Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T15:46:25.708Z Has data issue: false hasContentIssue false

29 - Research in the Era of Sensing Technologies and Wearables

from Part VI - Technology in Statistics and Research Methods

Published online by Cambridge University Press:  18 February 2019

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Affective Signals (June 14, 2017). Affective Signals. Retrieved from www.affective-signals.com/.Google Scholar
Apple (2017). ResearchKit and CareKit. Retrieved from www.apple.com/de/researchkit/.Google Scholar
Apple (2018). IPhone X Specs. Retrieved from www.apple.com/iphone-Xs/specs/.Google Scholar
Audacity (2017). Audacity. Retrieved from www.audacity.de/.Google Scholar
Baltrušaitis, T., McDuff, D., Banda, N., Mahmoud, M., El Kaliouby, R., Robinson, P., & Picard, R. (2011). Real-time inference of mental states from facial expressions and upper body gestures. Presented at the IEEE International Conference on Automatic Face & Gesture Recognition, Santa Barbara, CA. doi:10.1109/FG.2011.5771372.CrossRefGoogle Scholar
Baltrušaitis, T., Robinson, P., & Morency, L.-P. (2016). Openface: An open source facial behavior analysis toolkit. In 2016 IEEE winter conference on applications of computer vision (WACV) (pp. 110). Lake Placid, NY: IEEE. doi:10.1109/wacv.2016.7477553.Google Scholar
Batrinca, L. M., Mana, N., Lepri, B., Pianesi, F., & Sebe, N. (2011). Please, tell me about yourself: Automatic personality assessment using short self-presentations. In Proceedings of the 13th international conference on multimodal interfaces (pp. 255262). New York, NY: ACM Press. doi:10.1145/2070481.2070528.CrossRefGoogle Scholar
Baur, T., Damian, I., Lingenfelser, F., Wagner, J., & André, E. (2013). NovA: Automated analysis of nonverbal signals in social interactions. Lecture Notes in Computer Science, 8212, 160171. doi:10.1007/978–3-319–02714-2_14.CrossRefGoogle Scholar
Boersma, P. & Van Heuven, V. (2001). Speak and unSpeak with PRAAT. Glot International, 5, 341347.Google Scholar
Bunderson, J. S., van der Vegt, G. S., Cantimur, Y., & Rink, F. (2016). Different views on hierarchy and why they matter: Hierarchy as inequality or as cascading influence. Academy of Management Journal, 42, 12651289. doi:10.5465/amj.2014.0601.CrossRefGoogle Scholar
Chatman, J. A., Boisnier, A. D., Spataro, S. E., Anderson, C., & Berdahl, J. L. (2008). Being distinctive versus being conspicuous: The effects of numeric status and sex-stereotyped tasks on individual performance in groups. Organizational Behavior and Human Decision Processes, 107, 141160. doi:10.1016/j.obhdp.2008.02.006.CrossRefGoogle Scholar
Chartrand, T. L. & Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76, 893910. doi:10.1037//0022–3514.76.6.893.CrossRefGoogle ScholarPubMed
Ciocchetti, M., Massaroni, C., Saccomandi, P., Caponero, M., Polimadei, A., Formica, D., & Schena, E. (2015). Smart textile based on fiber Bragg grating sensors for respiratory monitoring: Design and preliminary trials. Biosensors, 5, 602615. doi:10.3390/bios5030602.CrossRefGoogle ScholarPubMed
Cook, A. & Mayer, B. (2017). Assessing leadership behavior with observational and sensor-based methods: A brief overview. In Schyns, B., Hall, R. J., & Neves, P. (Eds.), Handbook of methods in leadership research (pp. 73102). Cheltenham, UK: Edward Elgar.Google Scholar
Cook, A. (S.) & Mayer, B., Gockel, C., & Zill, A. (in press). Adapting leadership perceptions across tasks: The micro origins of informal leadership transitions. Small Group Research.Google Scholar
Damian, I., Baur, T., & André, E. (2016). Measuring the impact of multimodal behavioural feedback loops on social interactions. In Proceedings of the 18th ACM International Conference on Multimodal Interaction (pp. 201208). New York, NY: ACM Press. doi:10.1145/2993148.2993174.Google Scholar
