australasian Journal of Philosophy, 96, 319334.Google Scholar
Bullier, J. (2004). Communications between Cortical Areas of the Visual System. In Chalupa, L. M. and Werner, J. S. (eds.), The Visual Neurosciences. Cambridge, MA: MIT Press, 522540.Google Scholar
Bushnell, B. N., Harding, P. J., Kosai, Y., and Pasupathy, A. (2011). Partial Occlusion Modulates Contour-Based Shape Encoding in Primate Area V4. Journal of Neuroscience, 31, 40124024.Google Scholar
Cai, M., Stetson, C., Eagleman, D. M. (2012). A Neural Model for Temporal Order Judgments and their Active Recalibration: A Common Mechanism for Space and Time? Frontiers in Psychology, 3, 470.Google Scholar
Ekman, M., Kok, P., and de Lange, F. (2017). Time-Compressed Preplay of Anticipated Events in Human Primary Visual Cortex. Nature Communications, 8.Google Scholar
Emmanouil, T., and Ro, T. (2014). Amodal Completion of Unconsciously Presented Objects. Psychonomic Bulletin & Review, 21(5), 11881194.Google Scholar
Esterman, M., and Yantis, S. (2010). Perceptual Expectation Modulates Category-Selective Cortical Activity. Cerebral Cortex, 20, 12451253.Google Scholar
Fujisaki, W., Shimojo, S., Kashino, M., and Nishida, S. (2004). Recalibration of Audiovisual Simultaneity. Nature Neuroscience, 7, 773778.Google Scholar
Geldard, F. A., and Sherrick, C. E. (1972). The Cutaneous “Rabbit”: A Perceptual Illusion. Science, 178, 178179.Google Scholar
Grice, H. P. (1961). The Causal Theory of Perception. Proceedings of the Aristotelian Society, Supplementary Volume, 35, 121153.Google Scholar
Grill-Spector, K., and Malach, R. (2004). The Human Visual Cortex. Annual Review of Neuroscience, 27, 649677.Google Scholar
Grush, R. (2007). Time and Experience. In Muller, T (ed.), Philosophie der Zeit: Neue Analytische Ansatze. Frankfurt, Germany: Verlag Vittorio Klostermann.Google Scholar
Grush, R. (2005). Internal Models and the Construction of Time: Generalizing from State Estimation to Trajectory Estimation to Address Temporal Features of Perception, including Temporal Illusions. Journal of Neural Engineering, 2(3), S209218.Google Scholar
Hazenberg, S. J., Jongsma, M. L. A., Koning, A., and van Lier, R. (2014). Differential Familiarity Effects in Amodal Completion: Support from Behavioral and Electrophysiological Measurements. Journal of Experimental Psychology: Human Perception and Performance, 40(2), 669684.Google Scholar
Hedgé, J., Fang, F., Murray, S. O., and Kersten, D. (2008). Preferential Responses to Occluded Objects in the Human Visual Cortex. Journal of Vision, 8, 1635.Google Scholar
Hoerl, C. (2009). Time and Tense in Perceptual Experience. Philosopher’s Imprint, 9(12).Google Scholar
James, W. (1890). The Principles of Psychology. In 2 volumes. New York, NY: Henry Holt and Company.Google Scholar
Komatsu, H. (2006). The Neural Mechanisms of Perceptual Filling-in. Nature Review Neuroscience, 7, 220231.Google Scholar
Kosslyn, S. M., Behrmann, M., and Jeannerod, M. (1995a). The Cognitive Neuroscience of Mental Imagery. Neuropsychologia, 33, 13351344.Google Scholar
Kosslyn, S. M., Thompson, W. L., Kim, I. J., and Alpert, N. M. (1995b). Topographical Representations of Mental Images in Primary Visual Cortex. Nature, 378: 496498.Google Scholar
Kösem, A., Gramfort, A., and van Wassenhove, V. (2014). Encoding of Event Timing in the Phase of Neural Oscillations. NeuroImage, 92, 274284.Google Scholar
Kovacs, G., Vogels, R., and Orban, G. A. (1995). Selectivity of Macaque Inferior Temporal Neurons for Partially Occluded Shapes. Journal of Neuroscience, 15, 19841997.Google Scholar
Larsen, A., Madsen, K. H., Lund, T. E., and Bundesen, C. (2006). Images of Illusory Motion in Primary Visual Cortex. Journal of Cognitive Neuroscience, 18(7), 11741180.Google Scholar
Leaver, A. M., van Lare, J., Zielinski, B., Halpern, A. R., and Rauschecker, J. P. (2009). Brain Activation during Anticipation of Sound Sequences. Journal of Neuroscience, 29(8), 24772485.Google Scholar
Lee, G. (2014a). Extensionalism, Atomism, and Continuity. In Oaklander, N (ed.), Debates in the Metaphysics of Time. London: Bloomsbury.Google Scholar
Lee, G. (2014b). Temporal Experience and the Temporal Structure of Experience. Philosopher’s Imprint 14(3).Google Scholar
Lee, S. H., Kwan, A. C., Zhang, S., et al. (2012). Activation of Specific Interneurons Improves V1 Feature Selectivity and Visual Perception. Nature, 488, 379383.Google Scholar
Lee, T. S., and Nguyen, M. (2001). Dynamics of Subjective Contour Formation in the Early Visual Cortex. Proceedings of the National Academy of Sciences , 98(4), 19071911.Google Scholar
Lerner, Y., Harel, M., and Malach, R. (2004). Rapid Completion Effects in Human High-Order Visual Areas. NeuroImage, 21, 516526.Google Scholar
Muckli, L., Kohler, A., Kriegeskorte, N., and Singer, W. (2005). Primary Visual Cortex Activity Along the Apparent-Motion Trace Reflects Illusory Perception. PLoS Biology, 3(8), 15011510.Google Scholar
Nanay, B. (2010). Perception and Imagination: Amodal Perception as Mental Imagery. Philosophical Studies, 150, 239254.Google Scholar
Nanay, B. (2012). Perceptual Phenomenology. Philosophical Perspectives, 26, 235246.Google Scholar
Nanay, B. (2018a). Multimodal Mental Imagery. Cortex, 105, 125134.Google Scholar
Nanay, B. (2018b). The Importance of Amodal Completion in Everyday Perception. I-Perception. https://doi.org/10.1177/2041669518788887Google Scholar
