Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T05:06:41.317Z Has data issue: false hasContentIssue false

1 - Introduction to Multimedia Learning

from Part I - Background

Published online by Cambridge University Press:  19 November 2021

Richard E. Mayer
Affiliation:
University of California, Santa Barbara
Logan Fiorella
Affiliation:
University of Georgia
Get access

Summary

Multimedia learning is learning from words and pictures. The rationale for studying multimedia learning is that people can learn more deeply from words and pictures than from words alone. A goal of research on multimedia learning is to understand how to design multimedia learning environments that promote meaningful learning. The research base concerning multimedia learning is reflected in the 46 chapters of this Handbook, and includes 30 design principles that we have organized into three categories: principles based on reducing extraneous processing, principles based on managing essential processing, and principles based on fostering generative processing.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145182.Google Scholar
Cognition and Technology Group at Vanderbilt. (1996). Looking at technology in context: A framework for understanding technology in education. In Berliner, D., & Calfee, R. C. (eds.), Handbook of Educational Psychology (pp. 807840). New York: Macmillan.Google Scholar
Comenius, J. A. (1887). Orbis Pictus. Syracuse, NY: Bardeen. [Reproduced version.]Google Scholar
Cuban, L. (1986). Teachers and Machines: The Classroom Use of Technology Since 1920. New York: Teachers College Press.Google Scholar
Mayer, R. E. (2001). Changing conceptions of learning: A century of progress in the scientific study of education. In Corno, L. (ed.), Education across a Century: The Centennial Volume. One Hundredth Yearbook of the National Society for the Study of Education (pp. 3475). Chicago, IL: University of Chicago Press.Google Scholar
Mayer, R. E. (2011). Applying the Science of Learning. Upper Saddle River, NJ: Pearson.Google Scholar
Mayer, R. E. (2014). Computer Games for Learning: An Evidence-Based Approach. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Mayer, R. E. (2019). Computer games in education. Annual Review of Psychology, 70, 531549.Google Scholar
Mayer, R. E. (2021). Multimedia Learning (3rd ed.). New York: Cambridge University Press.Google Scholar
Mayer, R. E., & Anderson, R. B. (1991). Animations need narrations: An experimental test of a dual-coding hypothesis. Journal of Educational Psychology, 83, 484490.Google Scholar
Mayer, R. E., & Anderson, R. B. (1992). The instructive animation: Helping students build connections between words and pictures in multimedia learning. Journal of Educational Psychology, 84, 444452.Google Scholar
Norman, D. A. (1993). Things That Make Us Smart. Reading, MA: Addison-Wesley.Google Scholar
Paivio, A. (1986). Mental Representations: A Dual Coding Approach. Oxford: Oxford University Press.Google Scholar
Paivio, A. (2007). Mind and Its Evolution: A Dual Coding Theoretical Approach. Mahwah, NJ: Erlbaum.Google Scholar
Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representations. Learning and Instruction, 13, 141156.CrossRefGoogle Scholar
Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive Load Theory. New York: Springer.CrossRefGoogle Scholar
Thorndike, E. L. (1913). Educational Psychology. New York: Columbia University Press.Google Scholar
van Merrienboer, J. J. G., & Kirschner, P. A. (2013). Ten Steps to Complex Learning: A Systematic Approach to Four-Component Instructional Design (2nd ed.). New York: Routledge.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×