Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T19:49:04.742Z Has data issue: false hasContentIssue false

1 - Neuroimaging in Personality Disorders

from Part I - Etiology

Published online by Cambridge University Press:  24 February 2020

Carl W. Lejuez
Affiliation:
University of Kansas
Kim L. Gratz
Affiliation:
University of Toledo, Ohio
Get access

Summary

This chapter focuses on advancements in the understanding of personality pathology gained from structural and functional neuroimaging studies. It draws from the literature on the most widely researched personality disorders including schizotypal, borderline, and antisocial personality disorder. Prominent findings in schizotypal personality disorder include abnormalities in temporal and frontal lobe volumes, decreased structural connectivity of temporal lobe regions, and inefficient recruitment of brain areas during task performance. In borderline personality disorder, neuroimaging findings are characterized by aberrant volume and activity of limbic and prefrontal brain areas that suggest diminished top-down control of affective responsivity. Studies in antisocial personality disorder reveal reduced volume in prefrontal and temporal lobe structures, white matter structure compromise, and altered brain network functional connectivity. Significant challenges in studying this complex population and limitations of current methodology are discussed. Suggestions for future directions of research in this field are provided.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abi-Dargham, A., Mawlawi, O., Lombardo, I., Gil, R., Martinez, D., Huang, Y., … Laruelle, M. (2002). Prefrontal dopamine D1 receptors and working memory in schizophrenia. Journal of Neuroscience, 22(9), 37083719.Google Scholar
Altshuler, L. L., Bartzokis, G., Grieder, T., Curran, J., & Mintz, J. (1998). Amygdala enlargement in bipolar disorder and hippocampal reduction in schizophrenia: An MRI study demonstrating neuroanatomic specificity. Archives of General Psychiatry, 55(7), 663664.Google ScholarPubMed
Amad, A., & Radua, J. (2017). Resting-state meta-analysis in borderline personality disorder: Is the fronto-limbic hypothesis still valid? Journal of Affective Disorders, 212, 79.Google Scholar
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.Google Scholar
Asami, T., Whitford, T. J., Bouix, S., Dickey, C. C., Niznikiewicz, M., Shenton, M. E., … McCarley, R. W. (2013). Globally and locally reduced MRI gray matter volumes in neuroleptic-naive men with schizotypal personality disorder: Association with negative symptoms. JAMA Psychiatry, 70(4), 361372.CrossRefGoogle ScholarPubMed
Baczkowski, B. M., van Zutphen, L., Siep, N., Jacob, G. A., Domes, G., Maier, S., … van de Ven, V. (2017). Deficient amygdala-prefrontal intrinsic connectivity after effortful emotion regulation in borderline personality disorder. European Archives of Psychiatry and Clinical Neuroscience, 267(6), 551565.CrossRefGoogle ScholarPubMed
Blair, R. J. (2004). The roles of orbital frontal cortex in the modulation of antisocial behavior. Brain and Cognition, 55(1), 198-208.Google Scholar
Blair, R. J. (2010). Neuroimaging of psychopathy and antisocial behavior: A targeted review. Current Psychiatry Reports, 12(1), 7682.Google Scholar
Brambilla, P., Soloff, P. H., Sala, M., Nicoletti, M. A., Keshavan, M. S., & Soares, J. C. (2004). Anatomical MRI study of borderline personality disorder patients. Psychiatry Research, 131(2), 125133.Google Scholar
Brunner, R., Henze, R., Parzer, P., Kramer, J., Feigl, N., Lutz, K., … Stieltjes, B. (2010). Reduced prefrontal and orbitofrontal gray matter in female adolescents with borderline personality disorder: Is it disorder specific? NeuroImage, 49(1), 114120.Google Scholar
Buchsbaum, M. S., Nenadic, I., Hazlett, E. A., Spiegel-Cohen, J., Fleischman, M. B., Akhavan, A., … Siever, L. J. (2002). Differential metabolic rates in prefrontal and temporal Brodmann areas in schizophrenia and schizotypal personality disorder. Schizophrenia Research, 54(1–2), 141150.CrossRefGoogle ScholarPubMed
Buchsbaum, M. S., Trestman, R. L., Hazlett, E., Siegel, B. V. Jr., Schaefer, C. H., Luu-Hsia, C., … Siever, L. J. (1997). Regional cerebral blood flow during the Wisconsin Card Sort Test in schizotypal personality disorder. Schizophrenia Research, 27(1), 2128.CrossRefGoogle ScholarPubMed
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215222.Google Scholar
Byne, W., Buchsbaum, M. S., Kemether, E., Hazlett, E. A., Shinwari, A., Mitropoulou, V., & Siever, L. J. (2001). Magnetic resonance imaging of the thalamic mediodorsal nucleus and pulvinar in schizophrenia and schizotypal personality disorder. Archives of General Psychiatry, 58(2), 133140.CrossRefGoogle ScholarPubMed
Carrasco, J. L., Tajima-Pozo, K., Diaz-Marsa, M., Casado, A., Lopez-Ibor, J. J., Arrazola, J., & Yus, M. (2012). Microstructural white matter damage at orbitofrontal areas in borderline personality disorder. Journal of Affective Disorders, 139(2), 149153.Google Scholar
Chan, C. C., Szeszko, P. R., Wong, E., Tang, C. Y., Kelliher, C., Penner, J. D., … Hazlett, E. A. (2018). Frontal and temporal cortical volume, white matter tract integrity, and hemispheric asymmetry in schizotypal personality disorder. Schizophrenia Research, 197, 226232.CrossRefGoogle ScholarPubMed
Chanen, A. M., Velakoulis, D., Carison, K., Gaunson, K., Wood, S. J., Yuen, H. P., … Pantelis, C. (2008). Orbitofrontal, amygdala and hippocampal volumes in teenagers with first-presentation borderline personality disorder. Psychiatry Research, 163(2), 116125.CrossRefGoogle ScholarPubMed