Nanay, B. (Forthcoming). Seeing Things You Don’t See. Oxford, UK: Oxford University Press.Google Scholar
Page, J. W., Duhamel, P., and Crognale, M. A. (2011). ERP Evidence of Visualization at Early Stages of Visual Processing. Brain and Cognition, 75(2), 141146.Google Scholar
Pan, Y., Chen, M., Yin, J., et al. (2012). Equivalent Representation of Real and Illusory Contours in Macaque V4. Journal of Neuroscience, 32, 67606770.Google Scholar
Pearson, J., and Westbrook, F. (2015). Phantom Perception: Voluntary and Involuntary Nonretinal Vision. Trends in Cognitive Sciences, 19, 278284.Google Scholar
Pearson, J., Naselaris, T., Holmes, E. A., and Kosslyn, S. M. (2015). Mental Imagery: Functional Mechanisms and Clinical Applications. Trends in Cognitive Sciences, 19, 590602.Google Scholar
Phillips, B. (2019). The Shifting Boundary between Perception and Cognition. Noûs, 53, 316346.Google Scholar
Phillips, I. (2010). Perceiving Temporal Properties. European Journal of Philosophy, 18(2), 176202.Google Scholar
Phillips, I. (2011). Perception and Iconic Memory: What Sperling Doesn’t Show. Mind & Language, 281311. doi.org/10.1111/j.1468-0017.2011.01422.x.Google Scholar
Phillips, I. (2014). Experience of and in Time. Philosophy Compass, 9, 131144.Google Scholar
Rauschenberger, R., Liu, T., Slotnick, S. D., and Yantis, S. (2006). Temporally Unfolding Neural Representation of Pictorial Occlusion. Psychological Science, 17, 358364.Google Scholar
Rees, A., Green, G., and Kay, R. H. (1986). Steady-State Evoked Responses to Sinusoidally Amplitude-Modulated Sounds Recorded in Man. Hearing Research, 23( 2). 123133.Google Scholar
Regan, D. (1966). Some Characteristics of Average Steady-State and Transient Responses Evoked by Modulated Light. Electroencephalography and Clinical Neurophysiology, 20(3), 238248.Google Scholar
Rolls, E. T., and Tovee, M. J. (1994). Processing Speed in the Cerebral Cortex and the Neurophysiology of Visual Masking. Proceedings of the Royal Society: Biological Sciences, 257, 915.Google Scholar
Scherzer, T. R., and Ekroll, V. (2015). Partial Modal Completion under Occlusion: What do Modal and Amodal Percepts Represent? Journal of Vision, 15, 120.Google Scholar
Shepard, R. N. (1978). Mental Images. American Psychologist, 33, 125137.Google Scholar
Shibata, K., Watanabe, T., Sasaki, Y., and Kawato, M. (2011). Perceptual Learning Incepted by Decoded fMRI Neurofeedback without Stimulus Presentation. Science, 334, 14131415.Google Scholar
Shimoji, S. (2014). Postdiction: Its Implications on Visual Awareness, Hindsight, and Sense of Agency. Frontiers in Psychology, 5, 196.Google Scholar
Slotnick, S. D., Thompson, W. L., and Kosslyn, S. M. (2005). Visual Mental Imagery Induces Retinotopically Organized Activation of Early Visual Areas. Cerebral Cortex, 15, 15701583.Google Scholar
Smith, F. W., and Muckli, L. (2010). Nonstimulated Early Visual Areas Carry Information About Surrounding Context. PNAS, 107, 2009920103.Google Scholar
Stekelenburg, J., Sugano, Y., and Vroomen, J. (2011). Neural Correlates of Motor-Sensory Temporal Recalibration. Brain Research, 1397, 4654.Google Scholar
Sterzer, P., Haynes, J. D., and Rees, G. (2006). Primary Visual Cortex Activation on the Path of Apparent Motion is Mediated by Feedback from hTM + V5. NeuroImage, 32, 1308–1316.Google Scholar
Stetson, C., Cui, X., Montague, P. R., and Eagleman, D. M. (2006). Motor-Sensory Recalibration Leads to an Illusory Reversal of Action and Sensation. Neuron, 51(5), 651659.Google Scholar
Sugita, Y. (1999). Grouping of Image Fragments in Primary Visual Cortex. Nature, 401, 269272.Google Scholar
Thorpe, S., Fize, D., and Marlot, C. (1996). Speed of Processing in the Human Visual System. Nature, 381, 520522.Google Scholar
Viera, G. (2019). The Fragmentary Model of Temporal Experience and the Mirroring Constraint. Philosophical Studies, 176, 21.Google Scholar
Vroomen, J., Keetels, M., de Gelder, B., and Bertelson, P. (2004). Recalibration of Temporal Order Perception by Exposure to Audio–Visual Asynchrony. Cognitive Brain Research, 22, 3235.Google Scholar
Vroomen, J., and Keetels, M. (2010). Perception of Intersensory Synchrony: A Tutorial Review. Attention, Perception, and Psychophysics, 72, 871884.Google Scholar
Zatorre, R. J., and Halpern, A. R. (2005). Mental Concert: Musical Imagery and Auditory Cortex. Neuron, 47, 912.Google Scholar

References

Arntz, A. (2012). Imagery Rescripting as a Therapeutic Technique: Review of Clinical Trials, Basic Studies, and Research Agenda. Journal of Experimental Psychopathology, 3, 121126.Google Scholar
Aynsworth, C., Nemat, N., Collerton, D., Smailes, D., and Dudley, R. (2017). Reality Monitoring Performance and the Role of Visual Imagery in Visual Hallucinations. Behaviour Research and Therapy, 97, 115122.Google Scholar
Baddeley, A. D., and Andrade, J. (2000). Working Memory and the Vividness of Imagery. Journal of Experimental Psychology-General, 129, 126145.Google Scholar
Barsics, C., van der Linden, M., and D’Argembeau, A. (2016). Frequency, Characteristics, and Perceived Functions of Emotional Future Thinking in Daily Life. The Quarterly Journal of Experimental Psychology, 69, 217233.Google Scholar
Berntsen, D., and Jacobsen, A. S. (2008). Involuntary (Spontaneous) Mental Time Travel into the Past and Future. Consciousness and Cognition, 17, 10931104.Google Scholar