Damian, I., Dietz, M., Gaibler, F., & André, E. (2016). Social signal processing for dummies. In Proceedings of the 18th ACM international conference on multimodal interaction (pp. 394395). New York, NY: ACM Press. doi:10.1145/2993148.2998527.CrossRefGoogle Scholar
De Looze, C., Scherer, S., Vaughan, B., & Campbell, N. (2014). Investigating automatic measurements of prosodic accommodation and its dynamics in social interaction. Speech Communication, 58, 1134. doi:10.1016/j.specom.2013.10.002.CrossRefGoogle Scholar
Dinev, T. & Hart, P. (2004). Internet privacy concerns and their antecedents: Measurement validity and a regression model. Behaviour & Information Technology, 23, 413422. doi:10.1080/01449290410001715723.CrossRefGoogle Scholar
Duchovski, A. (2007). Eye tracking methodology: Theory and practice. London, UK: Springer.Google Scholar
Ellgring, H. & Scherer, K. R. (1996). Vocal indicators of mood change in depression. Journal of Nonverbal Behavior, 20, 83110. doi:10.1007/bf02253071.CrossRefGoogle Scholar
Eyben, F., Scherer, K. R., Schuller, B. W., Sundberg, J., Andre, E., Busso, C., … Truong, K. P. (2016). The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for voice research and affective computing. IEEE Transactions on Affective Computing, 7, 190202. doi:10.1109/TAFFC.2015.2457417.CrossRefGoogle Scholar
Giddens, C. L., Barron, K. W., Byrd-Craven, J., Clark, K. F., & Winter, A. S. (2013). Vocal indices of stress: A review. Journal of Voice, 27, 2129. doi:10.1016/j.jvoice.2012.12.010.CrossRefGoogle ScholarPubMed
Hawkins, S. A. & Hastie, R. (1990). Hindsight: Biased judgement of past events after the outcomes are known. Psychological Bulletin, 107, 311327. doi:10.1037//0033–2909.107.3.311.CrossRefGoogle Scholar
Huang, J. L., Curran, P. G., Keeney, J., Poposki, E. M., & DeShon, R. P. (2012). Detecting and deterring insufficient effort responding to surveys. Journal of Business and Psychology, 27, 99114. doi:10.1007/s10869-011–9231-8.CrossRefGoogle Scholar
Intel (2018). Intel RealSense technology. Retrieved from https://software.intel.com/en-us/realsense/d400.Google Scholar
Jehn, K. A. (1995). A multimethod examination of the benefits and detriments of intragroup conflict. Administrative Science Quarterly, 40, 256282. doi:10.2307/2393638.CrossRefGoogle Scholar
Kim, T., Chang, A., Holland, L., & Pentland, A. S. (2008). Meeting mediator: Enhancing group collaboration using sociometric feedback. In Proceedings of the 2008 ACM conference on computer supported cooperative work (pp. 457466). New York, NY: ACM Press. Retrieved from http://dl.acm.org/citation.cfm?id=1460636.CrossRefGoogle Scholar
Krajewski, J. & Kröger, B. J. (2007). Using prosodic and spectral characteristics for sleepiness detection. Paper presented at the INTERSPEECH 2007, Antwerp, Belgium. Retrieved from www.ao.i2.psychologie.uni-wuerzburg.de/fileadmin/06020230/user_upload/1-_Krajewski_Kroeger_2007_Using_prosodic_and_spectral_07_erschienen_in_interspeech.pdf.CrossRefGoogle Scholar
Langer, M., König, C. J., Gebhard, P., & André, E. (2016). Dear computer, teach me manners: Testing virtual employment interview training. International Journal of Selection and Assessment, 24, 312323. doi:10.1111/ijsa.12150.CrossRefGoogle Scholar
Louwerse, M. M., Dale, R., Bard, E. G., & Jeuniaux, P. (2012). Behavior matching in multimodal communication is synchronized. Cognitive Science, 36, 14041426. doi:10.1111/j.1551–6709.2012.01269.x.CrossRefGoogle ScholarPubMed
Lu, H., Frauendorfer, D., Rabbi, M., Mast, M. S., Chittaranjan, G. T., Campbell, A. T., … Choudhury, T. (2012). StressSense: Detecting stress in unconstrained acoustic environments using smartphones. In Proceedings of the 2012 ACM conference on ubiquitous computing (pp. 351360). New York, NY: ACM Press. Retrieved from http://dl.acm.org/citation.cfm?id=2370270.CrossRefGoogle Scholar