Christ, S. E., Van Essen, D. C., Watson, J. M., Brubaker, L. E., & McDermott, K. B. (2009). The contributions of prefrontal cortex and executive control to deception: Evidence from activation likelihood estimate meta-analyses. Cerebral Cortex, 19(7), 15571566.Google Scholar
Coccaro, E. F. (1992). Impulsive aggression and central serotonergic system function in humans: An example of a dimensional brain–behavior relationship. International Clinical Psychopharmacology, 7(1), 312.CrossRefGoogle ScholarPubMed
Coid, J., Yang, M., Tyrer, P., Roberts, A., & Ullrich, S. (2006). Prevalence and correlates of personality disorder in Great Britain. British Journal of Psychiatry, 188, 423431.Google Scholar
Cullen, K. R., Vizueta, N., Thomas, K. M., Han, G. J., Lim, K. O., Camchong, J., … Schulz, S. C. (2011). Amygdala functional connectivity in young women with borderline personality disorder. Brain Connectivity, 1(1), 6171.Google Scholar
Daniels, W. M., Richter, L., & Stein, D. J. (2004). The effects of repeated intra-amygdala CRF injections on rat behavior and HPA axis function after stress. Metabolic Brain Disease, 19(1–2), 1523.Google Scholar
Das, P., Calhoun, V., & Malhi, G. S. (2014). Bipolar and borderline patients display differential patterns of functional connectivity among resting state networks. NeuroImage, 98, 7381.CrossRefGoogle ScholarPubMed
De Brito, S. A., Mechelli, A., Wilke, M., Laurens, K. R., Jones, A. P., Barker, G. J., … Viding, E. (2009). Size matters: Increased grey matter in boys with conduct problems and callous-unemotional traits. Brain, 132(Pt 4), 843852.Google Scholar
de Oliveira-Souza, R., Hare, R. D., Bramati, I. E., Garrido, G. J., Ignacio, F. A., Tovar-Moll, F., & Moll, J. (2008). Psychopathy as a disorder of the moral brain: Fronto-temporo-limbic grey matter reductions demonstrated by voxel-based morphometry. NeuroImage, 40(3), 12021213.CrossRefGoogle ScholarPubMed
Dickey, C. C., McCarley, R. W., Voglmaier, M. M., Frumin, M., Niznikiewicz, M. A., Hirayasu, Y., … Shenton, M. E. (2002). Smaller left Heschl’s gyrus volume in patients with schizotypal personality disorder. American Journal of Psychiatry, 159(9), 15211527.Google Scholar
Dickey, C. C., McCarley, R. W., Voglmaier, M. M., Niznikiewicz, M. A., Seidman, L. J., Demeo, S., … Shenton, M. E. (2003). An MRI study of superior temporal gyrus volume in women with schizotypal personality disorder. American Journal of Psychiatry, 160(12), 21982201.CrossRefGoogle ScholarPubMed
Dickey, C. C., McCarley, R. W., Voglmaier, M. M., Niznikiewicz, M. A., Seidman, L. J., Hirayasu, Y., … Shenton, M. E. (1999). Schizotypal personality disorder and MRI abnormalities of temporal lobe gray matter. Biological Psychiatry, 45(11), 13931402.Google Scholar
Dickey, C. C., McCarley, R. W., Xu, M. L., Seidman, L. J., Voglmaier, M. M., Niznikiewicz, M. A., … Shenton, M. E. (2007). MRI abnormalities of the hippocampus and cavum septi pellucidi in females with schizotypal personality disorder. Schizophrenia Research, 89(1–3), 4958.CrossRefGoogle ScholarPubMed
Dickey, C. C., Morocz, I. A., Niznikiewicz, M. A., Voglmaier, M., Toner, S., Khan, U., … McCarley, R. W. (2008). Auditory processing abnormalities in schizotypal personality disorder: An fMRI experiment using tones of deviant pitch and duration. Schizophrenia Research, 103(1–3), 2639.Google Scholar
Doll, A., Sorg, C., Manoliu, A., Woller, A., Meng, C., Forstl, H., … Riedl, V. (2013). Shifted intrinsic connectivity of central executive and salience network in borderline personality disorder. Frontiers in Human Neuroscience, 7, 727.CrossRefGoogle ScholarPubMed
Downhill, J. E. Jr., Buchsbaum, M. S., Hazlett, E. A., Barth, S., Lees Roitman, S., Nunn, M., … Siever, L. J. (2001). Temporal lobe volume determined by magnetic resonance imaging in schizotypal personality disorder and schizophrenia. Schizophrenia Research, 48(2–3), 187199.Google Scholar
Driessen, M., Herrmann, J., Stahl, K., Zwaan, M., Meier, S., Hill, A., … Petersen, D. (2000). Magnetic resonance imaging volumes of the hippocampus and the amygdala in women with borderline personality disorder and early traumatization. Archives of General Psychiatry, 57(12), 11151122.Google Scholar
Ellison-Wright, I., & Bullmore, E. (2009). Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophrenia Research, 108(1–3), 310.CrossRefGoogle ScholarPubMed
Fazel, S., & Danesh, J. (2002). Serious mental disorder in 23000 prisoners: A systematic review of 62 surveys. Lancet, 359(9306), 545550.Google Scholar
Fervaha, G., & Remington, G. (2013). Neuroimaging findings in schizotypal personality disorder: A systematic review. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 43, 96107.Google Scholar
Frick, C., Lang, S., Kotchoubey, B., Sieswerda, S., Dinu-Biringer, R., Berger, M., … Barnow, S. (2012). Hypersensitivity in borderline personality disorder during mindreading. PLoS ONE, 7(8), e41650.Google Scholar
Frodl, T., Meisenzahl, E. M., Zetzsche, T., Born, C., Groll, C., Jager, M., … Moller, H. J. (2002). Hippocampal changes in patients with a first episode of major depression. American Journal of Psychiatry, 159(7), 11121118.Google Scholar
Frodl, T., Meisenzahl, E., Zetzsche, T., Bottlender, R., Born, C., Groll, C., … Moller, H. J. (2002). Enlargement of the amygdala in patients with a first episode of major depression. Biological Psychiatry, 51(9), 708714.Google Scholar
Gan, J., Yi, J., Zhong, M., Cao, X., Jin, X., Liu, W., & Zhu, X. (2016). Abnormal white matter structural connectivity in treatment-naive young adults with borderline personality disorder. Acta Psychiatrica Scandinavica, 134(6), 494503.Google Scholar
Garrity, A. G., Pearlson, G. D., McKiernan, K., Lloyd, D., Kiehl, K. A., & Calhoun, V. D. (2007). Aberrant “default mode” functional connectivity in schizophrenia. American Journal of Psychiatry, 164(3), 450457.Google Scholar