Blackwell, S. E. (2019). Mental Imagery: From Basic Research to Clinical Practice. Journal of Psychotherapy Integration, 29(3), 235247.Google Scholar
Blackwell, S. E., and Holmes, E. A. (2010). Modifying Interpretation and Imagination in Clinical Depression: A Single-Case Series Using Cognitive Bias Modification. Applied Cognitive Psychology, 24, 338350.Google Scholar
Carrera, P., Caballero, A., and Muñoz, D. (2012). Future-Oriented Emotions in the Prediction of Binge-Drinking Intention and Expectation: The Role of Anticipated and Anticipatory Emotions. Scandinavian Journal of Psychology, 53, 273279.Google Scholar
Chan, C. K. Y., and Cameron, L. D. (2012). Promoting Physical Activity with Goal-Oriented Mental Imagery: A Randomized Controlled Trial. Journal of Behavioral Medicine, 35, 347363.Google Scholar
Cole, S. N., Staugaard, S. R., and Berntsen, D. (2016). Inducing Involuntary and Voluntary Mental Time Travel using a Laboratory Paradigm. Memory & Cognition, 44, 376389.Google Scholar
Conroy, D., and Hagger, M. S. (2018). Imagery Interventions in Health Behavior: A Meta-Analysis. Health Psychology, 37, 668679.Google Scholar
Conway, M. A., Meares, K., and Standart, S. (2004). Images and Goals. Memory, 12, 525531.Google Scholar
Conway, M. A., Singer, J. A., and Tagini, A. (2004). The Self and Autobiographical Memory: Correspondence and Coherence. Social Cognition, 22, 491529.Google Scholar
Cumming, J., and Williams, S. E. (2012). The Role of Imagery in Performance. In Murphy, S. M. (ed.), Handbook of Sport and Performance Psychology. Oxford, UK: Oxford University Press, 213232.Google Scholar
D’Argembeau, A., Renaud, O., and van der Linden, M. (2011). Frequency, Characteristics and Functions of Future-Oriented Thoughts in Daily Life. Applied Cognitive Psychology, 25, 96103.Google Scholar
Di Simplicio, M., Renner, F., Blackwell, S. E., et al. (2016). An Investigation of Mental Imagery in Bipolar Disorder: Exploring “the Mind’s Eye”. Bipolar Disorders, 18, 669683.Google Scholar
Edwards, D. (2007). Restructuring Implicational Meaning through Memory-Based Imagery: Some Historical Notes. Journal of Behavior Therapy and Experimental Psychiatry, 38, 306316.Google Scholar
Ehlers, A., Clark, D. M., Hackmann, A., McManus, F., and Fennell, M. (2005). Cognitive Therapy for Post-Traumatic Stress Disorder: Development and Evaluation. Behaviour Research and Therapy, 43, 413431.Google Scholar
Fritzsche, A., Schlier, B., Oettingen, G., and Lincoln, T. M. (2016). Mental Contrasting with Implementation Intentions Increases Goal-Attainment in Individuals with Mild to Moderate Depression. Cognitive Therapy and Research, 40, 557564.Google Scholar
Golla, F., Hutton, E. L., and Walter, W. G. (1943). The Objective Study of Mental Imagery. Journal of Mental Science, 89, 216223.Google Scholar
Görgen, S. M., Joormann, J., Hiller, W., and Witthöft, M. (2015). Implicit Affect after Mental Imagery: Introduction of a Novel Measure and Relations to Depressive Symptoms in a Non-Clinical Sample. Journal of Experimental Psychopathology, 6, 123.Google Scholar
Gregory, W. L., Cialdini, R. B., and Carpenter, K. M. (1982). Self-Relevant Scenarios as Mediators of Likelihood Estimates and Compliance – Does Imagining Make it So? Journal of Personality and Social Psychology, 43, 8999.Google Scholar
Hales, S. A., Blackwell, S. E., Di Simplicio, M., et al. (2014). Imagery-Based Cognitive Behavioral Assessment. In Brown, G. P. and Clark, D. A. (eds.), Assessment in Cognitive Therapy. New York, NY: Guilford Press.Google Scholar
Hales, S. A., Deeprose, C., Goodwin, G. M., and Holmes, E. A. (2011). Cognitions in Bipolar Disorder versus Unipolar Depression: Imagining Suicide. Bipolar Disorders, 13, 651661.Google Scholar
Hanrahan, C., and Vergeer, I. (2001). Multiple Uses of Mental Imagery by Professional Modern Dancers. Imagination, Cognition and Personality, 20, 231255.Google Scholar
Hirsch, C. R., Mathews, A., Clark, D. M., Williams, R., and Morrison, J. (2005). The Causal Role of Negative Imagery in Social Anxiety: A Test in Confident Public Speakers. Journal of Behavior Therapy and Experimental Psychiatry, 37, 159170.Google Scholar
Hitchcock, C., Mueller, V., Hammond, E., et al. (2016). The Effects of Autobiographical Memory Flexibility (MemFlex) Training: An Uncontrolled Trial in Individuals in Remission from Depression. Journal of Behavior Therapy and Experimental Psychiatry, 52, 9298.Google Scholar
Hitchcock, C., Werner-Seidler, A., Blackwell, S. E., and Dalgleish, T. (2017). Autobiographical Episodic Memory-Based Training for the Treatment of Mood, Anxiety and Stress-Related Disorders: A Systematic Review and Meta-Analysis. Clinical Psychology Review, 52, 92107.Google Scholar
Holmes, E. A., Blackwell, S. E., Burnett Heyes, S., Renner, F., and Raes, F. (2016). Mental Imagery in Depression: Phenomenology, Potential Mechanisms, and Treatment Implications. Annual Review of Clinical Psychology, 12. doi:10.1146/annurev-clinpsy-021815-092925.Google Scholar
Holmes, E. A., James, E. L., Kilford, E. J., and Deeprose, C. (2010). Key Steps in Developing a Cognitive Vaccine against Traumatic Flashbacks: Visuospatial Tetris versus Verbal Pub Quiz. PloS One, 5, e13706.Google Scholar
Holmes, E. A., Lang, T. J., and Shah, D. M. (2009). Developing Interpretation Bias Modification as a “Cognitive Vaccine” for Depressed Mood – Imagining Positive Events Makes you Feel Better than Thinking about them Verbally. Journal of Abnormal Psychology, 118, 7688.Google Scholar
