Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T15:51:28.021Z Has data issue: false hasContentIssue false

Part V - Physiological Measures

Published online by Cambridge University Press:  12 December 2024

John E. Edlund
Affiliation:
Rochester Institute of Technology, New York
Austin Lee Nichols
Affiliation:
Central European University, Vienna
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aakvaag, A., & Opstad, P. K. (2019). Hormonal response to prolonged physical strain, effect of calorific deficiency and sleep deprivation. In Fotherby, K. & Pal, S. B. (eds.), Exercise Endocrinology (pp. 2546). De Gruyter.Google Scholar
Altan Ferhatoğlu, Z., Göktay, F., Yaşar, Ş., & Aytekin, S. (2018). Morphology, growth rate, and thickness of the nail plate during the pregnancy. International Journal of Dermatology, 57(10), 12531258.CrossRefGoogle ScholarPubMed
Ammenti, A., Alberici, I., Brugnara, M., Chimenz, R., Guarino, S., La Manna, A., et al. (2020). Updated Italian recommendations for the diagnosis, treatment and follow‐up of the first febrile urinary tract infection in young children. Acta Paediatrica, 109(2), 236247). https://doi.org/10.1111/apa.14988CrossRefGoogle ScholarPubMed
Awad, H., Halawa, F., Mostafa, T., & Atta, H. (2006). Melatonin hormone profile in infertile males. International Journal of Andrology, 29(3), 409413.CrossRefGoogle ScholarPubMed
Bailey, M. T., Dowd, S. E., Galley, J. D., Hufnagle, A. R., Allen, R. G., & Lyte, M. (2011). Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain, Behavior, and Immunity, 25(3), 397407.CrossRefGoogle ScholarPubMed
Barrett, E. S., Tran, V., Thurston, S. W., Frydenberg, H., Lipson, S. F., Thune, I., & Ellison, P. T. (2015). Women who are married or living as married have higher salivary estradiol and progesterone than unmarried women. American Journal of Human Biology, 27(4), 501507.CrossRefGoogle ScholarPubMed
Behr, G. A., Patel, J. P., Coote, M., Moreira, J. C. F., Gelain, D. P., Steiner, M., & Frey, B. N. (2017). A statistical method to calculate blood contamination in the measurement of salivary hormones in healthy women. Clinical Biochemistry, 50(7–8), 436439.CrossRefGoogle ScholarPubMed
Belfiore, A., & LeRoith, D. (2018). Principles of Endocrinology and Hormone Action. Springer.CrossRefGoogle Scholar
Bernhard, A., van der Merwe, C., Ackermann, K., Martinelli, A., Neumann, I. D., & Freitag, C. M. (2018). Adolescent oxytocin response to stress and its behavioral and endocrine correlates. Hormones and Behavior, 105, 157165.CrossRefGoogle ScholarPubMed
Binz, T. M., Gaehler, F., Voegel, C. D., Hofmann, M., Baumgartner, M. R., & Kraemer, T. (2018). Systematic investigations of endogenous cortisol and cortisone in nails by LC-MS/MS and correlation to hair. Analytical and Bioanalytical Chemistry, 410(20), 48954903.CrossRefGoogle ScholarPubMed
Boumba, V. A., Ziavrou, K. S., & Vougiouklakis, T. (2006). Hair as a biological indicator of drug use, drug abuse or chronic exposure to environmental toxicants. International Journal of Toxicology, 25(3), 143163.CrossRefGoogle ScholarPubMed
Carré, J. M., & Archer, J. (2018). Testosterone and human behavior: The role of individual and contextual variables. Current Opinion in Psychology, 19, 149153.CrossRefGoogle ScholarPubMed
Casto, K. V., & Edwards, D. A. (2016). Before, during, and after: How phases of competition differentially affect testosterone, cortisol, and estradiol levels in women athletes. Adaptive Human Behavior and Physiology, 2(1), 1125.CrossRefGoogle Scholar
Coderch, L., Oliver, M. A., Carrer, V., Manich, A. M., & Martí, M. (2019). External lipid function in ethnic hairs. Journal of Cosmetic Dermatology, 18(6), 19121920.CrossRefGoogle ScholarPubMed
Cohen, S., Schwartz, J. E., Epel, E., Kirschbaum, C., Sidney, S., & Seeman, T. (2006). Socioeconomic status, race, and diurnal cortisol decline in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Psychosomatic Medicine, 68(1), 4150.CrossRefGoogle ScholarPubMed
Cox, K. L., Devanarayan, V., Kriauciunas, A., Manetta, J., Montrose, C., & Sittampalam, S. (2019). Immunoassay methods. In Markossion, S., Grossman, A., Brimacombe, K. et al. (eds.), Assay Guidance Manual [e-book]. Eli Lily. www.ncbi.nlm.nih.gov/books/NBK92434Google Scholar
Crimmins, E. M., Zhang, Y. S., Kim, J. K., Frochen, S., Kang, H., Shim, H., et al. (2020). Dried blood spots: Effects of less than optimal collection, shipping time, heat, and humidity. American Journal of Human Biology, 32(5), e23390.CrossRefGoogle ScholarPubMed
Dai, X., Thavundayil, J., Santella, S., & Gianoulakis, C. (2007). Response of the HPA-axis to alcohol and stress as a function of alcohol dependence and family history of alcoholism. Psychoneuroendocrinology, 32(3), 293305.CrossRefGoogle ScholarPubMed
Dalirirad, S., & Steckl, A. J. (2019). Aptamer-based lateral flow assay for point of care cortisol detection in sweat. Sensors and Actuators B: Chemical, 283, 7986.CrossRefGoogle Scholar
De Dreu, C. K. W., Greer, L. L., Van Kleef, G. A., Shalvi, S., & Handgraaf, M. J. J. (2011). Oxytocin promotes human ethnocentrism. Proceedings of the National Academy of Sciences, 108(4), 12621266.CrossRefGoogle ScholarPubMed
Dmitrieva, N. O., Almeida, D. M., Dmitrieva, J., Loken, E., & Pieper, C. F. (2013). A day-centered approach to modeling cortisol: Diurnal cortisol profiles and their associations among U.S. adults. Psychoneuroendocrinology, 38(10), 23542365.CrossRefGoogle Scholar
Dubey, A., Sonker, A., & Agarwal, P. (2019). A comparison of lancets and evaluation of various manoeuvres in reducing finger prick pain during pre-donation haemoglobin estimation. Transfusion Medicine, 29(4), 279283.CrossRefGoogle ScholarPubMed
Edwards, S., Evans, P., Hucklebridge, F., & Clow, A. (2001). Association between time of awakening and diurnal cortisol secretory activity. Psychoneuroendocrinology, 26(6), 613622.CrossRefGoogle ScholarPubMed
Engert, V., Ragsdale, A. M., & Singer, T. (2018). Cortisol stress resonance in the laboratory is associated with inter-couple diurnal cortisol covariation in daily life. Hormones and Behavior, 98, 183190.CrossRefGoogle ScholarPubMed
Engvall, E., & Perlmann, P. (1972). Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes.Journal of Immunology, 109(1), 129135.CrossRefGoogle ScholarPubMed
Eriksson, H., & Gustafsson, J.-Å. (1972). Excretion of steroid hormones in adults steroids in urine from adults. Clinica Chimica Acta, 41, 7990. https://doi.org/10.1016/0009-8981(72)90498-6CrossRefGoogle ScholarPubMed
Eskander, E. F., Estefan, S. F., & Abd-Rabou, A. A. (2012). How does long term exposure to base stations and mobile phones affect human hormone profiles? Clinical Biochemistry, 45(1–2), 157161.CrossRefGoogle ScholarPubMed
Fernandes, A., Skinner, M. L., Woelfel, T., Carpenter, T., & Haggerty, K. P. (2013). Implementing self-collection of biological specimens with a diverse sample. Field Methods, 25(1). https://doi.org/10.1177/1525822X12453526CrossRefGoogle ScholarPubMed
Field, H. P. (2013). Tandem mass spectrometry in hormone measurement. Methods in Molecular Biology, 1065, 4574.CrossRefGoogle ScholarPubMed
Forghani, B., Schmidt, N. J., & Lennette, E. H. (1976). Sensitivity of a radioimmunoassay method for detection of certain viral antibodies in sera and cerebrospinal fluids. Journal of Clinical Microbiology, 4(6), 470478.CrossRefGoogle ScholarPubMed
Gan, S. D., & Patel, K. R. (2013). Enzyme immunoassay and enzyme-linked immunosorbent assay. Journal of Investigative Dermatology, 133(9), e12.CrossRefGoogle ScholarPubMed
García-Carmona, L., Martín, A., Sempionatto, J. R., Moreto, J. R., González, M. C., Wang, J., & Escarpa, A. (2019). Pacifier biosensor: Toward noninvasive saliva biomarker monitoring. Analytical Chemistry, 91(21), 1388313891.CrossRefGoogle ScholarPubMed
Gildner, T. E. (2021). Reproductive hormone measurement from minimally invasive sample types: Methodological considerations and anthropological importance. American Journal of Human Biology, 33(1), e23535.CrossRefGoogle ScholarPubMed
Gray, C. H., & Bacharach, A. L. (1961). Hormones in Blood. Academic Press.Google Scholar
Gunnar, M. R., Mangelsdorf, S., Larson, M., & Hertsgaard, L. (1989). Attachment, temperament, and adrenocortical activity in infancy: A study of psychoendocrine regulation. Developmental Psychology, 25(3), 355.CrossRefGoogle Scholar
Gustafsson, H. C., Young, A. S., Stamos, G., Wilken, S., Brito, N. H., Thomason, M. E., et al. (2021). Innovative methods for remote assessment of neurobehavioral development. Developmental Cognitive Neuroscience, 52, 101015.CrossRefGoogle ScholarPubMed
Hall, D. L., Blyler, D., Allen, D., Mishel, M. H., Crandell, J., Germino, B. B., & Porter, L. S. (2011). Predictors and patterns of participant adherence to a cortisol collection protocol. Psychoneuroendocrinology, 36(4), 540546.CrossRefGoogle ScholarPubMed
Hannon, W. H., & Therrell, B. L. Jr. (2014). Overview of the history and applications of dried blood samples. In Li, W. & Lee, M. S. (eds.), Dried Blood Spots: Applications and Techniques (pp. 115). John Wiley & Sons.Google Scholar
Harmon, A. G., Hibel, L. C., Rumyantseva, O., & Granger, D. A. (2007). Measuring salivary cortisol in studies of child development: Watch out – what goes in may not come out of saliva collection devices. Developmental Psychobiology, 49(5), 495500.CrossRefGoogle Scholar
Hendelman, T., Chaudhary, A., LeClair, A. C., van Leuven, K., Chee, J., Fink, S. L., et al. (2021). Self-collection of capillary blood using Tasso-SST devices for Anti-SARS-CoV-2 IgG antibody testing. PLOS ONE, 16(9), e0255841.CrossRefGoogle ScholarPubMed
Hill Golden, S., Sánchez, B. N., Desantis, A. S., Wu, M., Castro, C., Seeman, T. E., et al. (2014). Salivary cortisol protocol adherence and reliability by socio-demographic features: The Multi-Ethnic Study of Atherosclerosis. Psychoneuroendocrinology, 43, 3040.CrossRefGoogle ScholarPubMed
Hofman, L. F. (2001). Human saliva as a diagnostic specimen. Journal of Nutrition, 131(5), 1621S1625S.CrossRefGoogle ScholarPubMed
Hulme, E. C., & Trevethick, M. A. (2010). Ligand binding assays at equilibrium: Validation and interpretation. British Journal of Pharmacology, 161(6), 12191237.CrossRefGoogle ScholarPubMed
Hurtado de Catalfo, G. E., Ranieri-Casilla, A., Marra, F. A., de Alaniz, M. J. T., & Marra, C. A. (2007). Oxidative stress biomarkers and hormonal profile in human patients undergoing varicocelectomy. International Journal of Andrology, 30(6), 519530.CrossRefGoogle ScholarPubMed
Institute of Medicine, Board on Population Health and Public Health Practice, & Committee on Public Health Strategies to Improve Health. (2012). For the Public’s Health: Investing in a Healthier Future. National Academies Press.Google Scholar
Juster, R.-P., Raymond, C., Desrochers, A. B., Bourdon, O., Durand, N., Wan, N., et al. (2016). Sex hormones adjust “sex-specific” reactive and diurnal cortisol profiles. Psychoneuroendocrinology, 63, 282290.CrossRefGoogle ScholarPubMed
Khelifa, L., Hu, Y., Jiang, N., & Yetisen, A. K. (2022). Lateral flow assays for hormone detection. Lab on a Chip, 22(13), 24512475.CrossRefGoogle ScholarPubMed
Kirschbaum, C., Pirke, K.-M., & Hellhammer, D. H. (1993). The “Trier Social Stress Test” – a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28(1–2), 7681.CrossRefGoogle Scholar
Kivlighan, K. T., Granger, D. A., Schwartz, E. B., Nelson, V., Curran, M., & Shirtcliff, E. A. (2004). Quantifying blood leakage into the oral mucosa and its effects on the measurement of cortisol, dehydroepiandrosterone, and testosterone in saliva. Hormones and Behavior, 46(1), 3946.CrossRefGoogle ScholarPubMed
Koczula, K. M., & Gallotta, A. (2016). Lateral flow assays. Essays in Biochemistry, 60(1), 111120.Google ScholarPubMed
Kudielka, B. M., Gierens, A., Hellhammer, D. H., Wüst, S., & Schlotz, W. (2012). Salivary cortisol in ambulatory assessment – some dos, some don’ts, and some open questions. Psychosomatic Medicine, 74(4), 418431.CrossRefGoogle ScholarPubMed
Labuschagne, I., Grace, C., Rendell, P., Terrett, G., & Heinrichs, M. (2019). An introductory guide to conducting the Trier Social Stress Test. Neuroscience and Biobehavioral Reviews, 107, 686695.CrossRefGoogle ScholarPubMed
Lim, M. D. (2018). Dried blood spots for global health diagnostics and surveillance: Opportunities and challenges. American Journal of Tropical Medicine and Hygiene, 99(2), 256265.CrossRefGoogle ScholarPubMed
MacLean, E. L., Wilson, S. R., Martin, W. L., Davis, J. M., Nazarloo, H. P., & Carter, C. S. (2019). Challenges for measuring oxytocin: The blind men and the elephant?Psychoneuroendocrinology, 107, 225231.CrossRefGoogle ScholarPubMed
Magon, N., & Kalra, S. (2011). The orgasmic history of oxytocin: Love, lust, and labor. Indian Journal of Endocrinology and Metabolism, 15 (Suppl. 3), S156S161.CrossRefGoogle ScholarPubMed