Goldstein, K. E., Hazlett, E. A., New, A. S., Haznedar, M. M., Newmark, R. E., Zelmanova, Y., … Siever, L. J. (2009). Smaller superior temporal gyrus volume specificity in schizotypal personality disorder. Schizophrenia Research, 112(1–3), 1423.Google Scholar
Goodman, M., Carpenter, D., Tang, C. Y., Goldstein, K. E., Avedon, J., Fernandez, N., … Hazlett, E. A. (2014). Dialectical behavior therapy alters emotion regulation and amygdala activity in patients with borderline personality disorder. Journal of Psychiatric Research, 57, 108116.CrossRefGoogle ScholarPubMed
Goyer, P. F., Andreason, P. J., Semple, W. E., Clayton, A. H., King, A. C., Compton-Toth, B. A., … Cohen, R. M. (1994). Positron-emission tomography and personality disorders. Neuropsychopharmacology, 10(1), 2128.Google Scholar
Grant, J. E., Correia, S., Brennan-Krohn, T., Malloy, P. F., Laidlaw, D. H., & Schulz, S. C. (2007). Frontal white matter integrity in borderline personality disorder with self-injurious behavior. The Journal of Neuropsychiatry and Clinical Neurosciences, 19(4), 383390.Google Scholar
Gregg, T. R., & Siegel, A. (2001). Brain structures and neurotransmitters regulating aggression in cats: Implications for human aggression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 25(1), 91140.Google Scholar
Gregory, S., ffytche, D., Simmons, A., Kumari, V., Howard, M., Hodgins, S., & Blackwood, N. (2012). The antisocial brain: Psychopathy matters. Archives of General Psychiatry, 69(9), 962972.Google Scholar
Gunderson, J. G., & Singer, M. T. (1975). Defining borderline patients: An overview. American Journal of Psychiatry, 132(1), 110.Google ScholarPubMed
Gurrera, R. J., Nakamura, M., Kubicki, M., Dickey, C. C., Niznikiewicz, M. A., Voglmaier, M. M., … Seidman, L. J. (2007). The uncinate fasciculus and extraversion in schizotypal personality disorder: A diffusion tensor imaging study. Schizophrenia Research, 90(1–3), 360362.Google Scholar
Haldane, M., & Frangou, S. (2004). New insights help define the pathophysiology of bipolar affective disorder: Neuroimaging and neuropathology findings. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 28(6), 943960.CrossRefGoogle ScholarPubMed
Hasan, K. M., Kamali, A., Abid, H., Kramer, L. A., Fletcher, J. M., & Ewing-Cobbs, L. (2010). Quantification of the spatiotemporal microstructural organization of the human brain association, projection and commissural pathways across the lifespan using diffusion tensor tractography. Brain Structure and Function, 214(4), 361373.Google Scholar
Hazlett, E. A., Buchsbaum, M. S., Haznedar, M. M., Newmark, R., Goldstein, K. E., Zelmanova, Y., … Siever, L. J. (2008). Cortical gray and white matter volume in unmedicated schizotypal and schizophrenia patients. Schizophrenia Research, 101(1–3), 111123.Google Scholar
Hazlett, E. A., Buchsbaum, M. S., Zhang, J., Newmark, R. E., Glanton, C. F., Zelmanova, Y., … Siever, L. J. (2008). Frontal-striatal-thalamic mediodorsal nucleus dysfunction in schizophrenia-spectrum patients during sensorimotor gating. NeuroImage, 42(3), 11641177.Google Scholar
Hazlett, E. A., Collazo, T., Zelmanova, Y., Entis, J. J., Chu, K. W., Goldstein, K. E., … Byne, W. (2012). Anterior limb of the internal capsule in schizotypal personality disorder: Fiber-tract counting, volume, and anisotropy. Schizophrenia Research, 141(2–3), 119127.Google Scholar
Hazlett, E. A., Goldstein, K. E., & Kolaitis, J. C. (2012). A review of structural MRI and diffusion tensor imaging in schizotypal personality disorder. Current Psychiatry Reports, 14(1), 7078.CrossRefGoogle ScholarPubMed
Hazlett, E. A., Lamade, R. V., Graff, F. S., McClure, M. M., Kolaitis, J. C., Goldstein, K. E., … Moshier, E. (2014). Visual-spatial working memory performance and temporal gray matter volume predict schizotypal personality disorder group membership. Schizophrenia Research, 152(2–3), 350357.Google Scholar
Hazlett, E. A., New, A. S., Newmark, R., Haznedar, M. M., Lo, J. N., Speiser, L. J., … Buchsbaum, M. S. (2005). Reduced anterior and posterior cingulate gray matter in borderline personality disorder. Biological Psychiatry, 58(8), 614623.CrossRefGoogle ScholarPubMed
Hazlett, E. A., Zhang, J., New, A. S., Zelmanova, Y., Goldstein, K. E., Haznedar, M. M., … Chu, K. W. (2012). Potentiated amygdala response to repeated emotional pictures in borderline personality disorder. Biological Psychiatry, 72(6), 448456.CrossRefGoogle ScholarPubMed
Haznedar, M. M., Buchsbaum, M. S., Hazlett, E. A., Shihabuddin, L., New, A., & Siever, L. J. (2004). Cingulate gyrus volume and metabolism in the schizophrenia spectrum. Schizophrenia Research, 71(2–3), 249262.Google Scholar
Herve, H. F., Hayes, P. J., & Hare, R. D. (2003). Psychopathy and sensitivity to the emotional polarity of metaphorical statements. Personality and Individual Differences, 35(7), 14971507.Google Scholar
Hill, K., Mann, L., Laws, K. R., Stephenson, C. M., Nimmo-Smith, I., & McKenna, P. J. (2004). Hypofrontality in schizophrenia: A meta-analysis of functional imaging studies. Acta Psychiatrica Scandinavica, 110(4), 243256.Google Scholar
Holtmann, J., Herbort, M. C., Wustenberg, T., Soch, J., Richter, S., Walter, H., … Schott, B. H. (2013). Trait anxiety modulates fronto-limbic processing of emotional interference in borderline personality disorder. Frontiers in Human Neuroscience, 7, 54.CrossRefGoogle ScholarPubMed
Huang, X. Q., Lui, S., Deng, W., Chan, R. C., Wu, Q. Z., Jiang, L. J., … Gong, Q. Y. (2010). Localization of cerebral functional deficits in treatment-naive, first-episode schizophrenia using resting-state fMRI. NeuroImage, 49(4), 29012906.Google Scholar