Holmes, E. A., and Mathews, A. (2005). Mental Imagery and Emotion: A Special Relationship? Emotion, 5, 489497.Google Scholar
Ivins, A., Di Simplicio, M., Close, H., Goodwin, G. M., and Holmes, E. A. (2014). Mental Imagery in Bipolar Affective Disorder versus Unipolar Depression: Investigating Cognitions at times of “Positive” Mood. Journal of Affective Disorders, 166, 234242.Google Scholar
Iyadurai, L., Blackwell, S. E., Meiser-Stedman, , et al. (2017). Preventing Intrusive Memories after Trauma via a Brief Intervention Involving Tetris Computer Game Play in the Emergency Department: A Proof-of-Concept Randomized Controlled Trial. Molecular Psychiatry, 23(3), 674682. doi:10.1038/mp.2017.23.Google Scholar
Ji, J. L., Burnett Heyes, S., MacLeod, C., and Holmes, E. A. (2016). Emotional Mental Imagery as Simulation of Reality: Fear and Beyond. A Tribute to Peter Lang. Behavior Therapy, 47, 702719.Google Scholar
Ji, J. L., Holmes, E. A., and Blackwell, S. E. (2017). Seeing Light at the End of the Tunnel: Positive Prospective Mental Imagery and Optimism in Depression. Psychiatry Research, 247, 155162.Google Scholar
Kahneman, D., and Tversky, A. (1982). The Simulation Heuristic. In Kahneman, D, Slovic, P, and Tversky, A (eds.), Judgement Under Uncertainty: Heuristics and Biases. Cambridge, UK: Cambridge University Press, 201208.Google Scholar
Kavanagh, D. J., Andrade, J., and May, J. (2005). Imaginary Relish and Exquisite Torture: The Elaborated Intrusion Theory of Desire. Psychological Review, 112, 446467.Google Scholar
Kessler, H., Holmes, E. A., Blackwell, S. E., et al. (2018). Reducing Intrusive Memories of Trauma using a Visuospatial Interference Intervention with Inpatients with Post-Traumatic Stress Disorder (PTSD). Journal of Consulting and Clinical Psychology, 86(12), 10761090.Google Scholar
Knäuper, B., McCollam, A., Rosen-Brown, A., et al. (2011). Fruitful Plans: Adding Targeted Mental Imagery to Implementation Intentions Increases Fruit Consumption. Psychology & Health, 26, 601617.Google Scholar
Korrelboom, K., de Jong, M., Huijbrechts, I., and Daansen, P. (2009). Competitive Memory Training (COMET) for Treating Low Self-Esteem in Patients with Eating Disorders: A Randomized Clinical Trial. Journal of Consulting and Clinical Psychology, 77, 974980.Google Scholar
Krans, J., Näring, G., Holmes, E. A., and Becker, E. S. (2009). “I See What You Are Saying”: Intrusive Images from Listening to a Traumatic Verbal Report. Journal of Anxiety Disorders, 24, 134140.Google Scholar
Lang, P. J. (1979). A Bio-Informational Theory of Emotional Imagery. Psychophysiology, 16, 495512.Google Scholar
Leer, A., Engelhard, I. M., and van den Hout, M. A. (2014). How Eye Movements in EMDR Work: Changes in Memory Vividness and Emotionality. Journal of Behavior Therapy and Experimental Psychiatry, 45, 396401.Google Scholar
Libby, L. K., Shaeffer, E. M., Eibach, R. P., and Slemmer, J. A. (2007). Picture Yourself at the Polls – Visual Perspective in Mental Imagery Affects Self-Perception and Behavior. Psychological Science, 18, 199203.Google Scholar
Linke, J., and Wessa, M. (2017). Mental Imagery Training Increases Wanting of Rewards and Reward Sensitivity and Reduces Depressive Symptoms. Behavior Therapy, 48, 695706.Google Scholar
MacLeod, A. (2017). Prospection, Well-Being, and Mental Health. Oxford, UK: Oxford University Press.Google Scholar
Mathews, A. (1971). Psychophysiological Approaches to the Investigation of Desensitisation and Related Processes. Psychological Bulletin, 76, 7391.Google Scholar
Mathews, A., Ridgeway, V., and Holmes, E. A. (2013). Feels like the Real Thing: Imagery is both More Realistic and Emotional than Verbal Thought. Cognition & Emotion, 27, 217229.Google Scholar
Meevissen, Y. M. C., Peters, M. L., and Alberts, H. J. E. M. (2011). Become more Optimistic by Imagining a Best Possible Self: Effects of a Two-Week Intervention. Journal of Behavior Therapy and Experimental Psychiatry, 42, 371378.Google Scholar
Nelis, S., Debeer, E., Holmes, E. A., and Raes, F. (2013). Dysphoric Students Show Higher use of the Observer Perspective in their Retrieval of Positive versus Negative Autobiographical Memories. Memory, 21, 423430.Google Scholar
Oatley, K. (2011). Such Stuff as Dreams: The Psychology of Fiction. Oxford, UK: Wiley-Blackwell.Google Scholar
Pearson, J. (2014). New Directions in Mental-Imagery Research: The Binocular-Rivalry Technique and Decoding fMRI Patterns. Current Directions in Psychological Science, 23, 178183.Google Scholar
Pearson, J., Naselaris, T., Holmes, E. A., and Kosslyn, S. M. (2015). Mental Imagery: Functional Mechanisms and Clinical Applications. Trends in Cognitive Sciences, 19, 590602.Google Scholar
Pictet, A., Jermann, F., and Ceschi, G. (2016). When Less Could Be More: Investigating the Effects of a Brief Internet-Based Imagery Cognitive Bias Modification Intervention in Depression. Behaviour Research and Therapy, 84, 4551.Google Scholar
Pratt, D., Cooper, M. J., and Hackmann, A. (2004). Imagery and Its Characteristics in People Who Are Anxious about Spiders. Behavioural & Cognitive Psychotherapy, 32, 165176.Google Scholar
Raes, F., Williams, J. G., and Hermans, D. (2009). Reducing Cognitive Vulnerability to Depression: A Preliminary Investigation of Memory Specificity Training (MEST) in Inpatients with Depressive Symptomatology. Journal of Behavior Therapy and Experimental Psychiatry, 40, 2438.Google Scholar