Marceau, K., Rolan, E., Robertson, O. C., Wang, W., & Shirtcliff, E. A. (2021). Within-person changes of cortisol, dehydroepiandrosterone, testosterone, estradiol, and progesterone in hair across pregnancy, with comparison to a non-pregnant reference group. Comprehensive Psychoneuroendocrinology, 5, 100024.CrossRefGoogle ScholarPubMed
Marceau, K., Ruttle, P. L., Shirtcliff, E. A., Essex, M. J., & Susman, E. J. (2015). Developmental and contextual considerations for adrenal and gonadal hormone functioning during adolescence: Implications for adolescent mental health. Developmental Psychobiology, 57(6), 742768.CrossRefGoogle ScholarPubMed
Marceau, K., Shirtcliff, E. A., Hastings, P. D., Klimes-Dougan, B., Zahn-Waxler, C., Dorn, L. D., & Susman, E. J. (2014). Within-adolescent coupled changes in cortisol with DHEA and testosterone in response to three stressors during adolescence. Psychoneuroendocrinology, 41, 3345.CrossRefGoogle ScholarPubMed
Martí, M., Barba, C., Manich, A. M., Rubio, L., Alonso, C., & Coderch, L. (2016). The influence of hair lipids in ethnic hair properties. International Journal of Cosmetic Science, 38(1), 7784.CrossRefGoogle ScholarPubMed
Mechlin, B., Morrow, A. L., Maixner, W., & Girdler, S. S. (2007). The relationship of allopregnanolone immunoreactivity and HPA-axis measures to experimental pain sensitivity: Evidence for ethnic differences. Pain, 131(1–2), 142152.CrossRefGoogle ScholarPubMed
Meier, M., Lonsdorf, T. B., Lupien, S. J., Stalder, T., Laufer, S., Sicorello, M., et al. (2022). Open and reproducible science practices in psychoneuroendocrinology: Opportunities to foster scientific progress. Comprehensive Psychoneuroendocrinology, 11, 100144.CrossRefGoogle ScholarPubMed
Meijer, W. M., van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2019). Challenging the challenge hypothesis on testosterone in fathers: Limited meta-analytic support. Psychoneuroendocrinology, 110, 104435.CrossRefGoogle ScholarPubMed
Menestrina Dewes, M., Cé da Silva, L., Fazenda Meireles, Y., Viana de Freitas, M., Frank Bastiani, M., Feltraco Lizot, L., et al. (2022). Evaluation of the Tasso-SST® capillary blood microsampling device for the measurement of endogenous uracil levels. Clinical Biochemistry, 107, 16.CrossRefGoogle ScholarPubMed
Mericq, M. V., & Cutler, G. B. Jr. (1998). High fluid intake increases urine free cortisol excretion in normal subjects. Journal of Clinical Endocrinology and Metabolism, 83(2), 682684.CrossRefGoogle ScholarPubMed
Meyer, J. S., & Novak, M. A. (2012). Minireview: Hair cortisol: A novel biomarker of hypothalamic-pituitary-adrenocortical activity. Endocrinology, 153(9), 41204127.CrossRefGoogle ScholarPubMed
Miočević, O., Cole, C. R., Laughlin, M. J., Buck, R. L., Slowey, P. D., & Shirtcliff, E. A. (2017). Quantitative lateral flow assays for salivary biomarker assessment: A review. Frontiers in Public Health, 5, 133.CrossRefGoogle ScholarPubMed
Mirica, A.-C., Stan, D., Chelcea, I.-C., Mihailescu, C. M., Ofiteru, A., & Bocancia-Mateescu, L.-A. (2022). Latest trends in lateral flow immunoassay (LFIA) detection labels and conjugation process. Frontiers in Bioengineering and Biotechnology, 10, 922772.CrossRefGoogle ScholarPubMed
Moody, S. N., van Dammen, L., Wang, W., Greder, K. A., Neiderhiser, J. M., Afulani, P. A., et al. (2022). Impact of hair type, hair sample weight, external hair exposures, and race on cumulative hair cortisol. Psychoneuroendocrinology, 142, 105805.CrossRefGoogle ScholarPubMed
Navazesh, M. (1993). Methods for collecting saliva. Annals of the New York Academy of Sciences, 694, 7277.CrossRefGoogle ScholarPubMed
Neu, M., Goldstein, M., Gao, D., & Laudenslager, M. L. (2007). Salivary cortisol in preterm infants: Validation of a simple method for collecting saliva for cortisol determination. Early Human Development, 83(1), 4754.CrossRefGoogle ScholarPubMed
Nguyen, N. H., Khera, R., Ohno-Machado, L., Sandborn, W. J., & Singh, S. (2021). Prevalence and effects of food insecurity and social support on financial toxicity in and healthcare use by patients with inflammatory bowel diseases. Clinical Gastroenterology and Hepatology, 19(7), 13771386.CrossRefGoogle ScholarPubMed
Ou, F.-S., Michiels, S., Shyr, Y., Adjei, A. A., & Oberg, A. L. (2021). Biomarker discovery and validation: Statistical considerations. Journal of Thoracic Oncology, 16(4), 537545.CrossRefGoogle ScholarPubMed
Padilla, G. A., Calvi, J. L., Taylor, M. K., & Granger, D. A. (2020). Saliva collection, handling, transport, and storage: Special considerations and best practices for interdisciplinary salivary bioscience research. In Granger, D. A. & Taylor, M. K. (eds.), Salivary Bioscience: Foundations of Interdisciplinary Saliva Research and Applications (pp. 2147). Springer.CrossRefGoogle Scholar
Partrick, K. (2018). Acute and repeated exposure to social stress reduces gut microbiota diversity in Syrian hamsters. Physiology & Behavior, 176(1), 100106.Google Scholar
Peng, F.-J., Palazzi, P., Mezzache, S., Bourokba, N., Soeur, J., & Appenzeller, B. M. R. (2022). Profiling steroid and thyroid hormones with hair analysis in a cohort of women aged 25 to 45 years old. European Journal of Endocrinology, 186(5), K9K15.CrossRefGoogle Scholar
Peres, J. C., Rouquette, J. L., Miočević, O., Warner, M. C., Slowey, P. D., & Shirtcliff, E. A. (2015). New techniques for augmenting saliva collection: Bacon rules and lozenge drools. Clinical Therapeutics, 37(3), 515522.CrossRefGoogle ScholarPubMed
Phan, J. M., Van Hulle, C. A., Shirtcliff, E. A., Schmidt, N. L., & Goldsmith, H. H. (2021). Longitudinal effects of family psychopathology and stress on pubertal maturation and hormone coupling in adolescent twins. Developmental Psychobiology, 63(3), 512528.CrossRefGoogle ScholarPubMed
Phillips, R., Kraeuter, A.-K., McDermott, B., Lupien, S., & Sarnyai, Z. (2021). Human nail cortisol as a retrospective biomarker of chronic stress: A systematic review. Psychoneuroendocrinology, 123, 104903.CrossRefGoogle ScholarPubMed
Posthuma-Trumpie, G. A., Korf, J., & van Amerongen, A. (2009). Lateral flow (immuno)assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Analytical and Bioanalytical Chemistry, 393(2), 569582.CrossRefGoogle ScholarPubMed
Pruessner, J. C., Kirschbaum, C., Meinlschmid, G., & Hellhammer, D. H. (2003). Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology, 28(7), 916931.CrossRefGoogle ScholarPubMed
Rej, A., Aziz, I., Tornblom, H., Sanders, D. S., & Simrén, M. (2019). The role of diet in irritable bowel syndrome: Implications for dietary advice. Journal of Internal Medicine, 286(5), 490502.CrossRefGoogle ScholarPubMed
Roadcap, B., Hussain, A., Dreyer, D., Carter, K., Dube, N., Xu, Y., et al. (2020). Clinical application of volumetric absorptive microsampling to the gefapixant development program. Bioanalysis, 12(13), 893904.CrossRefGoogle Scholar
Russell, E., Koren, G., Rieder, M., & Van Uum, S. (2012). Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology, 37(5), 589601.CrossRefGoogle ScholarPubMed
Sadeghalvad, M., & Rezaei, N. (2022). Introduction on laboratory tests for diagnosis of infectious diseases and immunological disorders. In Rezaei, N. (ed.), Encyclopedia of Infection and Immunity. Elsevier.Google Scholar
Sauvé, B., Koren, G., Walsh, G., Tokmakejian, S., & Van Uum, S. H. M. (2007). Measurement of cortisol in human hair as a biomarker of systemic exposure. Clinical and Investigative Medicine, 30(5), E183E191.CrossRefGoogle ScholarPubMed
Schiffer, L., Barnard, L., Baranowski, E. S., Gilligan, L. C., Taylor, A. E., Arlt, W., et al. (2019). Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. Journal of Steroid Biochemistry and Molecular Biology, 194, 105439.CrossRefGoogle ScholarPubMed
Sheriff, M. J., Krebs, C. J., & Boonstra, R. (2010). Assessing stress in animal populations: Do fecal and plasma glucocorticoids tell the same story? General and Comparative Endocrinology, 166(3), 614619.CrossRefGoogle ScholarPubMed
Shi, J., Lv, Z., Nie, M., Lu, W., Liu, C., Tian, Y., et al. (2018). Human nail stem cells are retained but hypofunctional during aging. Journal of Molecular Histology, 49(3), 303316.CrossRefGoogle ScholarPubMed
Shirtcliff, E. A., Allison, A. L., Armstrong, J. M., Slattery, M. J., Kalin, N. H., & Essex, M. J. (2012). Longitudinal stability and developmental properties of salivary cortisol levels and circadian rhythms from childhood to adolescence. Developmental Psychobiology, 54(5), 493502.CrossRefGoogle ScholarPubMed
Shirtcliff, E. A., Granger, D. A., Schwartz, E., & Curran, M. J. (2001). Use of salivary biomarkers in biobehavioral research: Cotton-based sample collection methods can interfere with salivary immunoassay results. Psychoneuroendocrinology, 26(2), 165173.CrossRefGoogle ScholarPubMed
Smith, L. A., & Gaya, D. R. (2012). Utility of faecal calprotectin analysis in adult inflammatory bowel disease. World Journal of Gastroenterology, 18(46), 67826789.CrossRefGoogle ScholarPubMed
Söderström, M., Ekstedt, M., & Akerstedt, T. (2006). Weekday and weekend patterns of diurnal cortisol, activation and fatigue among people scoring high for burnout.Scandinavian Journal of Work, Environment & Health, 32(2), 3540.Google Scholar
Son, Y. L., Ubuka, T., & Tsutsui, K. (2022). Regulation of stress response on the hypothalamic-pituitary-gonadal axis via gonadotropin-inhibitory hormone. Frontiers in Neuroendocrinology, 64, 100953.CrossRefGoogle ScholarPubMed
Spiller, R., & Garsed, K. (2009). Infection, inflammation, and the irritable bowel syndrome.Digestive and Liver Disease, 41(12), 844849.CrossRefGoogle ScholarPubMed
Stalder, T., Kirschbaum, C., Kudielka, B. M., Adam, E. K., Pruessner, J. C., Wüst, S., et al. (2016). Assessment of the cortisol awakening response: Expert consensus guidelines. Psychoneuroendocrinology, 63, 414432.CrossRefGoogle ScholarPubMed
Stalder, T., Lupien, S. J., Kudielka, B. M., Adam, E. K., Pruessner, J. C., Wüst, S., et al. (2022). Evaluation and update of the expert consensus guidelines for the assessment of the cortisol awakening response (CAR). Psychoneuroendocrinology, 146, 105946.CrossRefGoogle ScholarPubMed
Stanton, S. J., Beehner, J. C., Saini, E. K., Kuhn, C. M., & Labar, K. S. (2009). Dominance, politics, and physiology: Voters’ testosterone changes on the night of the 2008 United States presidential election. PLOS ONE, 4(10), e7543.CrossRefGoogle ScholarPubMed
Talge, N. M., Donzella, B., Kryzer, E. M., Gierens, A., & Gunnar, M. R. (2005). It’s not that bad: Error introduced by oral stimulants in salivary cortisol research. Developmental Psychobiology, 47(4), 369376.CrossRefGoogle Scholar
Tasso, Inc. (n.d.). Tasso-SST [webpage]. www.tassoinc.com/tasso-sst (retrieved October 31, 2022).Google Scholar
Tavalire, H. F., Christie, D. M., Leve, L. D., Ting, N., Cresko, W. A., & Bohannan, B. J. M. (2021). Shared environment and genetics shape the gut microbiome after infant adoption. mBio, 12(2). https://doi.org/10.1128/mBio.00548-21CrossRefGoogle ScholarPubMed
Telford, C., McCarthy-Jones, S., Corcoran, R., & Rowse, G. (2012). Experience sampling methodology studies of depression: The state of the art. Psychological Medicine, 42(6), 11191129.CrossRefGoogle ScholarPubMed
Thompson, G. (2012). Nobel Prizes that Changed Medicine. World Scientific.Google Scholar
Tsivou, M., Livadara, D., Georgakopoulos, D. G., Koupparis, M. A., Atta-Politou, J., & Georgakopoulos, C. G. (2009). Stabilization of human urine doping control samples: II. Microbial degradation of steroids. Analytical Biochemistry, 388(1), 146154.CrossRefGoogle ScholarPubMed
van Dammen, L., Finseth, T. T., McCurdy, B. H., Barnett, N. P., Conrady, R. A., Leach, A. G., et al. (2022). Evoking stress reactivity in virtual reality: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 138, 104709.CrossRefGoogle Scholar
van Thiel, I. A. M., de Jonge, W. J., Chiu, I. M., & van den Wijngaard, R. M. (2020). Microbiota-neuroimmune cross talk in stress-induced visceral hypersensitivity of the bowel. American Journal of Physiology: Gastrointestinal and Liver Physiology, 318(6), G1034G1041.Google Scholar
Veldhuis, J. D., Carlson, M. L., & Johnson, M. L. (1987). The pituitary gland secretes in bursts: Appraising the nature of glandular secretory impulses by simultaneous multiple-parameter deconvolution of plasma hormone concentrations. Proceedings of the National Academy of Sciences, 84(21), 76867690.CrossRefGoogle ScholarPubMed
Voegel, C. D., La Marca-Ghaemmaghami, P., Ehlert, U., Baumgartner, M. R., Kraemer, T., & Binz, T. M. (2018). Steroid profiling in nails using liquid chromatography–tandem mass spectrometry. Steroids, 140, 144150.CrossRefGoogle ScholarPubMed
Wang, W., Moody, S. N., Kiesner, J., Tonon Appiani, A., Robertson, O. C., & Shirtcliff, E. A. (2019). Assay validation of hair androgens across the menstrual cycle. Psychoneuroendocrinology, 101, 175181.CrossRefGoogle ScholarPubMed