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research Domain Criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748751.CrossRefGoogle Scholar
Irle, E., Lange, C., & Sachsse, U. (2005). Reduced size and abnormal asymmetry of parietal cortex in women with borderline personality disorder. Biological Psychiatry, 57(2), 173182.CrossRefGoogle ScholarPubMed
Jacob, G. A., Zvonik, K., Kamphausen, S., Sebastian, A., Maier, S., Philipsen, A., … Tuscher, O. (2013). Emotional modulation of motor response inhibition in women with borderline personality disorder: An fMRI study. Journal of Psychiatry & Neuroscience, 38(3), 164172.Google Scholar
Jiang, W., Li, G., Liu, H., Shi, F., Wang, T., Shen, C., … Shen, D. (2016). Reduced cortical thickness and increased surface area in antisocial personality disorder. Neuroscience, 337, 143152.Google Scholar
Jiang, W., Liu, H., Liao, J., Ma, X., Rong, P., Tang, Y., & Wang, W. (2013). A functional MRI study of deception among offenders with antisocial personality disorders. Neuroscience, 244, 9098.Google Scholar
Jiang, W., Shi, F., Liao, J., Liu, H., Wang, T., Shen, C., … Shen, D. (2017). Disrupted functional connectome in antisocial personality disorder. Brain Imaging and Behavior, 11(4), 10711084.Google Scholar
Jiang, W., Shi, F., Liu, H., Li, G., Ding, Z., Shen, H., … Shen, D. (2017). Reduced white matter integrity in antisocial personality disorder: A diffusion tensor imaging study. Scientific Reports, 7, 43002.Google Scholar
Kamphausen, S., Schroder, P., Maier, S., Bader, K., Feige, B., Kaller, C. P., … Tuscher, O. (2013). Medial prefrontal dysfunction and prolonged amygdala response during instructed fear processing in borderline personality disorder. The World Journal of Biological Psychiatry, 14(4), 307318, S301–304.CrossRefGoogle ScholarPubMed
Kawasaki, Y., Suzuki, M., Nohara, S., Hagino, H., Takahashi, T., Matsui, M., … Kurachi, M. (2004). Structural brain differences in patients with schizophrenia and schizotypal disorder demonstrated by voxel-based morphometry. European Archives of Psychiatry and Clinical Neuroscience, 254(6), 406414.Google Scholar
Kernberg, O. (1967). Borderline personality organization. Journal of the American Psychoanalytic Association, 15(3), 641685.Google Scholar
Koenigsberg, H. W., Buchsbaum, M. S., Buchsbaum, B. R., Schneiderman, J. S., Tang, C. Y., New, A., … Siever, L. J. (2005). Functional MRI of visuospatial working memory in schizotypal personality disorder: A region-of-interest analysis. Psychological Medicine, 35(7), 10191030.Google Scholar
Kolla, N. J., Dunlop, K., Downar, J., Links, P., Bagby, R. M., Simpson, A., & Meyer, J. (2015). Ventral striatum monoamine oxidase-A is associated with ventral striatum functional connectivity in antisocial personality disorder: A PET/FMRI study. Biological Psychiatry, 77(9), 366s366s.Google Scholar
Kolla, N. J., Dunlop, K., Downar, J., Links, P., Bagby, R. M., Wilson, A. A., … Meyer, J. H. (2016). Association of ventral striatum monoamine oxidase-A binding and functional connectivity in antisocial personality disorder with high impulsivity: A positron emission tomography and functional magnetic resonance imaging study. European Neuropsychopharmacology, 26(4), 777786.Google Scholar
Kolla, N. J., Matthews, B., Wilson, A. A., Houle, S., Bagby, R. M., Links, P., … Meyer, J. H. (2015). Lower monoamine oxidase-A total distribution volume in impulsive and violent male offenders with antisocial personality disorder and high psychopathic traits: An [C-11] harmine positron emission tomography study. Neuropsychopharmacology, 40(11), 25962603.Google Scholar
Koo, M. S., Levitt, J. J., McCarley, R. W., Seidman, L. J., Dickey, C. C., Niznikiewicz, M. A., … Shenton, M. E. (2006). Reduction of caudate nucleus volumes in neuroleptic-naive female subjects with schizotypal personality disorder. Biological Psychiatry, 60(1), 4048.Google Scholar
Kraguljac, N. V., White, D. M., Hadley, J., Reid, M. A., & Lahti, A. C. (2014). Hippocampal-parietal dysconnectivity and glutamate abnormalities in unmedicated patients with schizophrenia. Hippocampus, 24(12), 15241532.Google Scholar
Krause-Utz, A., Elzinga, B. M., Oei, N. Y., Paret, C., Niedtfeld, I., Spinhoven, P., … Schmahl, C. (2014). Amygdala and dorsal anterior cingulate connectivity during an emotional working memory task in borderline personality disorder patients with interpersonal trauma history. Frontiers in Human Neuroscience, 8, 848.Google Scholar
Krause-Utz, A., Oei, N. Y., Niedtfeld, I., Bohus, M., Spinhoven, P., Schmahl, C., & Elzinga, B. M. (2012). Influence of emotional distraction on working memory performance in borderline personality disorder. Psychological Medicine, 42(10), 21812192.Google Scholar
Kubicki, M., McCarley, R., Westin, C. F., Park, H. J., Maier, S., Kikinis, R., … Shenton, M. E. (2007). A review of diffusion tensor imaging studies in schizophrenia. Journal of Psychiatric Research, 41(1–2), 1530.Google Scholar
Kuhn, S., & Gallinat, J. (2013). Gray matter correlates of posttraumatic stress disorder: A quantitative meta-analysis. Biological Psychiatry, 73(1), 7074.Google Scholar
Kuruoğlu, A. C., Arikan, Z., Vural, G., Karataş, M., Araç, , & Işik, E. (1996). Single photon emission computerised tomography in chronic alcoholism: Antisocial personality disorder may be associated with decreased frontal perfusion. British Journal of Psychiatry, 169(3), 348354.Google Scholar
Laakso, M. P., Gunning-Dixon, F., Vaurio, O., Repo-Tiihonen, E., Soininen, H., & Tiihonen, J. (2002). Prefrontal volumes in habitually violent subjects with antisocial personality disorder and type 2 alcoholism. Psychiatry Research, 114(2), 95102.CrossRefGoogle ScholarPubMed