Luxton, D. D., McCann, R. A., Bush, N. E., Mishkind, M. C., & Reger, G. M. (2011). mHealth for mental health: Integrating smartphone technology in behavioral healthcare. Professional Psychology: Research and Practice, 42, 505512. doi:10.1037/a0024485.CrossRefGoogle Scholar
Manson, J. H. & Robbins, M. L. (2017). New evaluation of the Electronically Activated Recorder (EAR): Obtrusiveness, compliance, and participant self-selection effects. Frontiers in Psychology, 8, 658. doi:10.3389/fpsyg.2017.00658.CrossRefGoogle ScholarPubMed
Matsumoto, D., Yoo, S. H., & Fontaine, J. (2008). Mapping expressive differences around the world: The relationship between emotional display rules and individualism versus collectivism. Journal of Cross-Cultural Psychology, 39, 5574. doi:10.1177/0022022107311854.CrossRefGoogle Scholar
McDuff, D., Gontarek, S., & Picard, R. (2014). Remote measurement of cognitive stress via heart rate variability. Presented at the 36th annual international conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL. doi:10.1109/EMBC.2014.6944243.CrossRefGoogle Scholar
Mehl, M. R. (2017). The Electronically Activated Recorder (EAR): A method for the naturalistic observation of daily social behavior. Current Directions in Psychological Science, 26, 184190. doi:10.1177/0963721416680611.CrossRefGoogle Scholar
Mehl, M. R. & Holleran, S. E. (2007). An empirical analysis of the obtrusiveness of and participants’ compliance with the Electronically Activated Recorder (EAR). European Journal of Psychological Assessment, 23, 248257. doi:10.1027/1015–5759.23.4.248.CrossRefGoogle Scholar
Mehl, M. R., Pennebaker, J. W., Crow, D. M., Dabbs, J., & Price, J. H. (2001). The Electronically Activated Recorder (EAR): A device for sampling naturalistic daily activities and conversations. Behavior Research Methods, 33, 517523.doi:10.3758/bf03195410.Google Scholar
Microsoft. (February 25, 2015). Kinect for Windows. Retrieved from www.microsoft.com/en-us/kinectforwindows/.Google Scholar
Microsoft. (2017). Developing with Kinect for Windows. Retrieved from https://developer.microsoft.com/en-us/windows/kinect/develop.Google Scholar
Miller, G. (2012). The smartphone psychology manifesto. Perspectives on Psychological Science, 7, 221237. doi:10.1177/1745691612441215.CrossRefGoogle ScholarPubMed
Mori, M. (1970). Bukimi no tani [The uncanny valley]. Energy, 7, 33–5.Google Scholar
Mori, M., MacDorman, K., & Kageki, N. (2012). The uncanny valley. IEEE Robotics & Automation Magazine, 19, 98100. doi:10.1109/MRA.2012.2192811.CrossRefGoogle Scholar
Muralidhar, S., Schmid Mast, M., & Gatica-Perez, D. (2017). How May I Help You? Behavior and Impressions in Hospitality Service Encounters. In Proceedings of 19th ACM international conference on multimodal interaction (pp. 312320). New York, NY: ACM Press. doi:10.1145/3136755.3136771.Google Scholar
Naim, I., Tanveer, M. I., Gildea, D., & Hoque, M. E. (2015). Automated analysis and prediction of job interview performance: The role of what you say and how you say it. Presented at the 11th IEEE international conference and workshops on automatic face and gesture recognition, Ljubljana, Slovenia. doi:10.1109/fg.2015.7163127.CrossRefGoogle Scholar
Noah, J. A., Spierer, D. K., Gu, J., & Bronner, S. (2013). Comparison of steps and energy expenditure assessment in adults of Fitbit Tracker and Ultra to the Actical and indirect calorimetry. Journal of Medical Engineering & Technology, 37, 456462. doi:10.3109/03091902.2013.831135.CrossRefGoogle Scholar
Ohly, S., Sonnentag, S., Niessen, C., & Zapf, D. (2010). Diary studies in organizational research: An introduction and some practical recommendations. Journal of Personnel Psychology, 9, 7993. doi:10.1027/1866–5888/a000009.CrossRefGoogle Scholar