Renner, F., Ji, J. L., Pictet, A., Holmes, E. A., and Blackwell, S. E. (2017). Effects of Engaging in Repeated Mental Imagery of Future Positive Events on Behavioural Activation in Individuals with Major Depressive Disorder. Cognitive Therapy and Research, 41, 369380.Google Scholar
Reynolds, M., and Brewin, C. R. (1998). Intrusive Cognitions, Coping Strategies and Emotional Responses in Depression, Post-Traumatic Stress Disorder and a Non-Clinical Population. Behaviour Research and Therapy, 36, 135147.Google Scholar
Schacter, D. L., Addis, D. R., and Buckner, R. L. (2008). Episodic Simulation of Future Events: Concepts, Data, and Applications. New York Academy of Sciences, 1124, 3960.Google Scholar
Stopa, L. (2009). Imagery and the Threatened Self: Perspectives on Mental Imagery and the Self in Cognitive Therapy. London, UK: Routledge.Google Scholar
Weßlau, C., Cloos, M., Höfling, V., and Steil, R. (2015). Visual Mental Imagery and Symptoms of Depression: Results from a Large-Scale Web-Based Study. BMC Psychiatry, 15, 308.Google Scholar
Wolpe, J. (1961). The Systematic Desensitization Treatment of Neurosis. Journal of Nervous and Mental Disease, 132, 189203.Google Scholar
Zeman, A., Dewar, M., and Della Sala, S. (2015). Lives without Imagery – Congenital Aphantasia. Cortex, 73, 378380.Google Scholar

References

Alais, D., and Burr, D. (2004). The Ventriloquist Effect Results from Near-Optimal Bimodal Integration. Current Biology: CB, 14(3), 257262.Google Scholar
Albright, T. D. (2012). On the Perception of Probable Things: Neural Substrates of Associative Memory, Imagery, and Perception. Neuron, 74(2), 227245.Google Scholar
Allen, A. K., Wilkins, K., Gazzaley, A., and Morsella, E. (2013). Conscious Thoughts from Reflex-Like Processes: A New Experimental Paradigm for Consciousness Research. Consciousness and Cognition, 22(4), 13181331.Google Scholar
Andersen, T. S., Tiippana, K., and Sams, M. (2004). Factors Influencing Audiovisual Fission and Fusion Illusions. Cognitive Brain Research, 21(3), 301308.Google Scholar
Barraclough, N. E., Xiao, D., Baker, C. I., Oram, M. W., and Perrett, D. I. (2005). Integration of Visual and Auditory Information by Superior Temporal Sulcus Neurons Responsive to the Sight of Actions. Journal of Cognitive Neuroscience, 17(3), 377391.Google Scholar
Beauchamp, M. S., Argall, B. D., Bodurka, J., Duyn, J. H., and Martin, A. (2004a). Unraveling Multisensory Integration: Patchy Organization within Human STS Multisensory Cortex. Nature Neuroscience, 7(11), 11901192.Google Scholar
Beauchamp, M. S., Lee, K. E., Argall, B. D., and Martin, A. (2004b). Integration of Auditory and Visual Information about Objects in Superior Temporal Sulcus. Neuron, 41(5), 809823. www.ncbi.nlm.nih.gov/pubmed/15813999.Google Scholar
Beauchamp, M. S., Nath, A. R., and Pasalar, S. (2010). fMRI-Guided Transcranial Magnetic Stimulation Reveals that the Superior Temporal Sulcus is a Cortical Locus of the McGurk Effect. Journal of Neuroscience, 30(7), 24142417.Google Scholar
Berger, C. C., and Ehrsson, H. H. (2013). Mental Imagery Changes Multisensory Perception. Current Biology, 23, 13671372.Google Scholar
Berger, C. C., and Ehrsson, H. H. (2014). The Fusion of Mental Imagery and Sensation in the Temporal Association Cortex. Journal of Neuroscience, 34(41), 1368413692.Google Scholar
Berger, C. C., and Ehrsson, H. H. (2017). The Content of Imagined Sounds Changes Visual Motion Perception in the Cross-Bounce Illusion. Scientific Reports, 7, 40123.Google Scholar
Berger, C. C., and Ehrsson, H. H. (2018). Mental Imagery Induces Crossmodal Sensory Plasticity and Changes Future Auditory Perception. Psychological Science, 29(6), 926935.Google Scholar
Bischoff, M., Walter, B., Blecker, C. R., et al. (2007). Utilizing the Ventriloquism-Effect to Investigate Audiovisual Binding. Neuropsychologia, 45(3), 578586.Google Scholar
Bonath, B., Noesselt, T., Martinez, A., et al. (2007). Neural Basis of the Ventriloquist Illusion. Current Biology: CB, 17(19), 16971703.Google Scholar
Bruce, C., Desimone, R., and Gross, C. G. (1981). Visual Properties of Neurons in a Polysensory Area in Superior Temporal Sulcus of the Macaque. Journal of Neurophysiology, 46(2), 369384. www.ncbi.nlm.nih.gov/pubmed/6267219.Google Scholar
Calvert, G. A., Campbell, R., and Brammer, M. J. (2000). Evidence from Functional Magnetic Resonance Imaging of Crossmodal Binding in the Human Heteromodal Cortex. Current Biology: CB, 10(11), 649657. www.ncbi.nlm.nih.gov/pubmed/10837246.Google Scholar
Cichy, R. M., Heinzle, J., and Haynes, J.-D. (2011). Imagery and Perception Share Cortical Representations of Content and Location. Cerebral Cortex, 22(2), 372380.Google Scholar
Craver-Lemley, C., and Reeves, A. (1987). Visual Imagery Selectively Reduces Vernier Acuity. Perception, 16(5), 599614.Google Scholar
Dils, A. T., and Boroditsky, L. (2010). Visual Motion Aftereffect from Understanding Motion Language. Proceedings of the National Academy of Sciences of the United States of America, 107, 1639616400.Google Scholar
Driver, J., and Noesselt, T. (2008). Multisensory Interplay Reveals Crossmodal Influences on “Sensory-Specific” Brain Regions, Neural Responses, and Judgments. Neuron, 57(1), 1123.Google Scholar
Farah, M. J. (1985). Psychophysical Evidence for a Shared Representational Medium for Mental Images and Percepts. Journal of Experimental Psychology. General, 114(1), 91103. www.ncbi.nlm.nih.gov/pubmed/3156947.Google Scholar