Laakso, M. P., Vaurio, O., Koivisto, E., Savolainen, L., Eronen, M., Aronen, H. J., … Tiihonen, J. (2001). Psychopathy and the posterior hippocampus. Behavioural Brain Research, 118(2), 187193.Google Scholar
Lange, C., & Irle, E. (2004). Enlarged amygdala volume and reduced hippocampal volume in young women with major depression. Psychological Medicine, 34(6), 10591064.Google Scholar
Lei, X., Zhong, M., Liu, Y., Jin, X., Zhou, Q., Xi, C., … Yi, J. (2017). A resting-state fMRI study in borderline personality disorder combining amplitude of low frequency fluctuation, regional homogeneity and seed based functional connectivity Journal of Affective Disorders, 218, 299305.Google Scholar
Leichsenring, F., Leibing, E., Kruse, J., New, A. S., & Leweke, F. (2011). Borderline personality disorder. Lancet, 377(9759), 7484.CrossRefGoogle ScholarPubMed
Lener, M. S., Wong, E., Tang, C. Y., Byne, W., Goldstein, K. E., Blair, N. J., … Hazlett, E. A. (2015). White matter abnormalities in schizophrenia and schizotypal personality disorder. Schizophrenia Bulletin, 41(1), 300310.Google Scholar
Lenzenweger, M. F., Lane, M. C., Loranger, A. W., & Kessler, R. C. (2007). DSM-IV personality disorders in the National Comorbidity Survey Replication. Biological Psychiatry, 62(6), 553564.Google Scholar
Lindner, P., Savic, I., Sitnikov, R., Budhiraja, M., Liu, Y., Jokinen, J., … Hodgins, S. (2016). Conduct disorder in females is associated with reduced corpus callosum structural integrity independent of comorbid disorders and exposure to maltreatment. Translational Psychiatry, 6(1), e714.Google Scholar
Lischke, A., Domin, M., Freyberger, H. J., Grabe, H. J., Mentel, R., Bernheim, D., & Lotze, M. (2015). Structural alterations in white-matter tracts connecting (para-)limbic and prefrontal brain regions in borderline personality disorder. Psychological Medicine, 45(15), 31713180.Google Scholar
Lischke, A., Domin, M., Freyberger, H. J., Grabe, H. J., Mentel, R., Bernheim, D., & Lotze, M. (2017). Structural alterations in the corpus callosum are associated with suicidal behavior in women with borderline personality disorder. Frontiers in Human Neuroscience, 11, 196.Google Scholar
Liu, H., Liao, J., Jiang, W., & Wang, W. (2014). Changes in low-frequency fluctuations in patients with antisocial personality disorder revealed by resting-state functional MRI. PLoS ONE, 9(3), e89790.Google Scholar
Lucas, P. B., Gardner, D. L., Cowdry, R. W., & Pickar, D. (1989). Cerebral structure in borderline personality disorder. Psychiatry Research, 27(2), 111115.Google Scholar
Lyoo, I. K., Han, M. H., & Cho, D. Y. (1998). A brain MRI study in subjects with borderline personality disorder. Journal of Affective Disorders, 50(2–3), 235243.Google Scholar
Maier-Hein, K. H., Brunner, R., Lutz, K., Henze, R., Parzer, P., Feigl, N., … Stieltjes, B. (2014). Disorder-specific white matter alterations in adolescent borderline personality disorder. Biological Psychiatry, 75(1), 8188.Google Scholar
Matsui, M., Suzuki, M., Zhou, S. Y., Takahashi, T., Kawasaki, Y., Yuuki, H., … Kurachi, M. (2008). The relationship between prefrontal brain volume and characteristics of memory strategy in schizophrenia spectrum disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 32(8), 18541862.Google Scholar
McClure, M. M., Harvey, P. D., Bowie, C. R., Iacoviello, B., & Siever, L. J. (2013). Functional outcomes, functional capacity, and cognitive impairment in schizotypal personality disorder. Schizophrenia Research, 144(1–3), 146150.Google Scholar
Meyer, J. H., Wilson, A. A., Rusjan, P., Clark, M., Houle, S., Woodside, S., … Colleton, M. (2008). Serotonin(2A) receptor binding potential in people with aggressive and violent behaviour. Journal of Psychiatry & Neuroscience, 33(6), 499508.Google Scholar
Mier, D., Lis, S., Esslinger, C., Sauer, C., Hagenhoff, M., Ulferts, J., … Kirsch, P. (2013). Neuronal correlates of social cognition in borderline personality disorder. Social Cognitive and Affective Neuroscience, 8(5), 531537.Google Scholar
Minzenberg, M. J., Fan, J., New, A. S., Tang, C. Y., & Siever, L. J. (2008). Frontolimbic structural changes in borderline personality disorder. Journal of Psychiatric Research, 42(9), 727733.CrossRefGoogle ScholarPubMed
Motzkin, J. C., Newman, J. P., Kiehl, K. A., & Koenigs, M. (2011). Reduced prefrontal connectivity in psychopathy. Journal of Neuroscience, 31(48), 1734817357.Google Scholar
Muller, J. L., Ganssbauer, S., Sommer, M., Dohnel, K., Weber, T., Schmidt-Wilcke, T., & Hajak, G. (2008). Gray matter changes in right superior temporal gyrus in criminal psychopaths: Evidence from voxel-based morphometry. Psychiatry Research: Neuroimaging, 163(3), 213222.Google Scholar
Muller, J. L., Sommer, M., Dohnel, K., Weber, T., Schmidt-Wilcke, T., & Hajak, G. (2008). Disturbed prefrontal and temporal brain function during emotion and cognition interaction in criminal psychopathy. Behavioral Sciences & The Law, 26(1), 131150.Google Scholar
Nakamura, M., McCarley, R. W., Kubicki, M., Dickey, C. C., Niznikiewicz, M. A., Voglmaier, M. M., … Shenton, M. E. (2005). Fronto-temporal disconnectivity in schizotypal personality disorder: A diffusion tensor imaging study. Biological Psychiatry, 58(6), 468478.Google Scholar
Narayan, V. M., Narr, K. L., Kumari, V., Woods, R. P., Thompson, P. M., Toga, A. W., & Sharma, T. (2007). Regional cortical thinning in subjects with violent antisocial personality disorder or schizophrenia. American Journal of Psychiatry, 164(9), 14181427.Google Scholar
New, A. S., Buchsbaum, M. S., Hazlett, E. A., Goodman, M., Koenigsberg, H. W., Lo, J., … Siever, L. J. (2004). Fluoxetine increases relative metabolic rate in prefrontal cortex in impulsive aggression. Psychopharmacology (Berl), 176(3–4), 451458.Google Scholar