Wang, W., van Dammen, L., Moody, S. N., Kiesner, J., Neiderhiser, J. M., Dismukes, A., et al. (2020). The validation of estradiol extraction and analysis from hair [preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/knuxsCrossRefGoogle Scholar
Webb, E. C., White, C. D., Van Uum, S., & Longstaffe, F. J. (2015). Integrating cortisol and isotopic analyses of archeological hair: Reconstructing individual experiences of health and stress. American Journal of Physical Anthropology, 156(4), 577594.CrossRefGoogle ScholarPubMed
Wester, V. L., van der Wulp, N. R. P., Koper, J. W., de Rijke, Y. B., & van Rossum, E. F. C. (2016). Hair cortisol and cortisone are decreased by natural sunlight. Psychoneuroendocrinology, 72, 9496.CrossRefGoogle ScholarPubMed
White, S. F., Lee, Y., Phan, J. M., Moody, S. N., & Shirtcliff, E. A. (2019). Putting the flight in “fight-or-flight”: Testosterone reactivity to skydiving is modulated by autonomic activation. Biological Psychology, 143, 93102.CrossRefGoogle ScholarPubMed
Yalow, R. S. (1982). The limitations of radioimmunoassay (RIA). Trends in Analytical Chemistry, 1(6), 128131.CrossRefGoogle Scholar
Yalow, R. S., & Berson, S. A. (1960). Plasma insulin concentrations in nondiabetic and early diabetic subjects: Determinations by a new sensitive immuno-assay technic. Diabetes, 9, 254260.CrossRefGoogle ScholarPubMed
Yong, E. (2012). Dark side of the love hormone. New Scientist, 213(2851), 3941.CrossRefGoogle Scholar
Zakreski, E., Dismukes, A. R., Tountas, A., Phan, J. M., Moody, S. N., & Shirtcliff, E. A. (2018). Developmental trajectories of HPA-HPG dual axes coupling: Implications for social neuroendocrinology. In Schultheiss, O. & Mehta, P. (eds.), Routledge International Handbook of Social Neuroendocrinology (pp. 608632). Routledge.CrossRefGoogle Scholar
Zhu, C., Yuan, C., Ren, Q., Wei, F., Yu, S., Sun, X., & Zheng, S. (2021). Comparative analysis of the effects of collection methods on salivary steroids. BMC Oral Health, 21(1).CrossRefGoogle ScholarPubMed

References

Al Hayek, A. A., Al-Saeed, A. H., Alzahrani, W. M., & Al Dawish, M. A. (2021). Assessment of patient satisfaction with on-site point-of-care hemoglobin A1c testing: An observational study. Diabetes Therapy, 12(9), 25312544. https://doi.org/10.1007/s13300-021-01126-7CrossRefGoogle ScholarPubMed
Al-Zaiti, S. S., Fallavollita, J. A., Canty, J. M. Jr., & Carey, M. G. (2014). Electrocardiographic predictors of sudden and non-sudden cardiac death in patients with ischemic cardiomyopathy. Heart and Lung, 43(6), 527533. https://doi.org/10.1016/j.hrtlng.2014.05.008CrossRefGoogle ScholarPubMed
Al-Zaiti, S. S., Pietrasik, G., Carey, M. G., Alhamaydeh, M., Canty, J. M., & Fallavollita, J. A. (2019). The role of heart rate variability, heart rate turbulence, and deceleration capacity in predicting cause-specific mortality in chronic heart failure. Journal of Electrocardiology, 52, 7074. https://doi.org/10.1016/j.jelectrocard.2018.11.006CrossRefGoogle ScholarPubMed
Bayoumy, K., Gaber, M., Elshafeey, A., Mhaimeed, O., Dineen, E. H., Marvel, F. A., et al. (2021). Smart wearable devices in cardiovascular care: Where we are and how to move forward. Nature Reviews Cardiology, 18(8), 581599. https://doi.org/10.1038/s41569-021-00522-7CrossRefGoogle ScholarPubMed
Bellenger, C. R., Fuller, J. T., Thomson, R. L., Davison, K., Robertson, E. Y., & Buckley, J. D. (2016). Monitoring athletic training status through autonomic heart rate regulation: A systematic review and meta-analysis. Sports Medicine, 46(10), 14611486. https://doi.org/10.1007/s40279-016-0484-2CrossRefGoogle ScholarPubMed
Boateng, G. O., Neilands, T. B., Frongillo, E. A., Melgar-Quiñonez, H. R., & Young, S. L. (2018). Best practices for developing and validating scales for health, social, and behavioral research: A primer. Frontiers in Public Health, 6, 149. https://doi.org/10.3389/fpubh.2018.00149CrossRefGoogle ScholarPubMed
Böhm, M., Reil, J. C., Deedwania, P., Kim, J. B., & Borer, J. S. (2015). Resting heart rate: Risk indicator and emerging risk factor in cardiovascular disease. American Journal of Medicine, 128(3), 219228. https://doi.org/10.1016/j.amjmed.2014.09.016CrossRefGoogle ScholarPubMed
Borrell, L. N., & Vaughan, R. (2019). An AJPH supplement toward a unified research approach for minority health and health disparities. American Journal of Public Health, 109(S1), S6S7. https://doi.org/10.2105/ajph.2019.304963CrossRefGoogle Scholar
Buxton, A. E., Calkins, H., Callans, D. J., DiMarco, J. P., Fisher, J. D., Greene, H L., et al. (2006). ACC/AHA/HRS 2006 key data elements and definitions for electrophysiological studies and procedures: A report of the American College of Cardiology / American Heart Association Task Force on Clinical Data Standards (ACC/AHA/HRS Writing Committee to Develop Data Standards on Electrophysiology). Journal of the American College of Cardiology, 48(11), 23602396. https://doi.org/10.1016/j.jacc.2006.09.020CrossRefGoogle Scholar
Carey, M., Al-Zaiti, S., Liao, L., Butler, R., & Martin, H. (2010). Characteristics of the standard 12-lead Holter ECG in professional firefighters. Computing in Cardiology, 3, 122138.Google Scholar
Carey, M. G., Al-Zaiti, S. S., Liao, L. M., Martin, H. N., & Butler, R. A. (2011). A low-glycemic nutritional fitness program to reverse metabolic syndrome in professional firefighters: Results of a pilot study. Journal of Cardiovascular Nursing, 26(4), 298304. https://doi.org/10.1097/JCN.0b013e31820344d7CrossRefGoogle ScholarPubMed
Carey, M., & Brunner, W. (2023). Building fruitful collaborations. In Nichols, A. L. & Edlund, J. E. (eds.), Cambridge Handbook of Research Methods and Statistics for the Social and Behavioral Sciences (vol. 1, pp. 695713). In Cambridge University Press.CrossRefGoogle Scholar
Carey, M. G., & Thevenin, B. J. (2009). High-resolution 12-lead electrocardiograms of on-duty professional firefighters: A pilot feasibility study. Journal of Cardiovascular Nursing, 24(4), 261267. https://doi.org/10.1097/JCN.0b013e3181a4b250CrossRefGoogle ScholarPubMed
Carnethon, M. R., Pu, J., Howard, G., Albert, M. A., Anderson, C. A. M., Bertoni, A. G., et al. (2017). Cardiovascular health in African Americans: A scientific statement from the American Heart Association. Circulation, 136(21), e393e423. https://doi.org/doi:10.1161/CIR.0000000000000534CrossRefGoogle ScholarPubMed
Cebul, R. D., Love, T. E., Jain, A. K., & Hebert, C. J. (2011). Electronic health records and quality of diabetes care. New England Journal of Medicine, 365(9), 825833. https://doi.org/10.1056/NEJMsa1102519CrossRefGoogle ScholarPubMed
Chandrasekaran, R., Katthula, V., & Moustakas, E. (2021). Too old for technology? Use of wearable healthcare devices by older adults and their willingness to share health data with providers. Health Informatics Journal, 27(4), 14604582211058073. https://doi.org/10.1177/14604582211058073CrossRefGoogle ScholarPubMed
Chang, R. K. (2022). Resting 12‑lead ECG tests performed by patients at home amid the COVID-19 pandemic – results from the first 1000 patients. Journal of Electrocardiology, 73, 108112. https://doi.org/10.1016/j.jelectrocard.2022.06.006CrossRefGoogle ScholarPubMed
Chen, X. (2020). Analysis of athlete’s heart pumping function and echocardiography. Investigacion Clinica, 61(1).Google Scholar
Chida, Y., & Steptoe, A. (2010). Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status. Hypertension, 55(4), 10261032. https://doi.org/doi:10.1161/HYPERTENSIONAHA.109.146621CrossRefGoogle ScholarPubMed
Conn, N. J., Schwarz, K. Q., & Borkholder, D. A. (2019). In-home cardiovascular monitoring system for heart failure: Comparative study. JMIR Mhealth and Uhealth, 7(1), e12419. https://doi.org/10.2196/12419CrossRefGoogle ScholarPubMed
Cygankiewicz, I., & Zareba, W. (2013). Heart rate variability. Handbook of Clinical Neurology, 117, 379393. https://doi.org/10.1016/b978-0-444-53491-0.00031-6CrossRefGoogle ScholarPubMed
Denollet, J., Gidron, Y., Vrints, C. J., & Conraads, V. M. (2010). Anger, suppressed anger, and risk of adverse events in patients with coronary artery disease. American Journal of Cardiology, 105(11), 15551560. https://doi.org/10.1016/j.amjcard.2010.01.015CrossRefGoogle ScholarPubMed
El-Osta, A., Woringer, M., Pizzo, E., Verhoef, T., Dickie, C., Ni, M. Z., et al. (2017). Does use of point-of-care testing improve cost-effectiveness of the NHS Health Check programme in the primary care setting? A cost-minimisation analysis. BMJ Open, 7(8), e015494. https://doi.org/10.1136/bmjopen-2016-015494CrossRefGoogle ScholarPubMed
Fihn, S. D., Gardin, J. M., Abrams, J., Berra, K., Blankenship, J. C., Dallas, A. P., et al. (2012). ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease. Circulation, 126(25), e354471. https://doi.org/10.1161/CIR.0b013e318277d6a0Google ScholarPubMed
Galderisi, M., Cosyns, B., Edvardsen, T., Cardim, N., Delgado, V., Di Salvo, G., et al. (2017). Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. European Heart Journal – Cardiovascular Imaging, 18(12), 13011310. https://doi.org/10.1093/ehjci/jex244CrossRefGoogle ScholarPubMed
Isakadze, N., & Martin, S. S. (2020). How useful is the smartwatch ECG? Trends in Cardiovascular Medicine, 30(7), 442448. https://doi.org/10.1016/j.tcm.2019.10.010CrossRefGoogle ScholarPubMed
Jilani, M. H., Javed, Z., Yahya, T., Valero-Elizondo, J., Khan, S. U., Kash, B., et al. (2021). Social determinants of health and cardiovascular disease: Current state and future directions towards healthcare equity. Current Atherosclerosis Reports, 23(9). https://doi.org/10.1007/s11883-021-00949-wCrossRefGoogle ScholarPubMed
Kales, S. N., Soteriades, E. S., Christophi, C. A., & Christiani, D. C. (2007). Emergency duties and deaths from heart disease among firefighters in the United States. New England Journal of Medicine, 356(12), 12071215.CrossRefGoogle ScholarPubMed
Khurshid, S., Friedman, S., Reeder, C., Di Achille, P., Diamant, N., Singh, P., et al. (2022). ECG-based deep learning and clinical risk factors to predict atrial fibrillation. Circulation, 145(2), 122133. https://doi.org/10.1161/circulationaha.121.057480CrossRefGoogle ScholarPubMed
Kim, C. A., Rasania, S. P., Afilalo, J., Popma, J. J., Lipsitz, L. A., & Kim, D. H. (2014). Functional status and quality of life after transcatheter aortic valve replacement: A systematic review. Annals of Intern Medicine, 160(4), 243254. https://doi.org/10.7326/M13-1316CrossRefGoogle ScholarPubMed
Kleiman, R., Litwin, J., & Morganroth, J. (2016). Benefits of centralized ECG reading in clinical oncology studies. Therapeutic Innovation and Regulatory Science, 50(1), 123129. https://doi.org/10.1177/2168479015597729CrossRefGoogle ScholarPubMed
Kubiak, R. (2014). The right to information. Anaesthesiology Intensive Therapy, 46(3), 180194. https://doi.org/10.5603/ait.2014.0033CrossRefGoogle ScholarPubMed
Kusunose, K. (2021). Steps to use artificial intelligence in echocardiography. Journal of Echocardiography, 19(1), 2127. https://doi.org/10.1007/s12574-020-00496-4CrossRefGoogle ScholarPubMed
Lakatta, E. G., & Levy, D. (2003). Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part I: Aging arteries: A “set up” for vascular disease. Circulation, 107(1), 139146. https://doi.org/10.1161/01.cir.0000048892.83521.58CrossRefGoogle ScholarPubMed
Li, X., Zhu, W., Sui, X., Zhang, A., Chi, L., & Lv, L. (2021). Assessing workplace stress among nurses using heart rate variability analysis with wearable ECG device – a pilot study. Frontiers in Public Health, 9, 810577. https://doi.org/10.3389/fpubh.2021.810577CrossRefGoogle ScholarPubMed
Lim, Y. H., Choi, S. Y., Oh, K. W., Kim, Y., Cho, E. S., Choi, B. Y., et al. (2014). Comparison between an automated device and a manual mercury sphygmomanometer in an epidemiological survey of hypertension prevalence. American Journal of Hypertension, 27(4), 537545. https://doi.org/10.1093/ajh/hpt100CrossRefGoogle Scholar
Muresan, L., Cismaru, G., Martins, R. P., Bataglia, A., Rosu, R., Puiu, M., et al. (2019). Recommendations for the use of electrophysiological study: Update 2018. Hellenic Journal of Cardiology, 60(2), 82100. https://doi.org/10.1016/j.hjc.2018.09.002CrossRefGoogle ScholarPubMed
Nelson, B. W., & Allen, N. B. (2019). Accuracy of consumer wearable heart rate measurement during an ecologically valid 24-hour period: Intraindividual validation study. JMIR Mhealth and Uhealth, 7(3), e10828. https://doi.org/10.2196/10828CrossRefGoogle ScholarPubMed
Nelson, B. W., Low, C. A., Jacobson, N., Areán, P., Torous, J., & Allen, N. B. (2020). Guidelines for wrist-worn consumer wearable assessment of heart rate in biobehavioral research. npj Digital Medicine, 3(1), 90. https://doi.org/10.1038/s41746-020-0297-4CrossRefGoogle ScholarPubMed
North, B. J., & Sinclair, D. A. (2012). The intersection between aging and cardiovascular disease. Circulation Research, 110(8), 10971108. https://doi.org/10.1161/circresaha.111.246876CrossRefGoogle ScholarPubMed