Farah, M. J. (1989a). Mechanisms of Imagery-Perception Interaction. Journal of Experimental Psychology. Human Perception and Performance, 15(2), 203211. www.ncbi.nlm.nih.gov/pubmed/2525596.Google Scholar
Farah, M. J. (1989b). The Neural Basis of Mental Imagery. Trends in Neurosciences, 12(10), 395399. www.ncbi.nlm.nih.gov/pubmed/8137002.Google Scholar
Frissen, I., Vroomen, J., and de Gelder, B. (2012). The Aftereffects of Ventriloquism: The Time Course of the Visual Recalibration of Auditory Localization. Seeing and Perceiving, 25(1), 114.Google Scholar
Frissen, I., Vroomen, J., de Gelder, B., and Bertelson, P. (2005). The Aftereffects of Ventriloquism: Generalization Across Sound-Frequencies. Acta Psychologica, 118(1–2), 93100.Google Scholar
Ghazanfar, A. A., Chandrasekaran, C., and Logothetis, N. K. (2008). Interactions Between the Superior Temporal Sulcus and Auditory Cortex Mediate Dynamic Face/Voice Integration in Rhesus Monkeys. Journal of Neuroscience, 28(17), 44574469.Google Scholar
Ghazanfar, A. A., and Schroeder, C. E. (2006). Is Neocortex Essentially Multisensory? Trends in Cognitive Sciences, 10(6), 278285.Google Scholar
Grassi, M., and Casco, C. (2009). Audiovisual Bounce-Inducing Effect: Attention Alone Does Not Explain Why the Discs Are Bouncing. Journal of Experimental Psychology. Human Perception and Performance, 35(1), 235243.Google Scholar
Grassi, M., and Casco, C. (2012). Revealing the Origin of the Audiovisual Bounce-Inducing Effect. Seeing and Perceiving, 25(2), 223233.Google Scholar
Halpern, A. R. (1988). Mental Scanning in Auditory Imagery for Songs. Journal of Experimental Psychology. Learning, Memory, and Cognition, 14(3), 434443. www.ncbi.nlm.nih.gov/pubmed/2969942.Google Scholar
Howard, I. P., and Templeton, W. B. (1966). Human Spatial Orientation. London, UK: Wiley.Google Scholar
Hubbard, T. L. (2010). Auditory Imagery: Empirical Findings. Psychological Bulletin, 136(2), 302329.Google Scholar
Johns, L. C., Rossell, S., Frith, C., et al. (2001). Verbal Self-Monitoring and Auditory Verbal Hallucinations in Patients with Schizophrenia. Psychological Medicine, 31, 705715.Google Scholar
Kayser, C., and Logothetis, N. K. (2009). Directed Interactions between Auditory and Superior Temporal Cortices and their Role in Sensory Integration. Frontiers in Integrative Neuroscience, 3(May), 111.Google Scholar
Kosslyn, S. M. (1973). Scanning Visual Images: Some Structural Implications. Perception & Psychophysics, 14(1), 9094.Google Scholar
Kosslyn, S. M. (1994). Image and Brain: The Resolution of the Imagery Debate. Cambridge, MA: MIT Press.Google Scholar
Kosslyn, S. M., Ball, T. M., and Reiser, B. J. (1978). Visual Images Preserve Metric Spatial Information: Evidence from Studies of Image Scanning. Journal of Experimental Psychology. Human Perception and Performance, 4(1), 4760. www.ncbi.nlm.nih.gov/pubmed/627850.Google Scholar
Kosslyn, S. M., Ganis, G., and Thompson, W. L. (2001). Neural Foundations of Imagery. Nature Reviews. Neuroscience, 2(9), 635642.Google Scholar
Lewald, J. (2002). Rapid Adaptation to Auditory-Visual Spatial Disparity. Learning & Memory, 9(5), 268278.Google Scholar
Macmillan, N. A., and Kaplan, H. L. (1985). Detection Theory Analysis of Group Data: Estimating Sensitivity from Average Hit and False-Alarm Rates. Psychological Bulletin, 98(1), 185199.Google Scholar
Magnotti, J. F., Basu Mallick, D., Feng, G., et al. (2015). Similar Frequency of the McGurk Effect in Large Samples of Native Mandarin Chinese and American English Speakers. Experimental Brain Research, 233(9), 25812586.Google Scholar
Marchant, J. L., Ruff, C. C., and Driver, J. (2012). Audiovisual Synchrony Enhances BOLD Responses in a Brain Network Including ultisensory STS While Also Enhancing Target-Detection Performance for Both Modalities. Human Brain Mapping, 33(5), 12121224.Google Scholar
Mast, F. W., Berthoz, A., and Kosslyn, S. M. (2001). Mental Imagery of Visual Motion Modifies the Perception of Roll-Vection Stimulation. Perception, 30(8), 945957.Google Scholar
McGurk, H., and MacDonald, J. (1976). Hearing Lips and Seeing Voices. Nature, 264(23), 746748. www.nature.com/nature/journal/v264/n5588/abs/264746a0.html.Google Scholar
Nath, A. R., and Beauchamp, M. S. (2011). Dynamic Changes in Superior Temporal Sulcus Connectivity during Perception of Noisy Audiovisual Speech. Journal of Neuroscience, 31(5), 17041714.Google Scholar
Noesselt, T., Rieger, J. W., Schoenfeld, M. A., et al. (2007). Audiovisual Temporal Correspondence Modulates Human Multisensory Superior Temporal Sulcus plus Primary Sensory Cortices. Journal of Neuroscience, 27(42), 1143111441.Google Scholar
Noppeney, U., Josephs, O., Hocking, J., Price, C. J., and Friston, K. J. (2008). The Effect of Prior Visual Information on Recognition of Speech and Sounds. Cerebral Cortex, 18(3), 598609.Google Scholar
O’Craven, K. M., and Kanwisher, N. (2000). Mental Imagery of Faces and Places Activates Corresponding Stimulus-Specific Brain Regions. Journal of Cognitive Neuroscience, 12(6), 10131023. www.ncbi.nlm.nih.gov/pubmed/11177421.Google Scholar
Pearson, J., Clifford, C. W. G., and Tong, F. (2008). The Functional Impact of Mental Imagery on Conscious Perception. Current Biology, 18(13), 982986.Google Scholar