New, A. S., Carpenter, D. M., Perez-Rodriguez, M. M., Ripoll, L. H., Avedon, J., Patil, U., … Goodman, M. (2013). Developmental differences in diffusion tensor imaging parameters in borderline personality disorder. Journal of Psychiatric Research, 47(8), 11011109.Google Scholar
New, A. S., Hazlett, E. A., Buchsbaum, M. S., Goodman, M., Mitelman, S. A., Newmark, R., … Siever, L. J. (2007). Amygdala-prefrontal disconnection in borderline personality disorder. Neuropsychopharmacology, 32(7), 16291640.Google Scholar
New, A. S., Hazlett, E. A., Newmark, R. E., Zhang, J., Triebwasser, J., Meyerson, D., … Buchsbaum, M. S. (2009). Laboratory induced aggression: A positron emission tomography study of aggressive individuals with borderline personality disorder. Biological Psychiatry, 66(12), 11071114.Google Scholar
Niedtfeld, I., Kirsch, P., Schulze, L., Herpertz, S. C., Bohus, M., & Schmahl, C. (2012). Functional connectivity of pain-mediated affect regulation in borderline personality disorder. PLoS ONE, 7(3), e33293.Google Scholar
Niedtfeld, I., Schmitt, R., Winter, D., Bohus, M., Schmahl, C., & Herpertz, S. C. (2017). Pain-mediated affect regulation is reduced after dialectical behavior therapy in borderline personality disorder: A longitudinal fMRI study. Social Cognitive and Affective Neuroscience, 12(5), 739747.Google Scholar
Ninomiya, T., Oshita, H., Kawano, Y., Goto, C., Matsuhashi, M., Masuda, K., … Akiyoshi, J. (2018). Reduced white matter integrity in borderline personality disorder: A diffusion tensor imaging study. Journal of Affective Disorders, 225, 723732.Google Scholar
Nunes, P. M., Wenzel, A., Borges, K. T., Porto, C. R., Caminha, R. M., & de Oliveira, I. R. (2009). Volumes of the hippocampus and amygdala in patients with borderline personality disorder: A meta-analysis. Journal of Personality Disorders, 23(4), 333345.Google Scholar
Ogloff, J. R. P. (2006). Psychopathy/antisocial personality disorder conundrum. Australian and New Zealand Journal of Psychiatry, 40(6–7), 519528.Google Scholar
Oldham, J. M. (2006). Borderline personality disorder and suicidality. American Journal of Psychiatry, 163(1), 2026.Google Scholar
Oquendo, M. A., Krunic, A., Parsey, R. V., Milak, M., Malone, K. M., Anderson, A., … John Mann, J. (2005). Positron emission tomography of regional brain metabolic responses to a serotonergic challenge in major depressive disorder with and without borderline personality disorder. Neuropsychopharmacology, 30(6), 11631172.Google Scholar
Perez-Rodriguez, M. M., New, A. S., Goldstein, K. E., Rosell, D., Yuan, Q., Zhou, Z., … Hazlett, E. A. (2017). Brain-derived neurotrophic factor Val66Met genotype modulates amygdala habituation. Psychiatry Research, 263, 8592.Google Scholar
Poythress, N. G., Edens, J. F., Skeem, J. L., Lilienfeld, S. O., Douglas, K. S., Frick, P. J., … Wang, T. (2010). Identifying subtypes among offenders with antisocial personality disorder: A cluster-analytic study. Journal of Abnormal Psychology, 119(2), 389400.CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences USA, 98(2), 676682.Google Scholar
Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2000). Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Archives of General Psychiatry, 57(2), 119127; discussion 128–129.CrossRefGoogle ScholarPubMed
Rosenkranz, J. A., & Grace, A. A. (2002). Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. Journal of Neuroscience, 22(1), 324337.Google Scholar
Rotarska-Jagiela, A., van de Ven, V., Oertel-Knochel, V., Uhlhaas, P. J., Vogeley, K., & Linden, D. E. (2010). Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophrenia Research, 117(1), 2130.Google Scholar
Ruocco, A. C., Amirthavasagam, S., Choi-Kain, L. W., & McMain, S. F. (2013). Neural correlates of negative emotionality in borderline personality disorder: An activation-likelihood-estimation meta-analysis. Biological Psychiatry, 73(2), 153160.Google Scholar
Ruocco, A. C., Amirthavasagam, S., & Zakzanis, K. K. (2012). Amygdala and hippocampal volume reductions as candidate endophenotypes for borderline personality disorder: A meta-analysis of magnetic resonance imaging studies. Psychiatry Research, 201(3), 245252.Google Scholar
Rusch, N., Bracht, T., Kreher, B. W., Schnell, S., Glauche, V., Il’yasov, K. A., … van Elst, L. T. (2010). Reduced interhemispheric structural connectivity between anterior cingulate cortices in borderline personality disorder. Psychiatry Research, 181(2), 151154.Google Scholar
Rusch, N., van Elst, L. T., Ludaescher, P., Wilke, M., Huppertz, H. J., Thiel, T., … Ebert, D. (2003). A voxel-based morphometric MRI study in female patients with borderline personality disorder. NeuroImage, 20(1), 385392.CrossRefGoogle ScholarPubMed
Rusch, N., Weber, M., Il’yasov, K. A., Lieb, K., Ebert, D., Hennig, J., & van Elst, L. T. (2007). Inferior frontal white matter microstructure and patterns of psychopathology in women with borderline personality disorder and comorbid attention-deficit hyperactivity disorder. NeuroImage, 35(2), 738747.CrossRefGoogle ScholarPubMed
Rylands, A. J., Hinz, R., Jones, M., Holmes, S. E., Feldmann, M., Brown, G., … Talbot, P. S. (2012). Pre- and postsynaptic serotonergic differences in males with extreme levels of impulsive aggression without callous unemotional traits: A positron emission tomography study using C-11-DASB and C-11-MDL100907. Biological Psychiatry, 72(12), 10041011.Google Scholar
Scherpiet, S., Bruhl, A. B., Opialla, S., Roth, L., Jancke, L., & Herwig, U. (2014). Altered emotion processing circuits during the anticipation of emotional stimuli in women with borderline personality disorder. European Archives of Psychiatry and Clinical Neuroscience, 264(1), 4560.Google Scholar