Pevnick, J. M., Birkeland, K., Zimmer, R., Elad, Y., & Kedan, I. (2018). Wearable technology for cardiology: An update and framework for the future. Trends in Cardiovascular Medicine, 28(2), 144150. https://doi.org/10.1016/j.tcm.2017.08.003CrossRefGoogle ScholarPubMed
Pham, T., Lau, Z. J., Chen, S. H. A., & Makowski, D. (2021). Heart rate variability in psychology: A review of HRV indices and an analysis tutorial. Sensors, 21(12). https://doi.org/10.3390/s21123998CrossRefGoogle Scholar
Poppelaars, E. S., Klackl, J., Pletzer, B., Wilhelm, F. H., & Jonas, E. (2019). Social-evaluative threat: Stress response stages and influences of biological sex and neuroticism. Psychoneuroendocrinology, 109, 104378. https://doi.org/10.1016/j.psyneuen.2019.104378CrossRefGoogle ScholarPubMed
Powell-Wiley, T. M., Baumer, Y., Baah, F. O., Baez, A. S., Farmer, N., Mahlobo, C. T., et al. (2022). Social determinants of cardiovascular disease. Circulation Research, 130(5), 782799. https://doi.org/10.1161/CIRCRESAHA.121.319811CrossRefGoogle ScholarPubMed
Reisman, M., Buchbinder, M., Warth, D., Sundling, N., Harms, V., & Whitlow, P. L. (1997). Comparison of patients with either < 70% diameter narrowing or > or = 70% narrowing of the right coronary artery when performing rotational atherectomy on > or = 1 narrowing in the left coronary arteries. American Journal of Cardiology, 79(3), 305308. https://doi.org/10.1016/s0002-9149(96)00752-7CrossRefGoogle ScholarPubMed
Roerecke, M., Kaczorowski, J., & Myers, M. G. (2019). Comparing automated office blood pressure readings with other methods of blood pressure measurement for identifying patients with possible hypertension: A systematic review and meta-analysis. JAMA Internal Medicine, 179(3), 351362. https://doi.org/10.1001/jamainternmed.2018.6551CrossRefGoogle ScholarPubMed
Rust, J., & Golombok, S. (2009). Modern Psychometrics: The Science of Psychological Assessment, 3rd ed. Routledge.Google Scholar
Rutjes, A. W., Reitsma, J. B., Coomarasamy, A., Khan, K. S., & Bossuyt, P. M. (2007). Evaluation of diagnostic tests when there is no gold standard: A review of methods. Health Technology Assessment, 11(50). https://doi.org/10.3310/hta11500CrossRefGoogle Scholar
Steinhubl, S. R., Waalen, J., Edwards, A. M., Ariniello, L. M., Mehta, R. R., Ebner, G. S., et al. (2018). Effect of a home-based wearable continuous ECG monitoring patch on detection of undiagnosed atrial fibrillation: The mSToPS randomized clinical trial. JAMA, 320(2), 146155. https://doi.org/10.1001/jama.2018.8102CrossRefGoogle ScholarPubMed
Tell, D., Burr, R. L., Mathews, H. L., & Janusek, L. W. (2021). Heart rate variability and inflammatory stress response in young African American Men: Implications for cardiovascular risk. Frontiers in Cardiovascular Medicine, 8, 745864. https://doi.org/10.3389/fcvm.2021.745864CrossRefGoogle ScholarPubMed
Thayer, J. F., Hansen, A. L., & Johnsen, B. H. (2010). The non-invasive assessment of autonomic influences on the heart using impedance cardiography and heart rate variability. In Steptoe, A. (ed.), Handbook of Behavioral Medicine: Methods and Applications (pp. 723740). Springer. https://doi.org/10.1007/978-0-387-09488-5_47CrossRefGoogle Scholar
US Department of Health and Human Services. (1985). Report of the Secretary’s Task Force on Black and Minority Health. US Department of Health and Human Services.Google Scholar
Wang, R., Blackburn, G., Desai, M., Phelan, D., Gillinov, L., Houghtaling, P., & Gillinov, M. (2017). Accuracy of wrist-worn heart rate monitors. JAMA Cardiology, 2(1), 104106. https://doi.org/10.1001/jamacardio.2016.3340CrossRefGoogle ScholarPubMed
Woloshin, S., Dewitt, B., Krishnamurti, T., & Fischhoff, B. (2022). Assessing how consumers interpret and act on results from at-home COVID-19 self-test kits: A randomized clinical trial. JAMA Internal Medicine, 182(3), 332341. https://doi.org/10.1001/jamainternmed.2021.8075CrossRefGoogle ScholarPubMed
Yamazaki, E. M., Rosendahl-Garcia, K. M., Casale, C. E., MacMullen, L. E., Ecker, A. J., Kirkpatrick, J. N., & Goel, N. (2021). Left ventricular ejection time measured by echocardiography differentiates neurobehavioral resilience and vulnerability to sleep loss and stress. Frontiers in Physiology, 12, 795321. https://doi.org/10.3389/fphys.2021.795321CrossRefGoogle ScholarPubMed

References

Amin, Md. R., & Faghih, R. T. (2021). Identification of sympathetic nervous system activation from skin conductance: A sparse decomposition approach with physiological priors. IEEE Transactions on Biomedical Engineering, 68(5), 17261736. https://doi.org/10.1109/TBME.2020.3034632CrossRefGoogle ScholarPubMed
Amin, Md. R., & Faghih, R. T. (2022). Physiological characterization of electrodermal activity enables scalable near real-time autonomic nervous system activation inference. PLOS Computational Biology, 18(7), e1010275. https://doi.org/10.1371/journal.pcbi.1010275CrossRefGoogle ScholarPubMed
Bach, D. R., Daunizeau, J., Kuelzow, N., Friston, K. J., & Dolan, R. J. (2011). Dynamic causal modeling of spontaneous fluctuations in skin conductance. Psychophysiology, 48(2), 252257. https://doi.org/10.1111/j.1469-8986.2010.01052.xCrossRefGoogle ScholarPubMed
Beauchaine, T. P., Neuhaus, E., Gatzke-Kopp, L. M., Reid, M. J., Chipman, J., Brekke, A., et al. (2015). Electrodermal responding predicts responses to, and may be altered by, preschool intervention for ADHD. Journal of Consulting and Clinical Psychology, 83, 293303. https://doi.org/10.1037/a0038405CrossRefGoogle ScholarPubMed
Boucsein, W. (2012). Electrodermal Activity, 2nd ed. Springer. https://doi.org/10.1007/978-1-4614-1126-0CrossRefGoogle Scholar
Boucsein, W., Fowles, D. C., Grimnes, S., Ben-Shakhar, G., Roth, W. T., Dawson, M. E., et al. (2012). Publication recommendations for electrodermal measurements. Psychophysiology, 49(8), 10171034. https://doi.org/10.1111/j.1469-8986.2012.01384.xGoogle ScholarPubMed
Braithwaite, J., Watson, D., Robert, J., & Mickey, R. (2015). A Guide for Analysing Electrodermal Activity (EDA) & Skin Conductance Responses (SCRs) for Psychological Experiments, rev. ed. Technical Report, Selective Attention & Awareness Laboratory, Behavioural Brain Sciences Centre, University of Birmingham. www.birmingham.ac.uk/documents/college-les/psych/saal/guide-electrodermal-activity.pdfGoogle Scholar
Chen, W., Jaques, N., Taylor, S., Sano, A., Fedor, S., & Picard, R. W. (2015). Wavelet-based motion artifact removal for electrodermal activity. In 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 62236226). IEEE. https://doi.org/10.1109/EMBC.2015.7319814Google Scholar
Chiang, H.-T., Hsieh, Y.-Y., Fu, S.-W., Hung, K.-H., Tsao, Y., & Chien, S.-Y. (2019). Noise reduction in ECG signals using fully convolutional denoising autoencoders. IEEE Access, 7, 6080660813. https://doi.org/10.1109/ACCESS.2019.2912036CrossRefGoogle Scholar
Choi, J., Ahmed, B., & Gutierrez-Osuna, R. (2012). Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Transactions on Information Technology in Biomedicine, 16(2), 279286. https://doi.org/10.1109/TITB.2011.2169804CrossRefGoogle ScholarPubMed
Das, P., Khasnobish, A., & Tibarewala, D. N. (2016). Emotion recognition employing ECG and GSR signals as markers of ANS. In 2016 Conference on Advances in Signal Processing (CASP) (pp. 37–42). IEEE. https://doi.org/10.1109/CASP.2016.7746134Google Scholar
Dubé, A.-A., Duquette, M., Roy, M., Lepore, F., Duncan, G., & Rainville, P. (2009). Brain activity associated with the electrodermal reactivity to acute heat pain. NeuroImage, 45(1), 169180. https://doi.org/10.1016/j.neuroimage.2008.10.024CrossRefGoogle ScholarPubMed
Dupuy, F. E., Clarke, A. R., Barry, R. J., Selikowitz, M., & McCarthy, R. (2014). EEG and electrodermal activity in girls with Attention-Deficit/Hyperactivity Disorder. Clinical Neurophysiology, 125(3), 491499. https://doi.org/10.1016/j.clinph.2013.09.007CrossRefGoogle ScholarPubMed
Dutta, S., Mishra, B. K., Mitra, A., & Chakraborty, A. (2022). An analysis of emotion recognition based on GSR signal. ECS Transactions, 107(1), 12535. https://doi.org/10.1149/10701.12535ecstCrossRefGoogle Scholar
Elvebakk, O., Tronstad, C., Birkeland, K. I., Jenssen, T. G., Bjørgaas, M. R., Frøslie, K. F., et al. (2018). Evaluation of hypoglycaemia with non-invasive sensors in people with Type 1 diabetes and impaired awareness of hypoglycaemia. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-33189-1CrossRefGoogle ScholarPubMed
Feng, X., Zhang, Y., & Glass, J. (2014). Speech feature denoising and dereverberation via deep autoencoders for noisy reverberant speech recognition. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 17591763). IEEE. https://doi.org/10.1109/ICASSP.2014.6853900CrossRefGoogle Scholar
Freixa i Baqué, E. (1983). Reliability of spontaneous electrodermal activity in humans as a function of sleep stages. Biological Psychology, 17(2), 137143. https://doi.org/10.1016/0301-0511(83)90014-5CrossRefGoogle ScholarPubMed
Frewin, D. B., & Downey, J. A. (1976). Sweating – physiology and pathophysiology. Australasian Journal of Dermatology, 17(3), 8286. https://doi.org/10.1111/j.1440-0960.1976.tb00794.xCrossRefGoogle ScholarPubMed
Ganapathy, N., Veeranki, Y. R., Kumar, H., & Swaminathan, R. (2021). Emotion recognition using electrodermal activity signals and multiscale deep convolutional neural network. Journal of Medical Systems, 45(4), 49. https://doi.org/10.1007/s10916-020-01676-6CrossRefGoogle ScholarPubMed
Gjoreski, M., Gjoreski, H., Luštrek, M., & Gams, M. (2016). Continuous stress detection using a wrist device: In laboratory and real life. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (pp. 11851193). ACM. https://doi.org/10.1145/2968219.2968306CrossRefGoogle Scholar
Greco, A., Valenza, G., Lanata, A., Scilingo, E. P., & Citi, L. (2016). cvxEDA: A convex optimization approach to electrodermal activity processing. IEEE Transactions on Biomedical Engineering, 63(4), 797804. https://doi.org/10.1109/TBME.2015.2474131Google ScholarPubMed
Harker, M. (2013). Psychological sweating: A systematic review focused on aetiology and cutaneous response. Skin Pharmacology and Physiology, 26(2), 92100. https://doi.org/10.1159/000346930CrossRefGoogle ScholarPubMed
Healey, J., Nachman, L., Subramanian, S., Shahabdeen, J., & Morris, M. (2010). Out of the lab and into the fray: Towards modeling emotion in everyday life. In Floréen, P., Krüger, A., & Spasojevic, M. (eds.), Pervasive Computing (pp. 156173). Springer. https://doi.org/10.1007/978-3-642-12654-3_10CrossRefGoogle Scholar
Herlan, A., Ottenbacher, J., Schneider, J., Riemann, D., & Feige, B. (2019). Electrodermal activity patterns in sleep stages and their utility for sleep versus wake classification. Journal of Sleep Research, 28(2), e12694. https://doi.org/10.1111/jsr.12694CrossRefGoogle ScholarPubMed
Hernandez, J., Morris, R. R., & Picard, R. W. (2011). Call center stress recognition with person-specific models. In D’Mello, S., Graesser, A., Schuller, B., & Martin, J.-C. (eds.), Affective Computing and Intelligent Interaction (pp. 125134). Springer. https://doi.org/10.1007/978-3-642-24600-5_16CrossRefGoogle Scholar
Hernando-Gallego, F., Luengo, D., & Artés-Rodríguez, A. (2018). Feature extraction of galvanic skin responses by nonnegative sparse deconvolution. IEEE Journal of Biomedical and Health Informatics, 22(5), 13851394. https://doi.org/10.1109/JBHI.2017.2780252CrossRefGoogle ScholarPubMed
Hossain, M.-B., Kong, Y., Posada-Quintero, H. F., & Chon, K. H. (2022). Comparison of electrodermal activity from multiple body locations based on standard EDA indices’ quality and robustness against motion artifact. Sensors, 22(9). https://doi.org/10.3390/s22093177CrossRefGoogle ScholarPubMed
Hossain, M. B., Posada-Quintero, H., & Chon, K. (2022a). A deep convolutional autoencoder for automatic motion artifact removal in electrodermal activity. IEEE Transactions on Biomedical Engineering, 69(12), 36013611. https://doi.org/10.1109/TBME.2022.3174509CrossRefGoogle ScholarPubMed
Hossain, M. B., Posada-Quintero, H., & Chon, K. (2022b). A deep convolutional autoencoder for motion artifact removal in electrodermal activity signals: A preliminary study. IEEE Transactions on Biomedical Engineering, 69(12), 36013611.CrossRefGoogle Scholar
Hossain, M. B., Posada-Quintero, H. F., Kong, Y., McNaboe, R., & Chon, K. (2021). A preliminary study on automatic motion artifacts detection in electrodermal activity data using machine learning. In 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 69206923). IEEE. https://doi.org/10.1109/EMBC46164.2021.9629513Google Scholar
Hossain, M. B., Posada-Quintero, H. F., Kong, Y., McNaboe, R., & Chon, K. (2022). Automatic motion artifact detection in electrodermal activity data using machine learning. Biomedical Signal Processing and Control, 74, 103483. https://doi.org/10.1016/j.bspc.2022.103483CrossRefGoogle Scholar