Perky, C. W. (1910). An Experimental Study of Imagination. American Journal of Psychology, 21(3), 422452.Google Scholar
Perrodin, C., Kayser, C., Logothetis, N. K., and Petkov, C. I. (2014). Auditory and Visual Modulation of Temporal Lobe Neurons in Voice-Sensitive and Association Cortices. Journal of Neuroscience, 34(7), 25242537.Google Scholar
Plaze, M., Paillère-Martinot, M.-L., Penttilä, J., et al. (2011). “Where do Auditory Hallucinations Come From?”A Brain Morphometry Study of Schizophrenia Patients with Inner or Outer Space Hallucinations. Schizophrenia Bulletin, 37(1), 212221.Google Scholar
Pylyshyn, Z. W. (1973). What the Mind’s Eye Tells the Mind’s Brain: A Critique of Mental Imagery. Psychological Bulletin, 80(1), 112.Google Scholar
Pylyshyn, Z. W. (2002). Mental Imagery: In Search of a Theory. The Behavioral and Brain Sciences, 25, 157182.Google Scholar
Recanzone, G. H. (1998). Rapidly Induced Auditory Plasticity: The Ventriloquism Aftereffect. Proceedings of the National Academy of Sciences of the United States of America, 95(February), 869875.Google Scholar
Schlack, A., and Albright, T. D. (2007). Remembering Visual Motion: Neural Correlates of Associative Plasticity and Motion Recall in Cortical Area MT. Neuron, 53(6), 881890.Google Scholar
Segal, S. J., and Fusella, V. (1970). Influence of Imaged Pictures and Sounds on Detection of Visual and Auditory Signals. Journal of Experimental Psychology, 83(3), 458464. www.ncbi.nlm.nih.gov/pubmed/5480913.Google Scholar
Sekuler, R., Sekuler, A. B., and Lau, R. (1997). Sound Alters Visual Motion Perception. Nature, 385(6614), 308. www.ncbi.nlm.nih.gov/pubmed/9002513.Google Scholar
Seltzer, B., and Pandya, D. N. (1994). Parietal, Temporal, and Occipital Projections to Cortex of the Superior Temporal Sulcus in the Rhesus Monkey: A Retrograde Tracer Study. The Journal of Comparative Neurology, 343(3), 445463.Google Scholar
Shams, L., Kamitani, Y., and Shimojo, S. (2000). What You See Is What You Hear. Nature, 408(6814), 788. doi:10.1038/35048669.Google Scholar
Shimojo, S., and Shams, L. (2001). Sensory Modalities Are Not Separate Modalities: Plasticity and Interactions. Current Opinion in Neurobiology, 11(4), 505509.Google Scholar
Spence, C., and Deroy, O. (2012). Hearing Mouth Shapes: Sound Symbolism and the Reverse McGurk Effect. I-Perception, 3(8), 550552.Google Scholar
Stein, B. E., and Stanford, T. R. (2008). Multisensory Integration: Current Issues from the Perspective of the Single Neuron. Nature Reviews. Neuroscience, 9(4), 255266.Google Scholar
Stevenson, R. A., and James, T. W. (2009). Audiovisual Integration in Human Superior Temporal Sulcus: Inverse Effectiveness and the Neural Processing of Speech and Object Recognition. NeuroImage, 44(3), 12101223.Google Scholar
Sweeny, T. D., Guzman-Martinez, E., Ortega, L., Grabowecky, M., and Suzuki, S. (2012). Sounds Exaggerate Visual Shape. Cognition, 124(2), 194200.Google Scholar
Szycik, G. R., Stadler, J., Tempelmann, C., and Münte, T. F. (2012). Examining the McGurk Illusion Using High-Field 7 Tesla Functional MRI. Frontiers in Human Neuroscience, 6(April), 95.Google Scholar
van Wassenhove, V., Grant, K. W., and Poeppel, D. (2007). Temporal Window of Integration in Auditory-Visual Speech Perception. Neuropsychologia, 45(3), 598607.Google Scholar
Wallace, M. T., Roberson, G. E., Hairston, W. D., et al. (2004). Unifying Multisensory Signals Across Time and Space. Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale, 158(2), 252258.Google Scholar
Weber, R. J., and Castleman, J. (1970). The Time It Takes to Imagine. Perception & Psychophysics, 8(3), 165168.Google Scholar
Wegner, D. M. (1994). Ironic Processes of Mental Control. Psychological Review, 101(1), 3452.Google Scholar
Werner, S., and Noppeney, U. (2010a). Distinct Functional Contributions of Primary Sensory and Association Areas to Audiovisual Integration in Object Categorization. Journal of Neuroscience, 30(7), 26622675.Google Scholar
Werner, S., and Noppeney, U. (2010b). Superadditive Responses in Superior Temporal Sulcus Predict Audiovisual Benefits in Object Categorization. Cerebral Cortex, 20(8), 18291842.Google Scholar
Winawer, J., Huk, A. C., and Boroditsky, L. (2010). A Motion Aftereffect from Visual Imagery of Motion. Cognition, 114(2), 276284.Google Scholar
Woods, T. M., and Recanzone, G. H. (2004). Visually Induced Plasticity of Auditory Spatial Perception in Macaques. Current Biology, 14, 15591564.Google Scholar
Wozny, D. R., and Shams, L. (2011). Recalibration of Auditory Space Following Milliseconds of Cross-Modal Discrepancy. Journal of Neuroscience, 31(12), 46074612.Google Scholar

References

Abramson, M., and Goldinger, S. D. (1997). What the Reader’s Eye Tells the Mind’s Ear: Silent Reading Activates Inner Speech. Perception and Psychophysics, 59, 10591068.Google Scholar
Banissy, M. J., and Ward, J. (2007). Mirror-Touch Synesthesia Is Linked with Empathy. Nature Neuroscience, 10, 815816.Google Scholar
Bensafi, M., and Rouby, C. (2007). Individual Differences in Odor Imaging Ability Reflected Differences in Olfactory and Emotional Perception. Chemical Senses, 32, 237244.Google Scholar
Bernstein, L. E., Jiang, J., Pantazis, D., Lu, Z. L., and Joshi, A. (2011). Visual Phonetic Processing Localized Using Speech and Nonspeech Face Gestures in Video and Point-Light Displays. Human Brain Mapping, 32, 16601676.Google Scholar