Schiffer, B., Muller, B. W., Scherbaum, N., Hodgins, S., Forsting, M., Wiltfang, J., … Leygraf, N. (2011). Disentangling structural brain alterations associated with violent behavior from those associated with substance use disorders. Archives of General Psychiatry, 68(10), 10391049.Google Scholar
Schmahl, C., Bohus, M., Esposito, F., Treede, R. D., Di Salle, F., Greffrath, W., … Seifritz, E. (2006). Neural correlates of antinociception in borderline personality disorder. Archives of General Psychiatry, 63(6), 659667.Google Scholar
Schmahl, C. G., Elzinga, B. M., Vermetten, E., Sanislow, C., McGlashan, T. H., & Bremner, J. D. (2003). Neural correlates of memories of abandonment in women with and without borderline personality disorder. Biological Psychiatry, 54(2), 142151.Google Scholar
Schnell, K., & Herpertz, S. C. (2007). Effects of dialectic-behavioral-therapy on the neural correlates of affective hyperarousal in borderline personality disorder. Journal of Psychiatric Research, 41(10), 837847.Google Scholar
Schulz, S. C., Koller, M. M., Kishore, P. R., Hamer, R. M., Gehl, J. J., & Friedel, R. O. (1983). Ventricular enlargement in teenage patients with schizophrenia spectrum disorder. American Journal of Psychiatry, 140(12), 15921595.Google Scholar
Schulze, L., Schmahl, C., & Niedtfeld, I. (2016). Neural correlates of disturbed emotion processing in borderline personality disorder: A multimodal meta-analysis. Biological Psychiatry, 79(2), 97106.Google Scholar
Shepherd, A. M., Laurens, K. R., Matheson, S. L., Carr, V. J., & Green, M. J. (2012). Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. Neuroscience & Biobehavioral Reviews, 36(4), 13421356.Google Scholar
Shihabuddin, L., Buchsbaum, M. S., Hazlett, E. A., Silverman, J., New, A., Brickman, A. M., … Siever, L. J. (2001). Striatal size and relative glucose metabolic rate in schizotypal personality disorder and schizophrenia. Archives of General Psychiatry, 58(9), 877884.Google Scholar
Siever, L. J., & Davis, K. L. (2004). The pathophysiology of schizophrenia disorders: Perspectives from the spectrum. American Journal of Psychiatry, 161(3), 398413.Google Scholar
Silbersweig, D., Clarkin, J. F., Goldstein, M., Kernberg, O. F., Tuescher, O., Levy, K. N., … Stern, E. (2007). Failure of frontolimbic inhibitory function in the context of negative emotion in borderline personality disorder. American Journal of Psychiatry, 164(12), 18321841.Google Scholar
Soloff, P. H., Chiappetta, L., Mason, N. S., Becker, C., & Price, J. C. (2014). Effects of serotonin-2A receptor binding and gender on personality traits and suicidal behavior in borderline personality disorder. Psychiatry Research: Neuroimaging, 222(3), 140148.CrossRefGoogle ScholarPubMed
Soloff, P. H., Meltzer, C. C., Becker, C., Greer, P. J., & Constantine, D. (2005). Gender differences in a fenfluramine-activated FDG PET study of borderline personality disorder. Psychiatry Research, 138(3), 183195.Google Scholar
Soloff, P. H., Meltzer, C. C., Greer, P. J., Constantine, D., & Kelly, T. M. (2000). A fenfluramine-activated FDG-PET study of borderline personality disorder. Biological Psychiatry, 47(6), 540547.CrossRefGoogle ScholarPubMed
Soloff, P. H., Pruitt, P., Sharma, M., Radwan, J., White, R., & Diwadkar, V. A. (2012). Structural brain abnormalities and suicidal behavior in borderline personality disorder. Journal of Psychiatric Research, 46(4), 516525.Google Scholar
Stein, M. B., Koverola, C., Hanna, C., Torchia, M. G., & McClarty, B. (1997). Hippocampal volume in women victimized by childhood sexual abuse. Psychological Medicine, 27(4), 951959.Google Scholar
Sun, Y., Zhang, L., Ancharaz, S. S., Cheng, S., Sun, W., Wang, H., & Sun, Y. (2016). Decreased fractional anisotropy values in two clusters of white matter in patients with schizotypal personality disorder: A DTI study. Behavioural Brain Research, 310, 6875.Google Scholar
Sundram, F., Deeley, Q., Sarkar, S., Daly, E., Latham, R., Craig, M., … Murphy, D. G. (2012). White matter microstructural abnormalities in the frontal lobe of adults with antisocial personality disorder. Cortex, 48(2), 216229.Google Scholar
Suzuki, M., Zhou, S. Y., Hagino, H., Takahashi, T., Kawasaki, Y., Nohara, S., … Kurachi, M. (2004). Volume reduction of the right anterior limb of the internal capsule in patients with schizotypal disorder. Psychiatry Research, 130(3), 213225.Google Scholar
Suzuki, M., Zhou, S. Y., Takahashi, T., Hagino, H., Kawasaki, Y., Niu, L., … Kurachi, M. (2005). Differential contributions of prefrontal and temporolimbic pathology to mechanisms of psychosis. Brain, 128(Pt 9), 21092122.Google Scholar
Takahashi, T., Kawasaki, Y., Kurokawa, K., Hagino, H., Nohara, S., Yamashita, I., … Kurachi, M. (2002). Lack of normal structural asymmetry of the anterior cingulate gyrus in female patients with schizophrenia: A volumetric magnetic resonance imaging study. Schizophrenia Research, 55(1–2), 6981.Google Scholar
Takahashi, T., Suzuki, M., Zhou, S. Y., Nakamura, K., Tanino, R., Kawasaki, Y., … Kurachi, M. (2008). Prevalence and length of the adhesio interthalamica in schizophrenia spectrum disorders. Psychiatry Research, 164(1), 9094.Google Scholar
Takahashi, T., Suzuki, M., Zhou, S. Y., Tanino, R., Hagino, H., Niu, L., … Kurachi, M. (2006). Temporal lobe gray matter in schizophrenia spectrum: A volumetric MRI study of the fusiform gyrus, parahippocampal gyrus, and middle and inferior temporal gyri. Schizophrenia Research, 87(1–3), 116126.Google Scholar