Jang, E.-H., Park, B.-J., Park, M.-S., Kim, S.-H., & Sohn, J.-H. (2015). Analysis of physiological signals for recognition of boredom, pain, and surprise emotions. Journal of Physiological Anthropology, 34(1). https://doi.org/10.1186/s40101-015-0063-5CrossRefGoogle ScholarPubMed
Jaques, N., Taylor, S., Azaria, A., Ghandeharioun, A., Sano, A., & Picard, R. (2015). Predicting students’ happiness from physiology, phone, mobility, and behavioral data. In 2015 International Conference on Affective Computing and Intelligent Interaction (ACII) (pp. 222228). IEEE. https://doi.org/10.1109/ACII.2015.7344575CrossRefGoogle Scholar
Kasos, K., Kekecs, Z., Csirmaz, L., Zimonyi, S., Vikor, F., Kasos, E., et al. (2020). Bilateral comparison of traditional and alternate electrodermal measurement sites. Psychophysiology, 57(11), e13645. https://doi.org/10.1111/psyp.13645CrossRefGoogle ScholarPubMed
Kasos, K., Kekecs, Z., Kasos, E., Szekely, A., & Varga, K. (2018). Bilateral electrodermal activity in the active-alert hypnotic induction. International Journal of Clinical and Experimental Hypnosis, 66(3), 282297. https://doi.org/10.1080/00207144.2018.1460551CrossRefGoogle ScholarPubMed
Kim, A. Y., Jang, E. H., Kim, S., Choi, K. W., Jeon, H. J., Yu, H. Y., & Byun, S. (2018). Automatic detection of major depressive disorder using electrodermal activity. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-35147-3CrossRefGoogle ScholarPubMed
Kim, H., Kwon, S., Kwon, Y.-T., & Yeo, W.-H. (2021). Soft wireless bioelectronics and differential electrodermal activity for home sleep monitoring. Sensors, 21(2). https://doi.org/10.3390/s21020354Google ScholarPubMed
Kleckner, I. R., Jones, R. M., Wilder-Smith, O., Wormwood, J. B., Akcakaya, M., Quigley, K. S., et al. (2018). Simple, transparent, and flexible automated quality assessment procedures for ambulatory electrodermal activity data. IEEE Transactions on Biomedical Engineering, 65(7), 14601467. https://doi.org/10.1109/TBME.2017.2758643CrossRefGoogle ScholarPubMed
Koelstra, S., Muhl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., et al. (2012). DEAP: A database for emotion analysis; using physiological signals. IEEE Transactions on Affective Computing, 3(1), 1831. https://doi.org/10.1109/T-AFFC.2011.15CrossRefGoogle Scholar
Kong, Y., Posada-Quintero, H. F., & Chon, K. H. (2020). Pain Detection using a Smartphone in Real Time*. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), 45264529. https://doi.org/10.1109/EMBC44109.2020.9176077CrossRefGoogle Scholar
Kong, Y., Posada-Quintero, H. F., & Chon, K. H. (2021a). Sensitive physiological indices of pain based on differential characteristics of electrodermal activity. IEEE Transactions on Biomedical Engineering, 31223130. https://doi.org/10.1109/TBME.2021.3065218CrossRefGoogle Scholar
Kong, Y., Posada-Quintero, H. F., & Chon, K. H. (2021b). Real-time high-level acute pain detection using a smartphone and a wrist-worn electrodermal activity sensor. Sensors, 21(12). https://doi.org/10.3390/s21123956CrossRefGoogle Scholar
Koumans, A. J. R., Tursky, B., & Solomon, P. (1968). Electrodermal levels and fluctuations during normal sleep. Psychophysiology, 5(3), 300306. https://doi.org/10.1111/j.1469-8986.1968.tb02826.xCrossRefGoogle ScholarPubMed
Lee, J., Sun, S., Yang, S. M., Sohn, J. J., Park, J., Lee, S., & Kim, H. C. (2019). Bidirectional recurrent auto-encoder for photoplethysmogram denoising. IEEE Journal of Biomedical and Health Informatics, 23(6), 23752385. https://doi.org/10.1109/JBHI.2018.2885139CrossRefGoogle ScholarPubMed
Li, J., Struzik, Z., Zhang, L., & Cichocki, A. (2015). Feature learning from incomplete EEG with denoising autoencoder. Neurocomputing, 165, 2331. https://doi.org/10.1016/j.neucom.2014.08.092CrossRefGoogle Scholar
Liu, J. C. J., Verhulst, S., Massar, S. A. A., & Chee, M. W. L. (2015). Sleep deprived and sweating it out: The effects of total sleep deprivation on skin conductance reactivity to psychosocial stress. Sleep, 38(1), 155159. https://doi.org/10.5665/sleep.4346CrossRefGoogle ScholarPubMed
Liu, Y., & Du, S. (2018). Psychological stress level detection based on electrodermal activity. Behavioural Brain Research, 341, 5053. https://doi.org/10.1016/j.bbr.2017.12.021CrossRefGoogle ScholarPubMed
Llanes-Jurado, J., Carrasco-Ribelles, L. A., Alcañiz, M., & Marín-Morales, J. (2021). Automatic artifact recognition and correction for electrodermal activity in uncontrolled environments [preprint].CrossRefGoogle Scholar
Loddenkemper, T., Kellinghaus, C., Gandjour, J., Nair, D. R., Najm, I. M., Bingaman, W., & Lüders, H. O. (2004). Localising and lateralising value of ictal piloerection. Journal of Neurology, Neurosurgery & Psychiatry, 75(6), 879883. https://doi.org/10.1136/jnnp.2003.023333CrossRefGoogle ScholarPubMed
Meisel, C., El Atrache, R., Jackson, M., Schubach, S., Ufongene, C., & Loddenkemper, T. (2020). Machine learning from wristband sensor data for wearable, noninvasive seizure forecasting. Epilepsia, 61(12), 26532666. https://doi.org/10.1111/epi.16719CrossRefGoogle ScholarPubMed
Melander, C. A., Kikhia, B., Olsson, M., Wälivaara, B.-M., & Sävenstedt, S. (2018). The impact of using measurements of electrodermal activity in the assessment of problematic behaviour in dementia. Dementia and Geriatric Cognitive Disorders Extra, 8(3), 333347. https://doi.org/10.1159/000493339CrossRefGoogle ScholarPubMed
Miranda-Correa, J. A., Abadi, M. K., Sebe, N., & Patras, I. (2021). AMIGOS: A dataset for affect, personality and mood research on individuals and groups. IEEE Transactions on Affective Computing, 12(2), 479493. https://doi.org/10.1109/TAFFC.2018.2884461CrossRefGoogle Scholar
Momin, A., Bhattacharya, S., Sanyal, S., & Chakraborty, P. (2020). Visual attention, mental stress and gender: A study using physiological signals. IEEE Access, 8, 165973165988. https://doi.org/10.1109/ACCESS.2020.3022727CrossRefGoogle Scholar
Munsters, J., Wallström, L., Ågren, J., Norsted, T., & Sindelar, R. (2012). Skin conductance measurements as pain assessment in newborn infants born at 22–27weeks gestational age at different postnatal age. Early Human Development, 88(1), 2126. https://doi.org/10.1016/j.earlhumdev.2011.06.010CrossRefGoogle Scholar
Murali, N. S., Svatikova, A., & Somers, V. K. (2003). Cardiovascular physiology and sleep. Frontiers in Bioscience-Landmark, 8(6). https://doi.org/10.2741/1105Google ScholarPubMed
Nahman-Averbuch, H., & Coghill, R. C. (2017). Pain-autonomic relationships: Implications for experimental design and the search for an “objective marker” for pain. PAIN, 158(11), 20642065. https://doi.org/10.1097/j.pain.0000000000001035CrossRefGoogle ScholarPubMed
Nasseri, M., Pal Attia, T., Joseph, B., Gregg, N. M., Nurse, E. S., Viana, P. F., et al. (2021). Ambulatory seizure forecasting with a wrist-worn device using long-short term memory deep learning. Scientific Reports, 11(1), 19.CrossRefGoogle ScholarPubMed
Nickel, M. M., May, E. S., Tiemann, L., Postorino, M., Ta Dinh, S., & Ploner, M. (2017). Autonomic responses to tonic pain are more closely related to stimulus intensity than to pain intensity. PAIN, 158(11), 21292136. https://doi.org/10.1097/j.pain.0000000000001010CrossRefGoogle ScholarPubMed
Perugia, G., Rodríguez-Martín, D., Díaz Boladeras, M., Mallofré, A. C., Barakova, E., & Rauterberg, M. (2017). Electrodermal activity: Explorations in the psychophysiology of engagement with social robots in dementia. In 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (pp. 12481254). IEEE. https://doi.org/10.1109/ROMAN.2017.8172464Google Scholar
Poh, M.-Z., Loddenkemper, T., Reinsberger, C., Swenson, N. C., Goyal, S., Sabtala, M. C., et al. (2012). Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor. Epilepsia, 53(5), e93e97. https://doi.org/10.1111/j.1528-1167.2012.03444.xCrossRefGoogle ScholarPubMed
Poh, M.-Z., Loddenkemper, T., Swenson, N. C., Goyal, S., Madsen, J. R., & Picard, R. W. (2010). Continuous monitoring of electrodermal activity during epileptic seizures using a wearable sensor. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 44154418). IEEE. https://doi.org/10.1109/IEMBS.2010.5625988Google Scholar
Poh, M.-Z., Swenson, N. C., & Picard, R. W. (2010). A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Transactions on Biomedical Engineering, 57(5), 12431252. https://doi.org/10.1109/TBME.2009.2038487Google ScholarPubMed
Posada-Quintero, H. F., & Chon, K. H. (2020). Innovations in electrodermal activity data collection and signal processing: A systematic review. Sensors, 20(2). https://doi.org/10.3390/s20020479CrossRefGoogle ScholarPubMed
Posada-Quintero, H. F., Derrick, B. J., Winstead-Derlega, C., Gonzalez, S. I., Claire Ellis, M., Freiberger, J. J., & Chon, K. H. (2021). Time-varying spectral index of electrodermal activity to predict central nervous system oxygen toxicity symptoms in divers: Preliminary results. In 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (pp. 12421245). IEEE. https://doi.org/10.1109/EMBC46164.2021.9629924Google Scholar
Posada-Quintero, H. F., Florian, J. P., Orjuela-Cañón, A. D., Aljama-Corrales, T., Charleston-Villalobos, S., & Chon, K. H. (2016). Power spectral density analysis of electrodermal activity for sympathetic function assessment. Annals of Biomedical Engineering, 44(10), 31243135. https://doi.org/10.1007/s10439-016-1606-6CrossRefGoogle ScholarPubMed
Posada-Quintero, H. F., Florian, J. P., Orjuela-Cañón, A. D., & Chon, K. H. (2018). Electrodermal activity is sensitive to cognitive stress under water. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.01128CrossRefGoogle ScholarPubMed
Posada-Quintero, H. F., Kong, Y., & Chon, K. H. (2021). Objective pain stimulation intensity and pain sensation assessment using machine learning classification and regression based on electrodermal activity. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 321(2), R186R196. https://doi.org/10.1152/ajpregu.00094.2021CrossRefGoogle ScholarPubMed
Posada-Quintero, H. F., Kong, Y., Nguyen, K., Tran, C., Beardslee, L., Chen, L., et al. (2020). Using electrodermal activity to validate multilevel pain stimulation in healthy volunteers evoked by thermal grills. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 319(3), R366R375. https://doi.org/10.1152/ajpregu.00102.2020CrossRefGoogle ScholarPubMed
Posada-Quintero, H. F., Landon, C. S., Stavitzski, N. M., Dean, J. B., & Chon, K. H. (2022). Seizures caused by exposure to hyperbaric oxygen in rats can be predicted by early changes in electrodermal activity. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.767386CrossRefGoogle ScholarPubMed
Prince, E. B., Kim, E. S., Wall, C. A., Gisin, E., Goodwin, M. S., Simmons, E. S., et al. (2017). The relationship between autism symptoms and arousal level in toddlers with autism spectrum disorder, as measured by electrodermal activity. Autism, 21(4), 504508. https://doi.org/10.1177/1362361316648816CrossRefGoogle ScholarPubMed
Reljin, N., Lazaro, J., Hossain, M. D., Noh, Y. S., Cho, C. H., & Chon, K. H. (2020). Using the redundant convolutional encoder–decoder to denoise QRS complexes in ECG signals recorded with an armband wearable device. Sensors, 20(16). https://doi.org/10.3390/s20164611CrossRefGoogle ScholarPubMed
Romine, W., Banerjee, T., & Goodman, G. (2019). Toward sensor-based sleep monitoring with electrodermal activity measures. Sensors, 19(6). https://doi.org/10.3390/s19061417CrossRefGoogle ScholarPubMed
Ruiz-Robledillo, N., & Moya-Albiol, L. (2015). Lower electrodermal activity to acute stress in caregivers of people with autism spectrum disorder: An adaptive habituation to stress. Journal of Autism and Developmental Disorders, 45(2), 576588. https://doi.org/10.1007/s10803-013-1996-3CrossRefGoogle ScholarPubMed
Saga, K. (2002). Structure and function of human sweat glands studied with histochemistry and cytochemistry. Progress in Histochemistry and Cytochemistry, 37(4), 323386. https://doi.org/10.1016/s0079-6336(02)80005-5CrossRefGoogle ScholarPubMed
Sano, A., Picard, R. W., & Stickgold, R. (2014). Quantitative analysis of wrist electrodermal activity during sleep. International Journal of Psychophysiology, 94(3), 382389. https://doi.org/10.1016/j.ijpsycho.2014.09.011CrossRefGoogle ScholarPubMed
Sato, K., Kang, W. H., Saga, K., & Sato, K. T. (1989). Biology of sweat glands and their disorders. I. Normal sweat gland function. Journal of the American Academy of Dermatology, 20(4), 537563. https://doi.org/10.1016/S0190-9622(89)70063-3CrossRefGoogle ScholarPubMed
Scarpina, F., & Tagini, S. (2017). The Stroop color and word test. Frontiers in Psychology, 8, 557. https://doi.org/10.3389/fpsyg.2017.00557CrossRefGoogle ScholarPubMed
Scharmüller, W., Wabnegger, A., & Schienle, A. (2015). Functional brain connectivity during fear of pain: A comparison between dental phobics and controls. Brain Connectivity, 5(3), 187191. https://doi.org/10.1089/brain.2014.0297CrossRefGoogle Scholar