Oksüz, N., Biswas, R. S. I., Shcherbatyi, I., & Maass, W. (2018). Measuring biosignals of overweight and obese children for real-time feedback and predicting performance. In vom, J. Brocke, P.-Léger, M., & Randolph, A. (Eds.), Information systems and neuroscience– Gmunden retreat on NeuroIS 2017 (pp. 185193). Cham, Switzerland: Springer.CrossRefGoogle Scholar
Olguín, D. O. (2007). Sociometric badges: Wearable technology for measuring human behavior (Master thesis). Massachusetts Institute of Technology, Boston. Retrieved from http://hdl.handle.net/1721.1/42169.Google Scholar
Olguín, D. O. & Pentland, A. S. (2007). Sociometric badges: State of the art and future applications. In Doctoral colloquium presented at IEEE 11th International Symposium on Wearable Computers, Boston, MA. Retrieved from https://pdfs.semanticscholar.org/48f1/f30259586e2229682510a3ba90fa053004c8.pdf.Google Scholar
Pantelopoulos, A. & Bourbakis, N. G. (2010). A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Transactions on Systems, Man, and Cybernetics, 40, 112. Available at: doi:10.1109/tsmcc.2009.2032660.CrossRefGoogle Scholar
Podsakoff, P. M. & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. Journal of Management, 12, 531–44. doi:10.1177/014920638601200408.CrossRefGoogle Scholar
Ranganath, R., Jurafsky, D., & McFarland, D. A. (2013). Detecting friendly, flirtatious, awkward, and assertive speech in speed-dates. Computer Speech & Language, 27, 89115. doi:10.1016/j.csl.2012.01.005.CrossRefGoogle Scholar
Samsung. (2017). Samsung Galaxy S7 Specs. Retrieved from www.samsung.com/de/smartphones/galaxy-s7/more/.Google Scholar
Schmid Mast, M., Frauendorfer, D., Nguyen, L. S., Gatica-Perez, D., Choudhury, T., & Odobez, J.-M. (2017). A step towards automatic applicant selection: Predicting job performance based on applicant nonverbal interview behavior. [Under Review.]Google Scholar
Schmid Mast, M., Gatica-Perez, D., Frauendorfer, D., Nguyen, L., & Choudhury, T. (2015). Social sensing for psychology automated interpersonal behavior assessment. Current Directions in Psychological Science, 24, 154160. doi:10.1177/0963721414560811.CrossRefGoogle Scholar
Stahl, S. E., An, H.-S., Dinkel, D. M., Noble, J. M., & Lee, J.-M. (2016). How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough? BMJ Open Sport & Exercise Medicine, 2, 17. doi:10.1136/bmjsem-2015–000106.CrossRefGoogle ScholarPubMed
Sundholm, M., Cheng, J., Zhou, B., Sethi, A., & Lukowicz, P. (2014). Smart-mat: Recognizing and counting gym exercises with low-cost resistive pressure sensing matrix. In Proceedings of the 16th ACM international joint conference on pervasive and ubiquitous computing (pp. 373382). New York, NY: ACM Press. doi:10.1145/2632048.2636088.Google Scholar
Van Vaerenbergh, Y. & Thomas, T. D. (2013). Response styles in survey research: A literature review of antecedents, consequences, and remedies. International Journal of Public Opinion Research, 25, 195217. doi:10.1093/ijpor/eds021.CrossRefGoogle Scholar
Wagner, J., Lingenfelser, F., Baur, T., Damian, I., Kistler, F., & André, E. (2013). The social signal interpretation (SSI) framework: Multimodal signal processing and recognition in real-time. In Proceedings of the 21st ACM international conference on Multimedia (pp. 831834). New York, NY: ACM Press. Retrieved from http://dl.acm.org/citation.cfm?id=2502223.CrossRefGoogle Scholar
Wallen, M. P., Gomersall, S. R., Keating, S. E., Wisløff, U., & Coombes, J. S. (2016). Accuracy of heart rate watches: Implications for weight management. PLoS One, 11, e0154420. doi:10.1371/journal.pone.0154420.CrossRefGoogle ScholarPubMed
Wang, R., Blackburn, G., Desai, M., Phelan, D., Gillinov, L., Houghtaling, P., & Gillinov, M. (2017). Accuracy of wrist-worn heart rate monitors. JAMA Cardiology, 2, 104106. doi:10.1001/jamacardio.2016.3340.CrossRefGoogle ScholarPubMed
Ziegler, M., MacCann, C., & Roberts, R. (Eds.) (2011). New perspectives on faking in personality assessment. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×