Takahashi, T., Suzuki, M., Zhou, S. Y., Tanino, R., Nakamura, K., Kawasaki, Y., … Kurachi, M. (2010). A follow-up MRI study of the superior temporal subregions in schizotypal disorder and first-episode schizophrenia. Schizophrenia Research, 119(1–3), 6574.Google Scholar
Takahashi, T., Zhou, S. Y., Nakamura, K., Tanino, R., Furuichi, A., Kido, M., … Suzuki, M. (2011). A follow-up MRI study of the fusiform gyrus and middle and inferior temporal gyri in schizophrenia spectrum. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35(8), 19571964.Google Scholar
Tang, Y., Jiang, W., Liao, J., Wang, W., & Luo, A. (2013). Identifying individuals with antisocial personality disorder using resting-state FMRI. PLoS ONE, 8(4), e60652.Google Scholar
Tang, Y., Long, J., Wang, W., Liao, J., Xie, H., Zhao, G., & Zhang, H. (2016). Aberrant functional brain connectome in people with antisocial personality disorder. Scientific Reports, 6, 26209.Google Scholar
Tebartz van Elst, L., Hesslinger, B., Thiel, T., Geiger, E., Haegele, K., Lemieux, L., … Ebert, D. (2003). Frontolimbic brain abnormalities in patients with borderline personality disorder: A volumetric magnetic resonance imaging study. Biological Psychiatry, 54(2), 163171.Google Scholar
Thompson, J. L., Rosell, D. R., Slifstein, M., Girgis, R. R., Xu, X., Ehrlich, Y., … Siever, L. J. (2014). Prefrontal dopamine D1 receptors and working memory in schizotypal personality disorder: A PET study with [(1)(1)C]NNC112. Psychopharmacology (Berl), 231(21), 42314240.Google Scholar
Tiihonen, J., Rossi, R., Laakso, M. P., Hodgins, S., Testa, C., Perez, J., … Frisoni, G. B. (2008). Brain anatomy of persistent violent offenders: More rather than less. Psychiatry Research: Neuroimaging, 163(3), 201212.Google Scholar
Visintin, E., De Panfilis, C., Amore, M., Balestrieri, M., Wolf, R. C., & Sambataro, F. (2016). Mapping the brain correlates of borderline personality disorder: A functional neuroimaging meta-analysis of resting state studies. Journal of Affective Disorders, 204, 262269.Google Scholar
Vu, M. A., Thermenos, H. W., Terry, D. P., Wolfe, D. J., Voglmaier, M. M., Niznikiewicz, M. A., … Dickey, C. C. (2013). Working memory in schizotypal personality disorder: fMRI activation and deactivation differences. Schizophrenia Research, 151(1–3), 113123.Google Scholar
Wagner, G., Krause-Utz, A., de la Cruz, F., Schumann, A., Schmahl, C., & Bar, K. J. (2018). Resting-state functional connectivity of neurotransmitter producing sites in female patients with borderline personality disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 83, 118126.Google Scholar
Waller, R., Dotterer, H. L., Murray, L., Maxwell, A. M., & Hyde, L. W. (2017). White-matter tract abnormalities and antisocial behavior: A systematic review of diffusion tensor imaging studies across development. NeuroImage: Clinical, 14, 201215.CrossRefGoogle ScholarPubMed
Weniger, G., Lange, C., Sachsse, U., & Irle, E. (2009). Reduced amygdala and hippocampus size in trauma-exposed women with borderline personality disorder and without posttraumatic stress disorder. Journal of Psychiatry & Neuroscience, 34(5), 383388.Google Scholar
Whalley, H. C., Nickson, T., Pope, M., Nicol, K., Romaniuk, L., Bastin, M. E., … Hall, J. (2015). White matter integrity and its association with affective and interpersonal symptoms in borderline personality disorder. NeuroImage: Clinical, 7, 476481.Google Scholar
Wheeler, A. L., & Voineskos, A. N. (2014). A review of structural neuroimaging in schizophrenia: From connectivity to connectomics. Frontiers in Human Neuroscience, 8, 653.CrossRefGoogle ScholarPubMed
Whittle, S., Chanen, A. M., Fornito, A., McGorry, P. D., Pantelis, C., & Yucel, M. (2009). Anterior cingulate volume in adolescents with first-presentation borderline personality disorder. Psychiatry Research, 172(2), 155160.Google Scholar
Yang, Y., & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A meta-analysis. Psychiatry Research, 174(2), 8188.Google Scholar
Yang, Y. L., Raine, A., Narr, K. L., Colletti, P., & Toga, A. W. (2009). Localization of deformations within the amygdala in individuals with psychopathy. Archives of General Psychiatry, 66(9), 986994.Google Scholar
Yoneyama, E., Matsui, M., Kawasaki, Y., Nohara, S., Takahashi, T., Hagino, H., … Kurachi, M. (2003). Gray matter features of schizotypal disorder patients exhibiting the schizophrenia-related code types of the Minnesota Multiphasic Personality Inventory. Acta Psychiatrica Scandinavica, 108(5), 333340.Google Scholar
Zanarini, M. C., Williams, A. A., Lewis, R. E., Reich, R. B., Vera, S. C., Marino, M. F., … Frankenburg, F. R. (1997). Reported pathological childhood experiences associated with the development of borderline personality disorder. American Journal of Psychiatry, 154(8), 11011106.Google Scholar
Zetzsche, T., Preuss, U. W., Frodl, T., Schmitt, G., Seifert, D., Munchhausen, E., … Meisenzahl, E. M. (2007). Hippocampal volume reduction and history of aggressive behaviour in patients with borderline personality disorder. Psychiatry Research, 154(2), 157170.Google Scholar
Zhang, Q., Shen, J., Wu, J., Yu, X., Lou, W., Fan, H., … Wang, D. (2014). Altered default mode network functional connectivity in schizotypal personality disorder. Schizophrenia Research, 160(1–3), 5156.Google Scholar
Zhang, T., Wang, D., Zhang, Q., Wu, J., Lv, J., & Shi, L. (2017). Supervoxel-based statistical analysis of diffusion tensor imaging in schizotypal personality disorder. NeuroImage, 163, 368378.Google Scholar
Zhu, Y., Tang, Y., Zhang, T., Li, H., Tang, Y., Li, C., … Wang, J. (2017). Reduced functional connectivity between bilateral precuneus and contralateral parahippocampus in schizotypal personality disorder. BMC Psychiatry, 17(1), 48.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×