Schupak, B. M., Parasher, R. K., & Zipp, G. P. (2016). Reliability of electrodermal activity: Quantifying sensory processing in children with autism. American Journal of Occupational Therapy, 70(6), 16. https://doi.org/10.5014/ajot.2016.018291CrossRefGoogle ScholarPubMed
Setz, C., Arnrich, B., Schumm, J., Marca, R. L., Tröster, G., & Ehlert, U. (2010). Discriminating stress from cognitive load using a wearable EDA device. IEEE Transactions on Information Technology in Biomedicine, 14(2), 410417. https://doi.org/10.1109/TITB.2009.2036164CrossRefGoogle ScholarPubMed
Shaffer, F., Combatalade, D., Peper, E., & Meehan, Z. M. (2016). A guide to cleaner electrodermal activity measurements. Biofeedback, 44(2), 90100. https://doi.org/10.5298/1081-5937-44.2.01CrossRefGoogle Scholar
Shu, L., Xie, J., Yang, M., Li, Z., Li, Z., Liao, D., et al. (2018). A review of emotion recognition using physiological signals. Sensors, 18(7). https://doi.org/10.3390/s18072074CrossRefGoogle ScholarPubMed
Shukla, J., Barreda-Angeles, M., Oliver, J., Nandi, G. C., & Puig, D. (2019). Feature extraction and selection for emotion recognition from electrodermal activity. IEEE Transactions on Affective Computing, 857869. https://doi.org/10.1109/TAFFC.2019.2901673Google Scholar
Silvani, A., & Dampney, R. A. L. (2013). Central control of cardiovascular function during sleep. American Journal of Physiology– Heart and Circulatory Physiology, 305(12), H1683H1692. https://doi.org/10.1152/ajpheart.00554.2013CrossRefGoogle ScholarPubMed
Somers, V. K., Dyken, M. E., Mark, A. L., & Abboud, F. M. (1993). Sympathetic-nerve activity during sleep in normal subjects. New England Journal of Medicine, 328(5), 303307. https://doi.org/10.1056/NEJM199302043280502CrossRefGoogle ScholarPubMed
Subramanian, S., Tseng, B., Barbieri, R., & Brown, E. N. (2021). Unsupervised machine learning methods for artifact removal in electrodermal activity. In 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (pp. 399402). IEEE. https://doi.org/10.1109/EMBC46164.2021.9630535Google Scholar
Subramanian, S., Tseng, B., Barbieri, R., & Brown, E. N. (2022). An unsupervised automated paradigm for artifact removal from electrodermal activity in an uncontrolled clinical setting. Physiological Measurement, 43(11) https://doi.org/10.1088/1361-6579/ac92bdCrossRefGoogle Scholar
Sugimine, S., Saito, S., & Takazawa, T. (2020). Normalized skin conductance level could differentiate physical pain stimuli from other sympathetic stimuli. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-67936-0CrossRefGoogle ScholarPubMed
Susam, B. T., Akcakaya, M., Nezamfar, H., Diaz, D., Xu, X., de Sa, V. R., et al. (2018). Automated pain assessment using electrodermal activity data and machine learning. In 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 372375). IEEE. https://doi.org/10.1109/EMBC.2018.8512389Google Scholar
Taylor, S., Jaques, N., Chen, W., Fedor, S., Sano, A., & Picard, R. (2015). Automatic identification of artifacts in electrodermal activity data. In 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 19341937). IEEE. https://doi.org/10.1109/EMBC.2015.7318762Google Scholar
Theodoros, A. (2014). Electrodermal activity: Applications in perioperative care. International Journal of Medical Research & Health Sciences, 3(3).CrossRefGoogle Scholar
Topoglu, Y., Watson, J., Suri, R., & Ayaz, H. (2020). Electrodermal activity in ambulatory settings: A narrative review of literature. In Ayaz, H. (ed.), Advances in Neuroergonomics and Cognitive Engineering (pp. 91102). Springer. https://doi.org/10.1007/978-3-030-20473-0_10CrossRefGoogle Scholar
van Andel, J., Ungureanu, C., Arends, J., Tan, F., Van Dijk, J., Petkov, G., et al. (2017). Multimodal, automated detection of nocturnal motor seizures at home: Is a reliable seizure detector feasible? Epilepsia Open, 2(4), 424431.CrossRefGoogle ScholarPubMed
van Dooren, M., de Vries, J. J. G., & Janssen, J. H. (2012). Emotional sweating across the body: Comparing 16 different skin conductance measurement locations. Physiology & Behavior, 106(2), 298304. https://doi.org/10.1016/j.physbeh.2012.01.020CrossRefGoogle ScholarPubMed
Vandecasteele, K., De Cooman, T., Gu, Y., Cleeren, E., Claes, K., Van Paesschen, , et al. (2017). Automated epileptic seizure detection based on wearable ECG and PPG in a hospital environment. Sensors, 17(10).CrossRefGoogle Scholar
Veeranki, Y. R., Ganapathy, N., & Swaminathan, R. (2021). Electrodermal activity based emotion recognition using time-frequency methods and machine learning algorithms. Current Directions in Biomedical Engineering, 7(2), 863866. https://doi.org/10.1515/cdbme-2021-2220CrossRefGoogle Scholar
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11, 33713408.Google Scholar
von Polier, G. G., Biskup, C. S., Kötting, W. F., Bubenzer, S., Helmbold, K., Eisert, A., et al.(2014). Change in electrodermal activity after acute tryptophan depletion associated with aggression in young people with attention deficit hyperactivity disorder (ADHD). Journal of Neural Transmission, 121(4), 451455. https://doi.org/10.1007/s00702-013-1119-5CrossRefGoogle ScholarPubMed
Wang, Y., Yao, H., & Zhao, S. (2016). Auto-encoder based dimensionality reduction. Neurocomputing, 184, 232242. https://doi.org/10.1016/j.neucom.2015.08.104CrossRefGoogle Scholar
Wannamaker, B. B. (1985). Autonomic nervous system and epilepsy. Epilepsia, 26(s1), S31S39. https://doi.org/10.1111/j.1528-1157.1985.tb05722.xCrossRefGoogle ScholarPubMed
Wendt, J., Lotze, M., Weike, A. I., Hosten, N., & Hamm, A. O. (2008). Brain activation and defensive response mobilization during sustained exposure to phobia-related and other affective pictures in spider phobia. Psychophysiology, 45(2), 205215. https://doi.org/10.1111/j.1469-8986.2007.00620.xCrossRefGoogle ScholarPubMed
Wickramasuriya, D. S., & Faghih, R. T. (2020). A marked point process filtering approach for tracking sympathetic arousal from skin conductance. IEEE Access, 8, 6849968513. https://doi.org/10.1109/ACCESS.2020.2984508CrossRefGoogle Scholar
Wu, G., Liu, G., & Hao, M. (2010). The analysis of emotion recognition from GSR based on PSO. In 2010 International Symposium on Intelligence Information Processing and Trusted Computing (pp. 360363). IEEE. https://doi.org/10.1109/IPTC.2010.60CrossRefGoogle Scholar
Xia, V., Jaques, N., Taylor, S., Fedor, S., & Picard, R. (2015). Active learning for electrodermal activity classification. In 2015 IEEE Signal Processing in Medicine and Biology Symposium (pp. 16). https://doi.org/10.1109/SPMB.2015.7405467CrossRefGoogle Scholar
Yang, T. T., Simmons, A. N., Matthews, S. C., Tapert, S. F., Bischoff-Grethe, A., Frank, G. K. W., et al. (2007). Increased amygdala activation is related to heart rate during emotion processing in adolescent subjects. Neuroscience Letters, 428(2), 109114. https://doi.org/10.1016/j.neulet.2007.09.039CrossRefGoogle ScholarPubMed
Zhang, Y., Haghdan, M., & Xu, K. S. (2017). Unsupervised motion artifact detection in wrist-measured electrodermal activity data. In Proceedings of the 2017 ACM International Symposium on Wearable Computers (pp. 5457). ACM. https://doi.org/10.1145/3123021.3123054CrossRefGoogle Scholar

References

AbuHasan, Q., & Munakomi, S. (2022). Neuroanatomy, Pyramidal Tract. StatPearls Publishing. Available from www.ncbi.nlm.nih.gov/books/NBK545314Google Scholar
Agnihotri, H., Paul, M., & Sandhu, J. S. (2008). The comparative efficacy of two biofeedback techniques in the treatment of generalized anxiety disorder. Pakistan Journal of Social and Clinical Psychology, 6(1), 3546.Google Scholar
Andreassi, J. L. (2013). Psychophysiology: Human behavior & physiological response, 4th ed. Psychology Press.CrossRefGoogle Scholar
Arns, M., Conners, C. K., & Kraemer, H. C. (2013). A decade of EEG theta/beta ratio research in ADHD: A meta-analysis. Journal of Attention Disorders, 17(5), 374-383.CrossRefGoogle ScholarPubMed
Bakhshayesh, A. R., Hänsch, S., Wyschkon, A., Rezai, M. J., & Esser, G. (2011). Neurofeedback in ADHD: A single-blind randomized controlled trial. European Child & Adolescent Psychiatry, 20, 481491.CrossRefGoogle ScholarPubMed
Barth, B., Mayer, K., Strehl, U., Fallgatter, A. J., & Ehlis, A. C. (2017). EMG biofeedback training in adult attention-deficit/hyperactivity disorder: An active (control) training? Behavioural Brain Research, 329, 58-66.CrossRefGoogle ScholarPubMed
Baschnagel, J. S., Coffey, S. F., Hawk, L. W. Jr., Schumacher, J. A., & Holloman, G. (2013). Psychophysiological assessment of emotional processing in patients with borderline personality disorder with and without comorbid substance use. Personality Disorders: Theory, Research, and Treatment, 4(3), 203213.CrossRefGoogle ScholarPubMed
Baschnagel, J. S., & Edlund, J. E. (2016). Affective modification of the startle eyeblink response during sexual and emotional infidelity scripts. Evolutionary Psychological Science, 2, 114122.CrossRefGoogle Scholar
Bazanova, O. M., Auer, T., & Sapina, E. A. (2018). On the efficiency of individualized theta/beta ratio neurofeedback combined with forehead EMG training in ADHD children. Frontiers in Human Neuroscience, 12, 3. https://doi.org/10.3389/fnhum.2018.00003CrossRefGoogle ScholarPubMed
Blumenthal, T. D., Cuthbert, B. N., Filion, D. L., Hackley, S., Lipp, O. V., & van Boxtel, A. (2005). Committee report: Guidelines for human startle eyeblink electromyographic studies. Psychophysiology, 42(1), 1-15. https://doi.org/10.1111/j.1469-8986.2005.00271.xCrossRefGoogle ScholarPubMed
Blumenthal, T. D., Elden, A., & Flaten, M. A. (2004). A comparison of several methods used to quantify prepulse inhibition of eyeblink responding. Psychophysiology, 41(2), 326332.CrossRefGoogle ScholarPubMed
Bowditch, H. P., & Warren, J. W. (1890). The knee-jerk and its physiological modifications. Journal of Physiology, 11(1–2), 2564. https://doi.org/10.1113/jphysiol.1890.sp000318CrossRefGoogle ScholarPubMed
Bowles, C., Smith, J., & Parker, K. (1979). EMG biofeedback and progressive relaxation training: A comparative study of two groups of normal subjects. Western Journal of Nursing Research, 1(3), 179189. https://doi.org/10.1177/019394597900100304CrossRefGoogle ScholarPubMed
Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and motivation I: Defensive and appetitive reactions in picture processing. Emotion, 1(3), 276298.CrossRefGoogle ScholarPubMed
Bradley, M. M., Cuthbert, B. N., & Lang, P. J. (1990). Startle reflex modification: Emotion or attention? Psychophysiology, 27(5), 513522.CrossRefGoogle ScholarPubMed
Braff, D. L., & Geyer, M. A. (1990). Sensorimotor gating and schizophrenia: Human and animal model studies. Archives of General Psychiatry, 47, 181188.CrossRefGoogle ScholarPubMed
Budzynski, T. H., Stoyva, J. M., Adler, C. S., & Mullaney, D. J. (1973). EMG biofeedback and tension headache: A controlled outcome study. Psychosomatic Medicine, 35(6), 484-496. https://doi.org/10.1097/00006842-197311000-00004CrossRefGoogle ScholarPubMed
Choromański, W., Grabarek, I., & Kozłowski, M. (2021). Integrated design of a custom steering system in cars and verification of its correct functioning. Energies, 14(20), 19.CrossRefGoogle Scholar
Chowdhury, D. (2012). Tension type headache. Annals of Indian Academy of Neurology, 15(Suppl. 1), S83S88. https://doi.org/10.4103/0972-2327.100023CrossRefGoogle ScholarPubMed
Cobb, D. E., & Evans, J. R. (1981). The use of biofeedback techniques with school-aged children exhibiting behavioral and/or learning problems. Journal of Abnormal Child Psychology, 9, 251281.CrossRefGoogle ScholarPubMed
Dichter, G. S., Benning, S. D., Holtzclaw, T. N., & Bodfish, J. W. (2010). Affective modulation of the startle eyeblink and postauricular reflexes in autism spectrum disorder. Journal of Autism and Developmental Disorders, 40, 858869.CrossRefGoogle ScholarPubMed
Dimberg, U. (1988). Facial electromyography and the experience of emotion. Journal of Psychophysiology, 2(4), 277282.Google Scholar
Dimberg, U. (1990). Facial electromyography and emotional reactions. Psychophysiology, 27(5), 481494. https://doi.org/10.1111/j.1469-8986.1990.tb01962.xCrossRefGoogle ScholarPubMed
Fridlund, A. J., & Cacioppo, J. T. (1986). Guidelines for human electromyographic research. Psychophysiology, 23(5), 567589.CrossRefGoogle ScholarPubMed
Garcia, M. C., & Vieira, T. M. M. (2011). Surface electromyography: Why, when and how to use it. Revista andaluza de medicina del deporte, 4(1), 1728.Google Scholar
Giggins, O. M., Persson, U. M., & Caulfield, B. (2013). Biofeedback in rehabilitation. Journal of Neuroengineering and Rehabilitation, 10, 60. https://doi.org/10.1186/1743-0003-10-60CrossRefGoogle ScholarPubMed
Gomez-Gil, J., San-Jose-Gonzalez, I., Nicolas-Alonso, L. F., & Alonso-Garcia, S. (2011). Steering a tractor by means of an EMG-based human–machine interface. Sensors, 11(7), 71107126.CrossRefGoogle ScholarPubMed