Bernstein, L. E., and Liebenthal, E. (2014). Neural Pathways for Visual Speech Perception. Frontiers in Neuroscience, 8, 386.Google Scholar
Block, N. (2011). Perceptual Consciousness Overflows Cognitive Access. Trends in Cognitive Sciences, 15, 567575.Google Scholar
Budd, M. (2012). The Musical Expression of Emotion: Metaphorical-as versus Imaginative-as Perception. Estetika: The Central European Journal of Aesthetics, 49(2), 131148.Google Scholar
Calvert, G. A., Bullmore, E. T., Brammer, M. J., et al. (1997). Activation of Auditory Cortex during Silent Lipreading. Science, 276(5312), 593596.Google Scholar
Cappe, C., Rouiller, E. M., and Barone, P. (2009). Multisensory Anatomical Pathways. Hearing Research, 258(1–2), 2836.Google Scholar
Caron-Desrochers, L., Schönwiesner, M., Focke, K., and Lehmann, A. (2018). Assessing Visual Modulation along the Human Subcortical Auditory Pathway. Neuroscience Letters, 685, 1217.Google Scholar
Deroy, O., Fernandez-Prieto, I., Navarra, J., and Spence, C. (2018). Unravelling the Paradox of Spatial Pitch. In Hubbard, T. L. (ed.), Spatial Biases in Perception and Cognition. Cambridge, UK: Cambridge University Press.Google Scholar
Deroy, O., and Spence, C. (2016). Crossmodal Correspondences: Four Challenges. Multisensory Research, 29(1–3), 2948.Google Scholar
De Vignemont, F. (2016). Mirror-Touch Synaesthesia. In Deroy, O (ed.), Sensory Blending: On Synaesthesia and Related Phenomena. Oxford, UK: Oxford University Press, 275292.Google Scholar
Fox, K. C., and Christoff, K. (eds.), (2018). The Oxford Handbook of Spontaneous Thought: Mind Wandering, Creativity, and Dreaming. Oxford, UK: Oxford University Press.Google Scholar
Halpern, A. R. (1992). Musical Aspects of Auditory Imagery. In Reisberg, D (ed.), Auditory Imagery. Hillsdale, NJ: Erlbaum.Google Scholar
Hertrich, I., Dietrich, S., and Ackermann, H. (2011). Cross-Modal Interactions during Perception of Audiovisual Speech and Nonspeech Signals: An fMRI Study. Journal of Cognitive Neuroscience, 23(1), 221237.Google Scholar
Hickok, G. (2014). The Architecture of Speech Production and the Role of the Phoneme in Speech Processing. Language, Cognition and Neuroscience, 29(1), 220.Google Scholar
Hubbard, T. L. (2010). Auditory Imagery: Empirical Findings. Psychological Bulletin, 136(2), 302.Google Scholar
Keeley, B. L. (2002). Making Sense of the Senses: Individuating Modalities in Humans and Other Animals. The Journal of Philosophy, 99(1), 528.Google Scholar
Lakoff, G., and Johnson, M. (1980). Metaphors We Live By. Chicago, IL: University of Chicago Press.Google Scholar
MacDougal, R. (1898). Music Imagery: A Confession of Experience. Psychological Review, 5(5), 463.Google Scholar
Nanay, B. (2017). Multimodal Mental Imagery. Cortex, 105, 125134.Google Scholar
Parise, C. V. (2016). Crossmodal Correspondences: Standing Issues and Experimental Guidelines. Multisensory Research, 29(1–3), 728.Google Scholar
Peacocke, C. (2009). Experiencing Metaphorically-as in Music Perception: Clarifications and Commitments. The British Journal of Aesthetics, 49(3), 299306.Google Scholar
Pekkola, J., Ojanen, V., Autti, T., et al. (2005). Primary Auditory Cortex Activation by Visual Speech: An fMRI Study at 3 T. Neuroreport, 16(2), 125128.Google Scholar
Riedel, P., Ragert, P., Schelinski, S., Kiebel, S. J., and von Kriegstein, K. (2015). Visual Face-Movement Sensitive Cortex Is Relevant for Auditory-only Speech Recognition. Cortex, 68, 8699.Google Scholar
Royet, J. P., Koenig, O., Gregoire, M. C., et al. (1999). Functional Anatomy of Perceptual and Semantic Processing for Odors. Journal of Cognitive Neuroscience, 11(1), 94109. PubMed PMID: 9950717.Google Scholar
Sadaghiani, S., Maier, J. X., and Noppeney, U. (2009). Natural, Metaphoric, and Linguistic Auditory Direction Signals Have Distinct Influences on Visual Motion Processing. Journal of Neuroscience, 29(20), 64906499.Google Scholar
Schwitzgebel, E. (2016). Phenomenal Consciousness, Defined and Defended as Innocently as I Can Manage. Journal of Consciousness Studies, 23(11–12), 224235.Google Scholar
Serino, A., Pizzoferrato, F., and Ladavas, E. (2008). Viewing a Face (Especially One’s Own Face) Being Touched Enhances Tactile Perception on the Face. Psychological Science, 19(5), 434438.Google Scholar
Shepard, R. N. (1978). The Mental Image. American Psychologist, 33(2), 125137.Google Scholar
Shepard, R. N., and Cooper, L. A. (1982). Mental Images and their Transformations. Cambridge, MA: MIT Press.Google Scholar
Shepard, R. N., and Metzler, J. (1971). Mental Rotation of Three-Dimensional Objects. Science, 171, 701703.Google Scholar
Spence, C. (2011). Crossmodal Correspondences: A Tutorial Review. Attention, Perception, and Psychophysics, 73(4), 971995.Google Scholar
Spence, C., and Deroy, O. (2013a). Crossmodal Mental Imagery. In Lacey, S and Lawson, R (eds.), Multisensory Imagery. New York, NY: Springer, 157183.Google Scholar
Spence, C., and Deroy, O. (2013b). How Automatic are Crossmodal Correspondences? Consciousness and Cognition, 22(1), 245260.Google Scholar
Tyll, S., Budinger, E., and Noesselt, T. (2011). Thalamic Influences on Multisensory Integration. Communicative & Integrative Biology, 4, 378381.Google Scholar
van den Brink, R. L., Cohen, M. X., van der Burg, E., et al. (2013). Subcortical, Modality-Specific Pathways Contribute to Multisensory Processing in Humans. Cerebral Cortex, 24, 21692177.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×