Grillon, C., Morgan III, C. A., Davis, M., & Southwick, S. M. (1998). Effects of experimental context and explicit threat cues on acoustic startle in Vietnam veterans with posttraumatic stress disorder. Biological Psychiatry, 44(10), 10271036.CrossRefGoogle ScholarPubMed
Hawk, L. W., & Kowmas, A. D. (2003). Affective modulation and prepulse inhibition of startle among undergraduates high and low in behavioral inhibition and approach. Psychophysiology, 40(1), 131138.CrossRefGoogle ScholarPubMed
Herbert, C., & Kissler, J. (2010). Motivational priming and processing interrupt: Startle reflex modulation during shallow and deep processing of emotional words. International Journal of Psychophysiology, 76(2), 6471.CrossRefGoogle ScholarPubMed
Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361374.CrossRefGoogle ScholarPubMed
Jacob, S. W., & Francone, C.A. (1970). Structure and Function in Man. Saunders.Google Scholar
Jali, M. H., Bohari, Z. H., Sulaima, M. F., Nasir, M. N. M., & Jaafar, H. I. (2014). Classification of EMG signal based on human percentile using SOM. Research Journal of Applied Sciences, Engineering and Technology, 8(2), 235242.CrossRefGoogle Scholar
Karlik, B. (2014). Machine learning algorithms for characterization of EMG signals. International Journal of Information and Electronics Engineering, 4(3), 189194.CrossRefGoogle Scholar
Keltner, D., & Ekman, P. (2000). Facial expression of emotion. In Lewis, M., & Haviland-Jones, J. (eds.), Handbook of Emotions, 2nd ed. (pp. 236249). Guilford Press.Google Scholar
Kundu, A. S., Mazumder, O., Lenka, P. K., & Bhaumik, S. (2018). Hand gesture recognition based omnidirectional wheelchair control using IMU and EMG sensors. Journal of Intelligent & Robotic Systems, 91, 529541.CrossRefGoogle Scholar
Landis, C., & Hunt, W. (1939). The Startle Pattern. Farrar & Rinehart.Google Scholar
Lang, A., & Yegiyan, N.S. (2014). Mediated substance cues: Motivational reactivity and use influence responses to pictures of alcohol. Journal of Health Communication, 19, 12161231.CrossRefGoogle ScholarPubMed
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1990). Emotion, attention, and the startle reflex. Psychological Review, 97(3), 377395.CrossRefGoogle ScholarPubMed
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2008). International Affective Picture System (IAPS): Instruction Manual and Affective Ratings. Technical Report A-8. Center for Research in Psychophysiology, University of Florida.Google Scholar
Larsen, J. T., Norris, C. J., & Cacioppo, J. T. (2003). Effects of positive and negative affect on electromyographic activity over zygomaticus major and corrugator supercilii. Psychophysiology, 40(5), 776785. https://doi.org/10.1111/1469-8986.00078CrossRefGoogle ScholarPubMed
Lee, S. W. (1991). Biofeedback as a treatment for childhood hyperactivity: A critical review of the literature. Psychological Reports, 68(1), 163192.CrossRefGoogle ScholarPubMed
Li, S., Walters, G., Packer, J., & Scott, N. (2018). Using skin conductance and facial electromyography to measure emotional responses to tourism advertising. Current Issues in Tourism, 21, 611783. https://doi.org/10.1080/13683500.2016.1223023CrossRefGoogle Scholar
Matzke, B., Herpertz, S. C., Berger, C., Fleischer, M., & Domes, G. (2014). Facial reactions during emotion recognition in borderline personality disorder: A facial electromyography study. Psychopathology, 47(2), 101110. https://doi.org/10.1159/000351122.CrossRefGoogle ScholarPubMed
Maurizio, S., Liechti, M. D., Heinrich, H., Jäncke, L., Steinhausen, H.-C., Walitza, S., et al. (2014). Comparing tomographic EEG neurofeedback and EMG biofeedback in children with attention-deficit/hyperactivity disorder. Biological Psychology, 95, 3144. https://doi.org/10.1016/j.biopsycho.2013.10.008CrossRefGoogle ScholarPubMed
McCoggle, M., Wilson, S., Rivera, A., Alba-Flores, R., & Soloiu, V. (2022). Biosensors based controller for small unmanned aerial vehicle navigation. In SoutheastCon 2022. IEEE. https://doi.org/10.1109/southeastcon48659.2022.9764015Google Scholar
Miller, M. W., Patrick, C. J., & Levenston, G. K. (2002). Affective imagery and the startle response: Probing mechanisms of modulation during pleasant scenes, personal experiences, and discrete negative emotions. Psychophysiology, 39(4), 519529. https://doi.org/10.1017/S0048577202394095CrossRefGoogle ScholarPubMed
Monteiro, P., Tavares, D. L., Mourão, L., Nouws, H. P., & Maia, G. (2022). Biosensors, biofeedback, and neurofeedback. In Marques, A. & Queirós, R. (eds.), Digital Therapies in Psychosocial Rehabilitation and Mental Health (pp. 303320). IGI Global. https://doi.org/10.4018/978-1-7998-8634-1.ch015CrossRefGoogle Scholar
Morrison, M. A., Trinder, K. M., & Morrison, T. G. (2019). Affective responses to gay men using facial electromyography: Is there a psychophysiological “look” of anti-gay bias. Journal of Homosexuality, 66(9), 12381261. https://doi.org/10.1080/00918369.2018.1500779CrossRefGoogle Scholar
Nacpil, E. J. C., Zheng, R., Kaizuka, T., & Nakano, K. (2019). A surface electromyography controlled steering assistance interface. Journal of Intelligent and Connected Vehicles, 2(1), 113.CrossRefGoogle Scholar
Paulhus, D. L. (1984). Two-component models of socially desirable responding. Journal of Personality and Social Psychology, 46(3), 598609.CrossRefGoogle Scholar
Paulus, A., Renn, K., & Wentura, D. (2019). One plus one is more than two: The interactive influence of group membership and emotional facial expressions on the modulation of the affective startle reflex. Biological Psychology, 142, 140146.CrossRefGoogle ScholarPubMed
Pole, N., Neylan, T. C., Otte, C., Henn-Hasse, C., Metzler, T. J., & Marmar, C. R. (2009). Prospective prediction of posttraumatic stress disorder symptoms using fear potentiated auditory startle responses. Biological psychiatry, 65(3), 235240.CrossRefGoogle ScholarPubMed
Reicherts, P., Gerdes, A. B., Pauli, P., & Wieser, M. J. (2013). On the mutual effects of pain and emotion: Facial pain expressions enhance pain perception and vice versa are perceived as more arousing when feeling pain. Pain, 154(6), 793800. https://doi.org/10.1016/j.pain.2013.02.012CrossRefGoogle ScholarPubMed
Rokicki, L. A., Houle, T. T., Dhingra, L. K., Weinland, S. R., Urban, A. M., & Bhalla, R. K. (2003). A preliminary analysis of EMG variance as an index of change in EMG biofeedback treatment of tension-type headache. Applied Psychophysiology and Biofeedback, 28(3), 205215. https://doi.org/10.1023/a:1024633230584CrossRefGoogle ScholarPubMed
Rozga, A., King, T. Z., Vuduc, R. W., & Robins, D. L. (2013). Undifferentiated facial electromyography responses to dynamic, audio-visual emotion displays in individuals with autism spectrum disorders. Developmental Science, 16(4), 499514. https://doi.org/10.1111/desc.12062CrossRefGoogle ScholarPubMed
Sabbah, P., De Schonen, S., Leveque, C., Gay, S., Pfefer, F., Nioche, C., et al. (2002). Sensorimotor cortical activity in patients with complete spinal cord injury: A functional magnetic resonance imaging study. Journal of Neurotrauma, 19(1), 5360.CrossRefGoogle ScholarPubMed
Schoenberg, P. L., & David, A. S. (2014). Biofeedback for psychiatric disorders: A systematic review. Applied Psychophysiology and Biofeedback, 39(2), 109135. https://doi.org/10.1007/s10484-014-9246-9CrossRefGoogle ScholarPubMed
Shair, E. F., Razali, R. H., Abdullah, A. R., & Jamaluddin, N. F. (2022). EMG pattern recognition using TFD for future control of in-car electronic equipment. International Journal of Fuzzy Logic and Intelligent Systems, 22(1), 1122.CrossRefGoogle Scholar
Stern, R. M., Ray, W. J., & Quigley, K. S. (2001). Psychophysiological Recording. Oxford University Press.Google Scholar
Tassinary, L. G., Cacioppo, J. T., & Vanman, E. J. (2007). The skeletomotor system: Surface electromyography. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (eds.), Handbook of Psychophysiology (pp. 267299). Cambridge University Press.CrossRefGoogle Scholar
Tunis, M. M., & Wolff, H. G. (1954). Studies on headache: Cranial artery vasoconstriction and muscle contraction headache. AMA Archives of Neurology & Psychiatry, 71(4), 425434.CrossRefGoogle ScholarPubMed
Vanman, E. J., Saltz, J. L., Nathan, L. R., & Warren, J. A. (2004). Racial discrimination by low-prejudiced whites: Facial movements as implicit measures of attitudes related to behavior. Psychological Science, 15(11), 711714.CrossRefGoogle ScholarPubMed
Varcin, K. J., Nangle, M. R., Henry, J. D., Bailey, P. E., & Richmond, J. L. (2019). Intact spontaneous emotional expressivity to non-facial but not facial stimuli in schizophrenia: An electromyographic study. Schizophrenia Research, 206, 3742. https://doi.org/10.1016/j.schres.2018.12.019CrossRefGoogle Scholar
Vigliotta, J., Cipleu, J., Mikell, A., & Alba-Flores, R. (2021). EMG controlled electric wheelchair. Lecture Notes in Networks and Systems, 296, 439449. https://doi.org/10.1007/978-3-030-82199-9_29CrossRefGoogle Scholar
Vrana, S. R., Spence, E. L., & Lang, P. J. (1988). The startle probe response: A new measure of emotion? Journal of Abnormal Psychology, 97(4), 487491. https://doi.org/10.1037/0021-843X.97.4.487CrossRefGoogle ScholarPubMed
Watson, T. (n.d.). EMG Biofeedback – The Principles. Herman & Wallace Pelvic Rehabilitation Institute. https://hermanwallace.com/images/Tim_Watson_Biofeedback_Intro.pdf (retrieved February 20, 2023).Google Scholar
Wolf, S. L. (1978). Essential considerations in the use of EMG biofeedback. Physical Therapy, 58(1), 2531. https://doi.org/10.1093/ptj/58.1.25CrossRefGoogle ScholarPubMed
Yartz, A. R., & Hawk, L. W. Jr. (2002). Addressing the specificity of affective startle modulation: Fear versus disgust. Biological Psychology, 59(1), 5568.CrossRefGoogle ScholarPubMed
Yerkes, R. M. (1905). The sense of hearing in frogs. Journal of Comparative Neurology and Psychology, 15, 279304. https://doi.org/10.1002/cne.920150402CrossRefGoogle Scholar
Yousefi, J., & Hamilton-Wright, A. (2014). Characterizing EMG data using machine-learning tools. Computers in Biology and Medicine, 51, 113.CrossRefGoogle ScholarPubMed

References

Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y., & Zhao, X. (2019). A comprehensive review of EEG-based brain–computer interface paradigms. Journal of Neural Engineering, 16(1), 011001. https://doi.org/10.1088/1741-2552/aaf12eCrossRefGoogle ScholarPubMed
Asadzadeh, S., Yousefi Rezaii, T., Beheshti, S., Delpak, A., & Meshgini, S. (2020). A systematic review of EEG source localization techniques and their applications on diagnosis of brain abnormalities. Journal of Neuroscience Methods, 339, 108740. https://doi.org/10.1016/j.jneumeth.2020.108740CrossRefGoogle ScholarPubMed
Babiloni, C., Barry, R. J., Başar, E., Blinowska, K. J., Cichocki, A., Drinkenburg, W. H. I. M., et al. (2020). International Federation of Clinical Neurophysiology (IFCN) – EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies. Clinical Neurophysiology, 131(1), 285307. https://doi.org/10.1016/j.clinph.2019.06.234CrossRefGoogle ScholarPubMed
Bae, G.-Y., & Luck, S. J. (2018). Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials. Journal of Neuroscience, 38(2), 409422. https://doi.org/10.1523/JNEUROSCI.2860-17.2017CrossRefGoogle ScholarPubMed
Berg, P., & Scherg, M. (1994). A multiple source approach to the correction of eye artifacts. Electroencephalography and Clinical Neurophysiology, 90(3), 229241.CrossRefGoogle Scholar
Berger, H. (1929). Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87, 527570.CrossRefGoogle Scholar
Biasiucci, A., Franceschiello, B., & Murray, M. M. (2019). Electroencephalography. Current Biology, 29(3), R80R85.CrossRefGoogle ScholarPubMed
Boudewyn, M. A., Luck, S. J., Farrens, J. L., & Kappenman, E. S. (2018). How many trials does it take to get a significant ERP effect? It depends. Psychophysiology, 55(6), e13049. https://doi.org/10.1111/psyp.13049CrossRefGoogle ScholarPubMed
Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14(6), 277290. https://doi.org/10.1016/j.tics.2010.04.004CrossRefGoogle ScholarPubMed
Bridwell, D. A., Cavanagh, J. F., Collins, A. G. E., Nunez, M. D., Srinivasan, R., Stober, S., & Calhoun, V. D. (2018). Moving beyond ERP components: A selective review of approaches to integrate EEG and behavior. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00106CrossRefGoogle ScholarPubMed
Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 19261929. https://doi.org/10.1126/science.1099745CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Tassinary, L. G., & Berntson, G. (2007). Handbook of Psychophysiology. Cambridge University Press.Google Scholar
Chaumon, M., Bishop, D. V. M., & Busch, N. A. (2015). A practical guide to the selection of independent components of the electroencephalogram for artifact correction. Journal of Neuroscience Methods, 250, 4763. https://doi.org/10.1016/j.jneumeth.2015.02.025CrossRefGoogle Scholar
Clayson, P. E., Keil, A., & Larson, M. J. (2022). Open science in human electrophysiology. International Journal of Psychophysiology, 174, 4346. https://doi.org/10.1016/j.ijpsycho.2022.02.002CrossRefGoogle ScholarPubMed
Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice. MIT Press.CrossRefGoogle Scholar
Cook III, E. W., & Miller, G. A. (1992). Digital filtering: Background and tutorial for psychophysiologists. Psychophysiology, 29(3), 350367. https://doi.org/10.1111/j.1469-8986.1992.tb01709.xCrossRefGoogle Scholar
Corby, J. C., Roth, W. T., & Kopell, B. S. (1974). Prevalence and methods of control of the cephalic skin potential EEG artifact. Psychophysiology, 11(3), 350360. https://doi.org/10.1111/j.1469-8986.1974.tb00554.xCrossRefGoogle ScholarPubMed
Debener, S., Emkes, R., De Vos, M., & Bleichner, M. (2015). Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Scientific Reports, 5(1), 16743. https://doi.org/10.1038/srep16743CrossRefGoogle ScholarPubMed
Dirlich, G., Vogl, L., Plaschke, M., & Strian, F. (1997). Cardiac field effects on the EEG. Electroencephalography and Clinical Neurophysiology, 102(4), 307315. https://doi.org/10.1016/S0013-4694(96)96506-2CrossRefGoogle ScholarPubMed
Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., et al. (2020). Parameterizing neural power spectra into periodic and aperiodic components. Nature Neuroscience, 23(12), 16551665. https://doi.org/10.1038/s41593-020-00744-xCrossRefGoogle ScholarPubMed
Freeman, W. J. (1975). Mass Action in the Nervous System: Examination of the Neurophysiological Basis of Adaptive Behavior through the EEG. Academic Press.Google Scholar
Gable, P., Miller, M., & Bernat, E. (2022). The Oxford Handbook of EEG Frequency. Oxford University Press.CrossRefGoogle Scholar
Galambos, R. (1992). A comparison of certain gamma-band (40 Hz) brain rhythms in cat and man. In Basar, E. & Bullock, T. (eds.), Induced Rhythms in the Brain (pp. 103122). Springer.Google Scholar
Garrett-Ruffin, S., Hindash, A. C., Kaczkurkin, A. N., Mears, R. P., Morales, S., Paul, K., et al. (2021). Open science in psychophysiology: An overview of challenges and emerging solutions. International Journal of Psychophysiology, 162, 6978. https://doi.org/10.1016/j.ijpsycho.2021.02.005CrossRefGoogle ScholarPubMed
Gibney, K. D., Kypriotakis, G., Cinciripini, P. M., Robinson, J. D., Minnix, J. A., & Versace, F. (2020). Estimating statistical power for event-related potential studies using the late positive potential. Psychophysiology, 57(2), e13482. https://doi.org/10.1111/psyp.13482CrossRefGoogle ScholarPubMed
Goncharova, I. I., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. R. (2003). EMG contamination of EEG: Spectral and topographical characteristics. Clinical Neurophysiology, 114(9), 15801593. https://doi.org/10.1016/S1388-2457(03)00093-2CrossRefGoogle ScholarPubMed
Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468484. https://doi.org/10.1016/0013-4694(83)90135-9CrossRefGoogle ScholarPubMed
Hooker, J. M., & Carson, R. E. (2019). Human positron emission tomography neuroimaging. Annual Review of Biomedical Engineering, 21(1), 551581. https://doi.org/10.1146/annurev-bioeng-062117-121056CrossRefGoogle ScholarPubMed
Huster, R. J., Debener, S., Eichele, T., & Herrmann, C. S. (2012). Methods for simultaneous EEG-fMRI: An introductory review. Journal of Neuroscience, 32(18), 60536060. https://doi.org/10.1523/JNEUROSCI.0447-12.2012CrossRefGoogle ScholarPubMed
Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13, 411430. https://doi.org/10.1016/S0893-6080(00)00026-5CrossRefGoogle ScholarPubMed
Islam, M. K., Rastegarnia, A., & Yang, Z. (2016). Methods for artifact detection and removal from scalp EEG: A review. Neurophysiologie Clinique / Clinical Neurophysiology, 46(4–5), 287305. https://doi.org/10.1016/j.neucli.2016.07.002CrossRefGoogle ScholarPubMed
Jackson, A. F., & Bolger, D. J. (2014). The neurophysiological bases of EEG and EEG measurement: A review for the rest of us. Psychophysiology, 51(11), 10611071. https://doi.org/10.1111/psyp.12283CrossRefGoogle ScholarPubMed
Jacobsen, N. S. J., Blum, S., Witt, K., & Debener, S. (2020). A walk in the park? Characterizing gait-related artifacts in mobile EEG recordings. European Journal of Neuroscience, 54(12), 84218440. https://doi.org/10.1111/ejn.14965CrossRefGoogle ScholarPubMed
Junghöfer, M., Elbert, T., Tucker, D. M., & Braun, C. (1999). The polar average reference effect: A bias in estimating the head surface integral in EEG recording. Clinical Neurophysiology, 110(6), 11491155. https://doi.org/10.1016/S1388-2457(99)00044-9CrossRefGoogle ScholarPubMed
Junghöfer, M., Elbert, T., Tucker, D. M., & Rockstroh, B. (2000). Statistical control of artifacts in dense array EEG/MEG studies. Psychophysiology, 37(4), 523532. https://doi.org/10.1111/1469-8986.3740523CrossRefGoogle ScholarPubMed
Kappenman, E., Farrens, J., Zhang, W., Stewart, A. X., & Luck, S. J. (2021). ERP CORE: An open resource for human event-related potential research. NeuroImage, 225, 117465. https://doi.org/10.31234/osf.io/4azqmCrossRefGoogle ScholarPubMed
Kappenman, E. S., & Luck, S. J. (2012). ERP components: The ups and downs of brainwave recordings. In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of ERP Components. Oxford University Press.Google Scholar
Keil, A., Bernat, E. M., Cohen, M. X., Ding, M., Fabiani, M., Gratton, G., et al. (2022). Recommendations and publication guidelines for studies using frequency-domain and time-frequency-domain analyses of neural time series. Psychophysiology, 59(5), e14052. https://doi.org/10.1111/psyp.14052CrossRefGoogle ScholarPubMed
Keil, A., Debener, S., Gratton, G., Junghöfer, M., Kappenman, E. S., Luck, S. J., et al. (2014). Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51(1), 121. https://doi.org/10.1111/psyp.12147CrossRefGoogle ScholarPubMed
Klug, M., and Gramann, K. (2020). Identifying key factors for improving ICA-based decomposition of EEG data in mobile and stationary experiments. European Journal of Neuroscience, 54(12), 84068420. https://doi.org/10.1111/ejn.14992CrossRefGoogle ScholarPubMed
Lau-Zhu, A., Lau, M. P. H., & McLoughlin, G. (2019). Mobile EEG in research on neurodevelopmental disorders: Opportunities and challenges. Developmental Cognitive Neuroscience, 36, 100635. https://doi.org/10.1016/j.dcn.2019.100635CrossRefGoogle ScholarPubMed
Ledwidge, P., Foust, J., & Ramsey, A. (2018). Recommendations for developing an EEG laboratory at a primarily undergraduate institution. Journal of Undergraduate Neuroscience Education, 17(1), A10A19.Google Scholar
Linden, D. E. (2005). The p300: Where in the brain is it produced and what does it tell us? Neuroscientist, 11(6), 563576.CrossRefGoogle ScholarPubMed
Lins, O. G., Picton, T. W., Berg, P., & Scherg, M. (1993). Ocular artifacts in EEG and event-related potentials I: Scalp topography. Brain Topography, 6(1), 5163. https://doi.org/10.1007/BF01234127CrossRefGoogle ScholarPubMed
Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869878. https://doi.org/10.1038/nature06976CrossRefGoogle Scholar
Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique, 2nd ed. MIT Press.Google Scholar
Luck, S. J., & Kappenman, E. S. (2011). The Oxford Handbook of Event-Related Potential Components. Oxford University Press.Google Scholar
McMenamin, B. W., Shackman, A. J., Maxwell, J. S., Bachhuber, D. R. W., Koppenhaver, A. M., Greischar, L. L., & Davidson, R. J. (2010). Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG. NeuroImage, 49(3), 24162432. https://doi.org/10.1016/j.neuroimage.2009.10.010CrossRefGoogle ScholarPubMed
Neymotin, S. A., Jacobs, K. M., Fenton, A. A., & Lytton, W. W. (2011). Synaptic information transfer in computer models of neocortical columns. Journal of Computational Neuroscience, 30(1), 6984. https://doi.org/10.1007/s10827-010-0253-4CrossRefGoogle ScholarPubMed
Nunez, M. D., Vandekerckhove, J., & Srinivasan, R. (2017). How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters. Journal of Mathematical Psychology, 76, 117130. https://doi.org/10.1016/j.jmp.2016.03.003CrossRefGoogle ScholarPubMed
Nunez, P. L., & Srinivasan, R. (2006). Electric Fields of the Brain, 2nd ed. Oxford University Press.CrossRefGoogle Scholar
Nunez, P. L., Srinivasan, R., Westdorp, A. F., Wijesinghe, R. S., Tucker, D. M., Silberstein, R. B., & Cadusch, P. J. (1997). EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalography and Clinical Neurophysiology, 103(5), 499515.CrossRefGoogle ScholarPubMed
Olejniczak, P. (2006). Neurophysiologic basis of EEG. Journal of Clinical Neurophysiology, 23(3), 186189. https://doi.org/10.1097/01.wnp.0000220079.61973.6cCrossRefGoogle ScholarPubMed
Pavlov, Y. G., Adamian, N., Appelhoff, S., Arvaneh, M., Benwell, C. S. Y., Beste, C., et al. (2021). #EEGManyLabs: Investigating the replicability of influential EEG experiments. Cortex, 144, 213229. https://doi.org/10.1016/j.cortex.2021.03.013CrossRefGoogle ScholarPubMed
Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 184187. https://doi.org/10.1016/0013-4694(89)90180-6CrossRefGoogle ScholarPubMed
Peyk, P., De Cesarei, A., & Junghöfer, M. (2011). Electromagnetic encephalography software: Overview and integration with other EEG/MEG toolboxes. Computational Intelligence and Neuroscience, 2011, 861705. https://doi.org/10.1155/2011/861705CrossRefGoogle ScholarPubMed
Picton, T. W., & Hillyard, S. A. (1972). Cephalic skin potentials in electroencephalography. Electroencephalography and Clinical Neurophysiology, 33, 419424.CrossRefGoogle ScholarPubMed
Poldrack, R. A. (2011). Inferring mental states from neuroimaging data: From reverse inference to large-scale decoding. Neuron, 72(5), 692697. https://doi.org/10.1016/j.neuron.2011.11.001CrossRefGoogle ScholarPubMed
Ray, W. J., & Cole, H. W. (1985). EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science, 228(4700), 750752.CrossRefGoogle ScholarPubMed
Riels, K., Ramos Campagnoli, R., Thigpen, N., & Keil, A. (2022). Oscillatory brain activity links experience to expectancy during associative learning. Psychophysiology, 59(5), e13946. https://doi.org/10.1111/psyp.13946CrossRefGoogle ScholarPubMed
Schlögl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R., & Pfurtscheller, G. (2007). A fully automated correction method of EOG artifacts in EEG recordings. Clinical Neurophysiology, 118(1), 98104. https://doi.org/10.1016/j.clinph.2006.09.003CrossRefGoogle ScholarPubMed
Sinnott-Armstrong, W., & Simmons, C. (2021). Some common fallacies in arguments from M/EEG data. NeuroImage, 245, 118725. https://doi.org/10.1016/j.neuroimage.2021.118725CrossRefGoogle ScholarPubMed
Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., et al. (2017). Closed-loop brain training: The science of neurofeedback. Nature Reviews Neuroscience, 18(2), 86100. https://doi.org/10.1038/nrn.2016.164CrossRefGoogle ScholarPubMed
Soong, A. C. K., Lind, J. C., Shaw, G. R., & Koles, Z. J. (1993). Systematic comparisons of interpolation techniques in topographic brain mapping. Electroencephalography and Clinical Neurophysiology, 87(4), 185195. https://doi.org/10.1016/0013-4694(93)90018-QCrossRefGoogle ScholarPubMed
Tharwat, A. (2018). Independent component analysis: An introduction. Applied Computing and Informatics, 17(2), 222249. https://doi.org/10.1016/j.aci.2018.08.006CrossRefGoogle Scholar
Thigpen, N. N., Kappenman, E. S., & Keil, A. (2017). Assessing the internal consistency of the event-related potential: An example analysis. Psychophysiology, 54(1), 123138. https://doi.org/10.1111/psyp.12629CrossRefGoogle ScholarPubMed
Ullsperger, M., & Debener, S. (2010). Simultaneous EEG and fMRI: Recording, Analysis, and Application. Oxford University Press.CrossRefGoogle Scholar
Widmann, A., Schröger, E., & Maess, B. (2015). Digital filter design for electrophysiological data – a practical approach. Journal of Neuroscience Methods, 250, 3446. https://doi.org/10.1016/j.jneumeth.2014.08.002CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Physiological Measures
  • Edited by John E. Edlund, Rochester Institute of Technology, New York, Austin Lee Nichols, Central European University, Vienna
  • Book: The Cambridge Handbook of Research Methods and Statistics for the Social and Behavioral Sciences
  • Online publication: 12 December 2024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Physiological Measures
  • Edited by John E. Edlund, Rochester Institute of Technology, New York, Austin Lee Nichols, Central European University, Vienna
  • Book: The Cambridge Handbook of Research Methods and Statistics for the Social and Behavioral Sciences
  • Online publication: 12 December 2024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Physiological Measures
  • Edited by John E. Edlund, Rochester Institute of Technology, New York, Austin Lee Nichols, Central European University, Vienna
  • Book: The Cambridge Handbook of Research Methods and Statistics for the Social and Behavioral Sciences
  • Online publication: 12 December 2024
Available formats
×